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ABSTRACT Natural selection and random genetic drift
are modeled by using diffusion equations for the mean pheno-
type of a quantitative (polygenic) character in a finite popula-
tion with two available adaptive zones or ecological niches.
When there is appreciable selection, the population is likely to
spend a very long time drifting around the peak in its original
adaptive zone. With the mean phenotype initially anywhere
near the local optimum, the expected time until a shift between
phenotypic adaptive peaks increases approximately exponen-
tially with the effective population size. In comparison, the ex-
pected duration of intermediate forms in the actual transition
between adaptive peaks is extremely short, generally below the
level of resolution in the fossil record, and increases approxi-
mately logarithmically with the effective population size. The
evolutionary dynamics of this model conform to the pattern of
current paleontological concepts of morphological "stasis" and
"punctuated equilibria."

The shifting-balance theory of evolution developed by
Wright (reviewed in ref. 1) postulates a large population sub-
divided into many small local populations, or demes, con-
nected by a low rate of migration. Stabilizing selection to-
ward an optimal phenotype for quantitative (polygenic) char-
acters, as well as the availability of more than one optimal
phenotype, creates a large number of genetic adaptive peaks
for the population. Wright showed that when the fitnesses of
genotypes are constant in time and alleles at different loci
are combined approximately independently, deterministic
changes in gene frequencies caused by natural selection al-
ways increase the mean fitness in a population. Therefore a
population can be represented as a point on a surface of
mean fitness, with height W, in a space where the other di-
mensions are gene frequencies and where natural selection
causes the population to evolve uphill toward a local adap-
tive peak. The finite size of each local population produces
random genetic drift that may occasionally cause a local pop-
ulation to undergo a "peak shift" (1, 2) by evolving tempo-
rarily downhill on the adaptive topography, across an ina-
daptive zone, and then toward a different adaptive peak. If
the new adaptive peak is higher than the original one, this
local population may disperse more migrants and colonists
than other local populations, thus spreading the new adapta-
tion.
Wright (2) pointed out the relevance of his theory to recent

ideas on "punctuated equilibria" (3, 4), which holds that spe-
cies maintain a constant phenotype during most of their exis-
tence and that new species originate suddenly in small local-
ized populations. In addition to qualitative observations of
morphological stasis in the fossil record of many species and
the usual lack of transitional forms between fossil species,
notions of punctuated equilibria are founded in part on
Mayr's (5) theory of speciation, which was itself initially for-

mulated with an awareness of Wright's shifting-balance the-
ory (1, 6).
By analogy with Wright's adaptive topography for gene

frequencies, Simpson (7) discussed extensively the concept
of phenotypic adaptive zones for quantitative characters.
This was later formulated by Lande (8, 9), who showed that
an adaptive topography for the mean phenotype in a popula-
tion can be represented by a surface of mean fitness, with
height W, in a space where the other dimensions are the
mean values of quantitative characters in the population. Us-
ing scales of measurement (most often logarithmic) such that
the phenotypic and genetic variation of the characters re-
mains nearly constant during evolution, and if the relative
fitnesses of the phenotypes do not change with time, weak
natural selection always causes the mean phenotype to
evolve uphill on the adaptive topography, increasing the
mean fitness in the population until the local optimal pheno-
type is attained. The widespread occurrence of convergent
evolution in distantly related taxa (ref. 7, pp. 160-198; ref.
10)-for example, among marsupial and placental mam-
mals-indicates that for many species the adaptive topogra-
phy for morphological characters maintains a consistent pat-
tern of selection over long periods of time.
The requirement, in Wright's theory, of a low level of mi-

gration between demes to maintain genetic variation within
demes, for natural selection and random genetic drift, has
been criticized by Simpson (ref. 7, p. 123) and Mayr (ref. 5,
pp. 520-521) who place more emphasis on rapid evolution in
completely isolated small populations. Lande (6) argued that
the high rates of spontaneous mutation observed in polygen-
ic, quantitative characters can maintain appreciable genetic
variation even in completely isolated small populations, with
effective sizes on the order of a few hundred individuals.
The expected (or average) time for the mean phenotype in

a population to evolve by random genetic drift a certain dis-
tance away from a single adaptive peak was analyzed previ-
ously (8). Barton and Charlesworth (11) gave an approximate
formula for the steady rate of transitions between two phe-
notypic adaptive zones, based on a formula derived from the
Kolmogorov forward equation for diffusion processes. Here
I outline a method of obtaining the expected time for the
mean phenotype of a quantitative character in a finite popu-
lation to evolve from any initial value to any final value,
based on a formula derived from the Kolmogorov backward
equation. This general approach is used to investigate the
expected time until a shift of the mean phenotype between
two adaptive peaks or ecological niches, as well as the ex-
pected duration of intermediate stages in the transition be-
tween alternative stable states.

