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Figure S1: Optical forces in a speckle field for particles of different sizes. Optical 

forces in the transversal plane (green arrows), calculated using exact electromagnetic 
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theory
27-28

, in a speckle field (background) for polystyrene particles (       ) in 

water (       ,    = 0.001 Ns/m
2
, T = 300 K) for (a) a point dipole where the 

Rayleigh approximation strictly holds and for particles with increasing radii (b) R = 100 

nm, (c) R = 250 nm, (d) R = 500 nm and (e) R = 1000 nm. The force field acting on 

particles whose radius is smaller than the wavelength (b-d) is qualitatively the same as 

the one acting on the point dipole in (a). A change in the field happens only for much 

larger particles: the particle in (e) is not attracted to the maxima of intensities in the 

speckle field but to a minimum of intensity separating two or more speckle grains, as 

previously observed in periodic patterns
41

. The white circles represent the different 

particle’s sizes. In every plot the length of the arrows representing the force is 

normalized to its maximum. 
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Figure S2: Fractionation by size. (a) The color-coded symbols represent the positions 

of particles of various radii (       , radii varying from 250 nm to 200 nm with 10 

nm steps) at different times (shown every 10 seconds) as they propagate along a 

vertically ratcheting speckle pattern in a channel with a flow from the left (flow speed 

34 µm/s). The dashed lines represent the motion of the center of mass for the different 

groups of particles. (b) The shaded areas represent one standard deviation of the 

particle’s spread around the mean value. The black scale bar corresponds to 100 µm. 

The resolution of the fractionation is only limited by the size of the speckle pattern, i.e., 

the longer the speckle pattern the higher the sensitivity in particle’s size.  
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Figure S3: Fractionation by refractive index. (a) The color-coded symbols represent 

the positions of particles of various refractive indexes (        ,    varying from 

1.67 to 1.47 with 0.04 steps) at different times (shown every 10 seconds) as they 

propagate along a vertically ratcheting speckle pattern in a channel with a flow from the 

left (flow speed 34 µm/s). The dashed lines represent the motion of the center of mass 

for the different groups of particles. (b) The shaded areas represent one standard 

deviation of the particles’ spread around the mean value. The black scale bar 

corresponds to 100 µm. The resolution of the fractionation is only limited by the size of 

the speckle pattern, i.e., the longer the speckle pattern the higher the sensitivity in 

particle’s refractive index.  
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Supplementary Note S1 – Speckle pattern generation and properties 

Speckle pattern intensity distribution 

A speckle pattern is an interference figure resulting from random scattering of coherent 

light by a complex medium. The probability density function of the speckle pattern 

intensity   follows the negative exponential distribution
3,24

: 

     
 

   
 

 
 

                                                          

where     is the average speckle pattern intensity. Figure S4 shows the very good 

agreement between theoretical and numerical distributions of the speckle pattern 

intensities used in the simulations. 

  

Figure S4: Speckle pattern intensity distribution. Theoretical (solid line) and 

numerical (circles) probability density function of the speckle pattern intensity  . 
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Speckle pattern correlation function and its Gaussian approximation 

The normalized spatial autocorrelation function of the speckle pattern, which provides a 

measure of the average speckle grain size, is defined by the diffraction process that 

generates the speckle pattern itself
3,24

. For a fully developed speckle pattern, in the 

general case, this autocorrelation function can be approximated by a Gaussian function 

whose standard deviation depends on the size of the average speckle grain. In what 

follows, we treat the case of a speckle pattern generated by diffraction through a circular 

aperture, as used in the simulations. In this case, the autocorrelation function is the Airy 

disk (Figure S5): 

       
             

       
   

         

     
 

 

                              

where      is the speckle pattern intensity as a function of the position  ,    is the Bessel 

function of the first kind and order 1 and   
    

 
, being   the wavelength of light, and 

   the numerical aperture under which the speckle pattern is generated. The distance   

between        and the first minimum of the Airy function (         
 

  
) defines 

the average speckle grain size at the plane of observation, where    for a speckle 

pattern generated at distance   from an area of diameter   is, around the optical axis if 

   ,               
 

  
  , where    is the refractive index of the medium 

where the speckle pattern is observed. In our simulations,         ,          , 

       , and          , giving an average speckle grain size of       . 

Any Airy function is very well approximated by a Gaussian function of standard 

deviation       
 

  
  so that

25
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or, making explicit the dependence on   and    

         
 

     

                                                              

 

Figure S5: Speckle pattern intensity autocorrelation function. Normalized speckle 

pattern intensity autocorrelation functions as given by the Gaussian model of Equation 

(S3) (line), and by the Airy function of the numerically generated speckle pattern 

(circles). 

