Supplemental Material for:

Bacterial discrimination by Dictyostelid amoebae reveals the complexity of ancient interspecies interactions

Waleed Nasser¹, Balaji Santhanam^{2,3}, Edward Roshan Miranda^{2,4}, Anup Parikh^{2,3}, Kavina Juneja⁵, Gregor Rot⁶, Chris Dinh¹, Rui Chen^{2,3,4}, Blaz Zupan^{2,6}, Gad Shaulsky^{2,3,4} and Adam Kuspa^{1,2,4*}

1 - Verna and Marrs McLean Department of Biochemistry and Molecular Biology, 2 –
Department of Molecular and Human Genetics, 3 – Structural and Computational Biology and
Molecular Biophysics Program, 4 – Developmental Biology Program, Baylor College of
Medicine, Houston, TX 77030; 5 – Department of Biochemistry and Cell Biology, Rice
University, Houston, TX 77005; 6 – Faculty of Computer and Information Science, University of
Ljubljana, Slovenia.

* Corresponding author:

Adam Kuspa, Ph.D. Department of Biochemistry and Molecular Biology Baylor College of Medicine One Baylor Plaza Houston, TX 77030 Phone: 713-798-1060 E-mail: <u>akuspa@bcm.edu</u>

b AX4[ctnC/GFP]

Figure S1. a, Wild-type (AX4) amoebae transformed with green fluorescent protein (GFP) coding sequence placed under the control of the *hydr1 (DDB_G0293366)* promoter, a Grampositive specific gene, AX4[*hydr1/GFP*], were mixed with different bacteria and spotted on buffered agar. The amoebae produce GFP and fluoresce when exposed to Gram-positive bacteria, but not when exposed to Gram-negative bacteria. Pictures depict bright-field and fluorescent microscopy using a 10X objective lens. **b**, Wild-type amoebae transformed with GFP placed under the control of *ctnC* promoter, AX4[*ctnC/*GFP], were mixed with different bacteria and spotted on buffered agar. The amoebae produce GFP and fluoresce when exposed to *Enterobacteriaceae* family bacteria, but not when exposed to heat-killed *Enterobacteriaceae*, or any other bacteria we tested.

Figure S2. Growth of *D. discoideum* strains under different bacterial growth conditions.

a, Growth curves of wild-type AX4 (WT) and mutant *D. discoideum* strains on four bacteria, *K.* pneumoniae, P. aeruginosa, S. aureus, and B. subtilis. D. discoideum strains (WT, tirA⁻, nagB1⁻, gpi, swp1, gp130, clkB, spc3, alyL, and $\Omega1334$) were mixed with a thick bacterial culture and plated on buffered agar. D. discoideum growth was monitored by counting cells in a fixed surface area. b, Growth curve of WT and Gram(-) growth defective mutants on live bacteria (left) and heat-killed bacteria (right). WT and Gram(-) defective mutants exhibit similar growth phenotype on heat-killed Gram(-) bacteria. c, D. discoideum growth on heat-killed S. aureus. Rows represent wild type or *nagB1*⁻ mutant amoeba as indicated on left, and columns represent different bacterial species or a mixture of bacterial species (heat-killed or live) in different mass ratios as indicated (HK, heat-killed; S.a, S. aureus; K.p, K. pneumoniae). Each spot is a coculture of about 500 D. discoideum cells and a thick bacterial culture spotted on buffered agar and imaged after 4 days of incubation. The bacteria appear as tan areas within the spots. The dark speckles within the spots are a result of Dictyostelium aggregation and multicellular development following exhaustion of the bacterial food supply. Intermediate levels of feeding are indicated by partial clearing of the tan bacteria lawn. Similar results were obtained for the other Gram(+)-growth-defective mutants gpi and swp1 (unpublished observations).

Figure S3. Expression (qRT-PCR) analysis of marker gene transcripts of *D. discoideum* **strains under different bacterial growth conditions**. *D. discoideum* strains WT, *nagB1*⁻, *gpi*⁻, *swp1*⁻, *tirA*⁻, *clkB*⁻, *spc3*⁻, and *alyL*⁻ were mixed with *K. pneumoniae*, *P. aeruginosa*, *S. aureus*, and *B. subtilis*. WT amoebae were also mixed with *K. pneumoniae*, *S. aureus*, or *B. subtilis* in the presence of tunicamycin or glucose. The *nagB1*⁻ and *gpi*⁻ mutants were also mixed with *S. aureus*, and *B. subtilis* in the presence of glucose, and WT, *tirA*⁻, *clkB*⁻, *spc3*⁻, and *alyL*⁻ were mixed with Heat-killed *K. pneumoniae*. Relative mRNA levels were determined by qRT-PCR, using the gene specific primers (Supplemental Table S4) and normalizing them to the transcript levels of the histone H3a gene within each sample. Some of the genes are identified by the last five digits of their DDB_G number as annotated on dictyBase [1]. The full gene names can be reconstructed by adding the 5-digit number to the end of "DDB_G02".