THE MODEL
Assumptions. A quantitative character, z, is assumed to be

influenced by a large number of genetic loci, with roughly
additive effects, and an independent environmental effect,
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which in sum produce a phenotypic value that is normally
distributed in the population. Genetic variance is assumed to
be maintained by mutation and recombination (12, 13). By
appropriate choice of scale of measurement (14), the pheno-
typic variance, oa 2, and the heritability of the character, h2
(the fraction of the total phenotypic variance due to the addi-
tive portion of the genetic variance), are assumed to be near-
ly constant during the evolution of the mean phenotype, z.
To ensure this it is also necessary to postulate that the effec-
tive size of the population is not very small (Ne >> 10) and
that selection on the additive genetic variance is weak at all
points on the adaptive topography (15). Defining the curva-
ture of the adaptive topography at the mean phenotype x as
Cx = (a2 In W/a72)X. the latter condition is

h22 << Ic 11. [la]

An adaptive topography for the mean phenotype, with two
adaptive zones or ecological niches, is depicted in Fig. 1. It
is assumed that the adaptive landscape is smooth (with con-
tinuous first and second derivatives), having no other adap-
tive peaks, with W approaching zero as z approaches ±00 so
that

x0 k

f W2NAdZ < oo and W-2Nedz = 0 [lb]

for an arbitrary point k.
In deriving approximate expressions for the general for-

mulae, it is further assumed that stabilizing selection at the
adaptive peaks and disruptive selection in the adaptive val-
ley are not negligible in comparison to random genetic drift.
This condition can be stated by the requirements that v is
roughly intermediate between a and b and that at these
points in Fig. 1,

11 << (b - a)2Ne, [Ic]

which is consistent with the previous assumptions.
Stationary Probability Distribution of the Mean Phenotype.

With these assumptions, evolution in a population with dis-
crete, nonoverlapping generations can be accurately mod-
eled by using diffusion equations to describe changes in the
probability distribution of the mean phenotype (8). For a par-
ticular population, the expected change in the mean pheno-
type per generation caused by natural selection is h2a,2(a In
W/az) and the sampling variance of the change in the mean
phenotype per generation caused by random genetic drift is
h2cr2/Ne. After an indefinitely long time, the stationary (or
equilibrium) probability distribution of the mean phenotype
achieved by the interaction of natural selection and random

genetic drift is

+(Z) = W2N,/C W2Ned-. [2]

From the stationary distribution it is clear that, if there is
appreciable selection, the mean phenotype of the population
will spend the vast majority of the time near the highest
point(s) on the adaptive topography, particularly when the
effective population size is not very small. Different peaks in
the adaptive topography for the mean phenotype therefore
represent alternative stable states for a population, and we
can investigate the expected time required for a shift be-
tween them by random genetic drift.

Expected Time Until a Shift Between Adaptive Peaks. The
average time in generations for the mean phenotype to
evolve from an initial value zo to either of two arbitrary
points a and /3, with a - zo c /3, is given by the following
formula (8, 16), derived from the Kolmogorov backward
equation of diffusion theory:

h2No, d2T 2 InW( dT
I(~a ==12Ne dzi a-z zodzo -1 [3a]

where T T(a,p3Izo) satisfies the boundary conditions

T(a,/3Ia) = T(a4,Op) = 0. [3b]

The general solution is conveniently written in terms of the
stationary distribution, Eq. 2,

T = (2Ne/h20.2) U(ZO) f +-l(y) f 4(x)dxdy

I +(y) (x)dxdy], [4]

where

u(z) = f -'(y)dy I -(y)dy.