So far, we have considered the case of 2-dimensional speckle patterns, while a full 3-

dimensional description of speckle patterns might be sometimes necessary. As for the 

case of the 2-dimensional speckle pattern, the statistical properties of the 3-dimensional 

patterns are also fully defined by the diffraction process that generates them, so that the 

average size of the 3-dimensional speckle grain can be defined at any point of 

observation away from the plane where the speckle pattern is generated
24

.  
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Supplementary Note S2 – Optical forces in a speckle pattern: 

probability density function and correlation function  

Force probability density function 

In a speckle field, the optical forces exerted on a Brownian particle are proportional to 

the gradient of the speckle pattern intensity (see Methods). Since the speckle field is 

known, we can fully derive numerically the associated random force field and calculate 

its statistical properties. In particular, from the definition of variance, it can be shown 

numerically that he following property holds: 

                                                                     

where   is the absolute value of the force and          . This property will be useful 

to derive Equation (S10). In Figure S6, we plot the probability density function of the 

force for different particle’ radii, and, as a guide for the eyes, we fit it to the following 

empirical function: 

       
  

   
 

 
 

 
 

  
                                                           

where    is a normalization factor. 
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Figure S6: Probability density function of the optical forces in a speckle field. 

Probability density function of the optical forces (circles) acting on particles of different 

radii moving on the same speckle field, and fitting to Equation (S6) (lines). The average 

forces increases with the particle radius,            (blue circles and line),    

        (red circles and line) and            (black circles and line). 

Force correlation function 

The aim is to calculate the force correlation function from the intensity correlation 

function given in Equation (1). 

The correlation of the force can be expressed as 

                     

                                   

     
        

    
 

where   represent the dot-product,   the force vector, and    and    the force 

components. We can now Fourier-transform    
     and    

     so that 
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and 

    
            

 
               

 
           

 
       

 
  

Using the Wiener-Khinchin theorem, we can now derive the correlation function of the 

force from the correlation function of the intensity: 

   
            

        

   
 

  

  
       

  

  
  

 
     

     

and 

   
            

        

   
 

  

  
       

  

  
  

 
     

     

so that 

       
  

  
       

     

  
  

 
     

                                            

which is rotationally symmetric. From this function we now can extract the force 

correlation length  

                                                                          

which is the value for which the components of the correlation function have the first 

zero, so where the force change sign on average. 

Moreover, we have  

            
  

  
                                                          

and since, from Equation (S5),           , we finally obtain: 
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Supplementary Note S3 – Possible experimental configurations. 

From the experimental point of view, speckle light fields with the required statistical 

properties are routinely generated over large areas using different processes, such as 

scattering of a laser on a rough surface, multiple scattering in an optically complex 

medium, or mode-mixing in a multimode fiber
4
. Figure S7 shows two schematics of 

different possible setups that can be implemented at low cost with little alignment based 

on two processes to generate a speckle pattern, e.g., light propagation through a 

multimode optical fiber and light scattering from a complex medium, such as paper, 

paint, or many biological tissues
4
. The use of a multimode optical fiber, in particular, 

provides homogeneous speckle fields over controllable areas. Since the random 

potential of a speckle field results from optical forces, we expect the power 

requirements per unit of area to be comparable to the ones employed to achieve optical 

manipulation in periodic potentials
13-19,34,41

. As for other optical trapping techniques, the 

bigger the particles and the higher the refractive index, the lower is the need for power 

to achieve a certain level of average force. Therefore, the input power will greatly scale 

down when increasing the volume of the particles. 
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Figure S7: Schematic of possible experimental setups. Two possible setups to 

perform the proposed experiments in the main text: Brownian particles move within a 

microfluidic chamber illuminated by a speckle pattern over a broad area. The beam 

from a laser diode generates the required speckle pattern either (a) after propagation in a 

multimode optical fiber or (b) after scattering from an optically complex medium, such 

as a biological tissue or a thin or thick diffuser. 

Finally, the channels we propose in the manuscript are routinely used in microfluidics 

and optofluidics. Since microfluidic flows are typically laminar and not turbulent (low 

Reynolds numbers), the flow in these channels can be straightforwardly and accurately 

predicted and controlled
40

. 
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Supplementary Video S1 – Speckle sieve 

Two classes of polystyrene particles with different radii, R = 200 nm (green beads) and 

R = 250 nm (black beads) are carried from left to right by a flow (42 µm/s). The larger 

particles are trapped over longer times by a static speckle pattern, here represented by 

the red disordered area, while the smaller particles tend to escape faster. After 6 s the 

two classes of particles are completely separated. 

 

Supplementary Video S2 – Speckle sorter 

Two classes of polystyrene particles with different radii, R = 200 nm (green beads) and 

R = 250 nm (black beads) are carried from left to right by a flow (34 µm/s). The larger 

particles are pushed down by a speckle pattern shifting over 1 µm with memory effect, 

here represented by the red disordered area, while the smaller particles keep moving 

almost on a straight line. After 6 s the two classes of particles are completely sorted. 
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