Figure S4. Hierarchical clustering of transcriptomes from *D. discoideum* **strains under different bacterial growth conditions.** Hierarchical clustering with multiscale bootstrap resampling (R package pvclust) of normalized mRNA levels of marker genes in wild-type (WT) or mutant (*nagB1⁻*, *gpi⁻*, *swp1⁻*, *tirA⁻*, *clkB⁻*, *spc3⁻*, *alyL⁻*) *D. discoideum* strains grown on different bacterial species [*K. pneumoniae* (*K.p*), Heat-killed *K. pneumoniae* (HK-*K.p*), *P. aeruginosa* (*P.a*), *S. aureus* (*S.a*), or *B. subtilis* (*B.s*)]. Approximately unbiased *p*-values (au) and the bootstrap probabilities (bp) are shown for each branch, in red and green respectively [2]. The distances depicted are Euclidean distances with arbitrary units.

Figure S5. Multidimensional scaling analysis of transcriptomes from *D. discoideum* **strains under different bacterial growth conditions.** The same data set depicted in Figure S4 was subjected to classical multidimensional scaling (MDS) analysis (R function cmdscale) depicting the dissimilarities due to normalized mRNA levels of differentially expressed genes.

Figure S6. Glucose rescues *nagB1*⁻ and *gpi*⁻ mutants growth on *B. subtilis*.

Approximately 250 cells of AX4 wild-type (WT) *D. discoideum*, the *nagB1*⁻ mutant (AK1372), two different *gpi*⁻ mutant strains (AK1333 and AK1353), and the *swp1*- mutant (AK1321) mixed with an overnight culture of *B. subtilis* and spotted on Nutrient agar with no glucose added, 60 mM glucose, or 50 mM 2-deoxy-glucose. The images were acquired 4 days after plating. Glucose treatment rescued the growth phenotype of the *nagB1*⁻ and *gpi*⁻ mutants on *B. subtilis*, as indicated by the central clearing of the spots, but not the growth of the *swp1* mutant.

Forward genetic screen for differential bacterial growth

Figure S7. Scheme for the forward genetic screen to isolate mutants with a differential growth phenotype on bacteria. We subjected cultures of AX4 amoebae to plasmid insertionalmutagenesis using REMI [3] and plated for clonal growth in liquid media. Wells with transformed mutants colonies were consolidated into 96-well plates and the amoebae were allowed to grow to saturation. We mixed about 150-200 mutant cells with a slurry of Gram(+) *B. subtilis* bacteria and seperately with a slurry of Gram(-) *K. pneumoniae* bacteria. We spotted the amoebae-bacteria mixtures onto Nutrient media agar and monitored amoebal growth over five days. We picked mutants that displayed differential growth on the two bacteria (red or blue arrows), as well as those that showed slower or more rapid growth. Supplemental Table S1 (separate file). An Excel spreadsheet containing the raw and processed

RNAseq data used in this study.