u(zo) is the probability that the mean phenotype evolves to /
before reaching a, starting from zo (16, 17). Since the main
interest here is in the expected time taken for the population
to evolve from an initial mean phenotype somewhere near
the first adaptive peak at Z = a to the second adaptive peak
at z = b (see Fig. 1), regardless of the path taken, we can set
a = -0 and /8 = b. Then, using the second part of Eq. lb,
u(zo) = 1 and the expected time simplifies to

T = (2Ne/h2O-2) +-1(y) 4+(x)dxdy. [51

13
cn

0

I

I

a v
Mean phenotype, Z

b

FIG. 1. Adaptive topography giving the mean fitness in a popula-
tion as a function of the mean phenotype of a quantitative (polygen-
ic) character, with two adaptive peaks separated by an inadaptive
zone.

With appreciable selection, as in Eq. ic, +-1(z) has a
sharp peak at v, the stationary distribution +(z) has two
sharp peaks at a and b, fy- 4(x)dx is nearly constant be-
tween a and b, and T approaches a step function with a step
at zo = v. For an initial mean phenotype anywhere around
the first adaptive peak at z = a, the expected time for evolu-
tion to the second adaptive peak is nearly independent of the
initial mean phenotype, zo, because it is most probable that
the population will evolve toward the adaptive peak at a and
drift around it for a long time before approaching the adap-
tive threshold at v. Once the adaptive threshold has been
crossed, however, the population evolves quickly to the sec-
ond adaptive peak.
To obtain a simple formula for the expected time to reach
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the second adaptive peak, at b, starting from any initial mean
phenotype near a, the shape of the mean fitness function
around a peak or valley can be approximated as a quadratic
curve by expanding in a Taylor series; e.g., near a,

W(z) ~W(a)[1 + W1()(a2W/a72)a(Z - a)21

Differentiating a In W/aZ = W-1aW/az, it follows from
(aW/az)a = 0 and the definition of the curvature that Ca -
W-1(a)(a2W/az2)a. Changing the expansion to an exponen-
tial form, using 1 + x = ex for lxi << 1, and raising this to the
2Ne power, the stationary distribution can be approximated
by a gaussian curve near a,

+z) 4(a) exp[Neca(Z - a)2], 16a]

and similarly near v,

0-1(-z) = o>-4(v) exp[-Ncv(-z- v)2]. [6b]

With the assumption of appreciable selection, for a < y < b
fY

J (x)dx = 0 (a)(- rlNeCa)1/2
Ox

except for y near a or b, and for zo < v

f>-(y)dy - O-'(v)(XrNeCJ"'

except for zo near v. Use of these expressions and Eq. 2 to
evaluate Eq. 5 yields the approximate formula

T (21r/h2r2)(-Cacv)22[W(a)/W(v)]2Ne. [7]

For any initial mean phenotype near the first adaptive
peak, the expected number of generations until the popula-
tion evolves to the second adaptive peak is proportional to
the ratio of the height of the first peak to the height of the
valley, raised to the power 2Ne. The expected time also de-
pends on the amount of heritable variance in the character,
h2cr2, and on the curvatures of the adaptive topography at
the first peak and at the bottom of the valley. However, with
appreciable selection, T is essentially independent of the dis-
tance between the peaks and the height of the second peak.
For a shift between phenotypic adaptive peaks to occur
within a geologically reasonable time span (several millon
years), the inadaptive zone must be shallow and the effective
population size must be fairly small. Barton and Charles-
worth (11) have arrived at similar conclusions based on a
formula from chemical physics (derived from the Kolmo-
gorov forward equation in ref. 18) giving the expected rate of
such events per generation, which is equivalent to the recip-
rocal of Eq. 7.
For example, the intensity of stabilizing selection on quan-

titative characters in natural populations, with the mean phe-
notye at the local optimum and typical selective loads (L =
1 - W/Wmax) of a few to several percent (19, 20), implies
that _Or2Ca = 2L is on the order of 0.1; let us suppose the
curvature of the adaptive topography at the bottom of the
valley is comparable in magnitude to that at the adaptive
peak. The heritability of morphological characters is usually
in the range of h2 = 0.1 to 0.7 (21). Thus the factor multiply-
ing the power function in Eq. 7 may often be on the order of
100. Then if the initial adaptive peak is 1.05 times higher than
the valley, the expected time until a shift between phenotyp-
ic adaptive peaks in a single population of effective size N,
= 100 will be on the order of 106 generations; ifNe = 200, the

expected time will be on the order of 101o-1011 generations.
The situation is somewhat more favorable for a peak shift

when many small, isolated populations are involved. With n
populations each of effective size Ne, the expected time until
one of them undergoes a transition between adaptive peaks
is about Tin generations, assuming that the adaptive surface
is the same for all populations and that n << T. For exam-
ple, with the heritability and selection parameters as above,
the expected time until a peak shift in one out of n = 10,000
populations each of effective size Ne = 200 is on the order of
106_107 generations.
Expected Duration of Intermediate Stages in the Transition.

The expected duration of intermediate forms in the transi-
tion of the mean phenotype across the adaptive valley is
closely connected to the expected time to escape from the
valley. With the mean phenotype initially at the bottom of
the valley, ZO = v, the expected time to evolve a distance ±z
from v can be obtained from Eq. 4, using the gaussian ap-
proximation in Eq. 6b. From the symmetry of +(z) and
+-1(z) around v, u(v) = 1/2 and

7 = (Ne/h2o2) j sgn(y - v) 4-1(y) d(x)dxdy

(V+Z

= (N~h
2 v2 0 l(y) e i(x)dxdy. [8]

Changing the order of integration,

T = (2Ne/h2o2) I+ f(X, 0-(y)dy

and using the asymptotic expansion of the tail integral of a
gaussian function (22), it can be shown for (2Nec)112z > 3
that

(2NcCv)lz

T (h2o,2cV)-4 I x-ldx

= (h2r2c,)-l ln[(2Nec,)12z]. [9]

The duration of intermediate stages in the transition be-
twgee adaptive peaks can be derived more accurately from
the theory of conditional diffusion processes (23), which
gives a general formula for the expected time for a random
variable to reach one value before reaching another value,
excluding cases in which the latter value is reached first. In
particular, for a quantitative trait, let T* denote the average
time for the mean phenotype to evolve from a to b without
crossing a. This can be obtained from the general formula in
ref. 23, with boundary conditions and diffusion parameters
appropriate for a quantitative trait, by taking the limit as zo

a:

b

T*= K f (x)u(x)[1 - u(x)]dx, [101

where

b

K = (2Ne/h 2c2) f 4-1(y)dy.

In these expressions, +(x) is the stationary distribution in
Eq. 2, and u(x) is defined as shown after Eq. 4. Writing Eq.
10 as the difference of two integrals involving u(x) and u2(x)
and integrating each of these by parts yields
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T* = (2Ne/h20,2) [2u(y) - 1] +-'(y) 4(x)dxdy. [11]

Comparison of Eq. 5 (with zo = a) and Eq. 11, noting the
symmetry of ¢-1(y) and the antisymmetry of 2u(y) - 1
around v, reveals that the (unconditional) expected time to
evolve between adaptive peaks, from a and b, is far longer
than the expected time for the transition from a to b condi-
tional on not crossing a. This is so because in the uncondi-
tional process, the mean phenotype spends the vast majority
of the time drifting randomly around the first adaptive peak
before it crosses a for the last time and makes the transition
to b.

It is also interesting to observe from formula 10, in which a

and b may represent any two points, that the average time
for the mean phenotype to evolve from a to b without cross-

ing a is equal to the average time for evolution from b to a

without crossing b. Thus, during the transition between two
adaptive peaks of equal height, separated by a symmetrical
valley, the expected time from when the mean phenotype
finally passes the first peak and evolves downhill to the
threshold at the bottom of the valley (against the force of
selection) is equal to the expected time from when the mean
phenotype finally passes the threshold and evolves uphill to
the second adaptive peak (with the force of selection).

Noting that with appreciable selection, 2u( y) - 1 = sgn( y
- v), and using approximations similar to those producing
Eq. 9, it can be shown that the expected time for the final
transition between adaptive peaks is roughly

(h2 2)-ofl ln[Necv(b a)/2]

ca 1 Int-Neca~v-a)2

- 2c In[-NeCb(b - V)2/2] . [12]

Thus, T* depends mainly on the amount of heritable vari-
ance in the character and on the curvature of the adaptive
topography at the bottom of the valley and at the tops of the
peaks. These aspects of the geometry of the adaptive land-
scape are most important because, during the transition be-

tween adaptive peaks, the population may spend consider-
able time drifting randomly in the regions of minimal direc-
tional selection, where the adaptive topography is nearly
flat. T* has a weak, approximately logarithmic, dependence
on the effective population size and on the distances be-
tween the adaptive peaks and the adaptive threshold at the
bottom of the valley. Increasing the depth of the valley in-
creases the magnitude of curvature and decreases the ex-

pected duration of the transition of the mean phenotype be-
tween adaptive peaks.
The time for the final transition between adaptive peaks is

expected to be orders of magnitude shorter than the time the

population initially spends drifting around the original adap-
tive peak, when selection is appreciable. For example, sup-
pose that the intensity of disruptive selection at the adaptive
threshold is the same order of magnitude as the intensity of
stabilizing selection often observed around an adaptive
peak, o2cc 0.1, and that the heritability of the character is

in the range h2 = 0.1 to 0.7. If the adaptive peaks differ by a

few to several phenotypic standard deviations (b - a 2a to

20o), with an effective population size N, = 102, the expect-
ed duration of the transition between adaptive peaks in a sin-
gle population will be on the order of 100 generations; with

an effective population size as large as Ne = 106, the expect-
ed duration of the transitional period will be on the order of

1000 generations.

DISCUSSION
Stabilizing selection toward an intermediate optimnal pheno-
type is commonly observed on quantitative characters in
natural populations (19, 20). Even rather weak stabilizing se-
lection on a population in a single phenotypic adaptive zone
or ecological niche can produce prolonged periods of relative
stasis with minor fluctuations of the mean phenotype caused
by random genetic drift around the optimal phenotype (8). In
the present model with two peaks in the adaptive topogra-
phy, periods of relative stasis with minor fluctuations may
be quite extended on a geological time scale, and their ex-
pected duration is an exponentially increasing function of the
effective population size. Temporal fluctuations in the local
optimal phenotype around an average value, which may also
be common, could produce a similar pattern (24-26). In de-
tailed fossil sequences that have been examined quantita-
tively, there appear to be significant fluctuations in the mean
phenotype on the shortest time scales that can be resolved
(e.g., see refs. 25, 27-29). This may be caused by direct ef-
fects of a changing environment on the development of indi-
vidual phenotypes, genetic evolution in situ, and/or migra-
tion of geographic races driven by climatic fluctuations.
When more than one phenotypic adaptive zone or ecologi-

cal niche is available to a species, a small geographically iso-
lated population may occasionally evolve by random genetic
drift across an inadaptive zone to a new adaptive peak. The
present models demonstrate that when there is appreciable
selection, the transitional period is extremely rapid geologi-
cally, on a time scale of 102_103 generations for populations
with effective sizes in the range 102-106. This is well below
the resolution of the fossil record of most organisms, which
is limited by both the low stratigraphic acuity and the high
incompleteness of sedimentation on short time scales (30,
31).
Remarkably, the expected duration of the transition be-

tween adaptive peaks in the model has only a weak, approxi-
mately logarithmic, dependence on the effective population
size, when selection is appreciable. Thus, a population that
is large enough to leave a detailed fossil record may appear
to suddenly change morphology, with no intermediate forms
preserved. This is not implausible, since the effective size of
a population may be far less than its average actual size, es-
pecially when there are large temporal fluctuations in popu-
lation numbers (32).
The foregoing model, based on neo-darwinian mecha-

nisms of natural selection and random genetic drift in quanti-
tative characters, reveals evolutionary dynamics that corre-
spond closely to the description of prolonged morphological
"stasis" interspersed by brief periods of rapid change,
known as punctuated equilibria (3, 4). Although the charac-
ter is not developmentally or genetically constrained, pro-
longed stasis and relatively sudden transitions are produced
by the interaction of random genetic drift and selection for
multiple adaptive peaks. Other mechanisms that can pro-
duce this pattern also have been analyzed (33-36).
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