		Growth Phenotype		
Strain	Gene mutated	on Bacteria ¹	Annotation and Notes ²	Reference
AX4	axeA, axeB	wild-type	study	[+]
1C7	gp130	Gram(+)-defective	gp130 adhesion protein	[5]
2F5	gp130	Gram(+)-defective	gp130 adhesion protein	[5]
AK1321	swp1	Gram(+)-defective	oligosaccharide transferase	This work
AK1333	gpi	Gram(+)-defective	glucose phosphate isomerase	This work
AK1353	gpi	Gram(+)-defective	glucose phosphate isomerase	This work
AK1372	nagB1	Gram(+)-defective	glucosamine-6-phosphate deaminase	This work
AK1336	DDB_G0291279	Gram(+)-defective	putative 11-transmembrane-domain transporter	This work
AK1339	iliE-1	Gram(+)-defective	lectin-like	This work
AK1334	unknown	Gram(-)-defective	insertion between two genes, DDB_G0295477/ DDB_G0271574, and upstream of putative noncoding- RNA gene	This work
AK1338	clkB	Gram(-)-defective	CDC7-related protein kinase DDB_G0278487	This work
AK1346	spc3	Gram(-)-defective	signal peptidase complex subunit 3	This work
AK1350	alyL	Gram(-)-defective	amoeba lysozyme-like	This work
AK1303	DDB_G0276559	Gram(-)-defective	novel uncharacterized protein	This work
AK1319	DDB_G0288161	Fast growth	novel uncharacterized protein	This work
AK1320	DDB_G0281785	Fast growth	B-box zinc finger binding, and FNIP repeats	This work
AK1302	rbsK	No growth	D-ribose metabolism	This work
AK1301	DDB_G0277169	Slow growth	novel uncharacterized protein	This work
AK1304	pakB	Slow growth	phagocytosis regulator	This work
AK1305	DDB_G0292196	Slow growth	novel uncharacterized protein	This work
AK1306	DDB_G0270300	Slow growth	novel uncharacterized protein	This work
AK1307	DDB_G0284227	Slow growth	nucleic acid binding and nuclease activity	This work
AK1309	DDB_G0277667	Slow growth	cyclin domain containing protein	This work
AK1311	pelo	Slow growth	translation factor This we	
AK1313	DDB_G0293440	Slow growth	methyl transferase This wo	
AK1315	DDB_G0281967	Slow growth	novel uncharacterized cell surface protein This wor	
AK1316	DDB_G0288459	Slow growth	transglutaminase-like protein This wor	
AK1327	shkA	Slow growth	SH2 domain-containing kinase This work	
AK1331	arpF	Slow growth	actin related protein 6	This work
AK1332	DDB_G0281447	Slow growth	2 transmembrane domains This wor	
AK1335	DDB_G0285803	Slow growth	Putative acetyltransferase This work	
AK1337	dhcA	Slow growth	cytoplasmic d ynein h eavy chain	This work
AK1340	DDB_G0269608	Slow growth	Novel uncharacterized protein	This work
AK1341	DDB G0276277	Slow growth	Putative oxidoreductase	This work

Supplemental Table S2. *D. discoideum* strains used in this study.

AK1342	DDB_G0272382	Slow growth	PH and Phox domains	This work
AK1343	DDB_G0292054	Slow growth	Carbohydrate-binding	This work
AK1345	DDB_G0293476	Slow growth	Thrombospondin type 3 repeat	This work
AK1348	qtrt1	Slow growth	Queuine tRNA-ribosylTransferase 1	This work
AK1371	empB	Slow growth	component of COPI-coated vesicles	This work
AK1373	elp4	Slow growth	RNA polymerase II elongation complex	This work
AK1374	cct3	Slow growth	Chaperonin Containing TCP1 subunit 3	This work
AK1362	DDB_G0279939	Slow growth	Novel uncharacterized protein	This work

Table S3.	Bacterial	strains	used	in	this	study.
	Ductorial	Sei enins	abea		UIIIO	study.

Bacterial species	Phylum, Class, Order	Source
(isolate)		
Klebsiella pneumoniae	Proteobacteria, Gamma	Kuspa Lab (Baylor College of
(Environmental)	Proteobacteria, Enterobacteriales	Medicine)
Bacillus subtilis AG1431	Firmicutes, Bacilli, Bacillales	Jue D. Wang (University of
(Environmental)		Wisconsin, Madison WI)
Pseudomonas aeruginosa	Proteobacteria, Gamma	James Versalovic (Baylor College
H45006 (Clinical)	Proteobacteria, Pseudomonadales	of Medicine, Houston TX)
Staphylococcus aureus	Firmicutes, Bacilli, Bacillales	Heidi Kaplan (University of
ATCC 49230 (Clinical)		Texas, Houston TX)
Pseudomonas fluorescens	Proteobacteria, Gamma	Elizabeth Ostrowski (University of
WC5365 (Environmental)	Proteobacteria, Pseudomonadales	Houston, Houston TX)
Pseudomonas fluorescens	Proteobacteria, Gamma	Elizabeth Ostrowski (University of
<i>f-01</i> (Environmental)	Proteobacteria, Pseudomonadales	Houston, Houston TX)
Pseudomonas fluorescens	Proteobacteria, Gamma	Elizabeth Ostrowski (University of
<i>f-05</i> (Environmental)	Proteobacteria, Pseudomonadales	Houston, Houston TX)
Pseudomonas stutzeri	Proteobacteria, Gamma	James Versalovic (Baylor College
W47237-W1 (Clinical)	Proteobacteria, Pseudomonadales	of Medicine, Houston TX)
Bacillus cereus ATCC	Firmicutes, Bacilli, Bacillales	Anthony Maresso (Baylor College
10987 (Clinical)		of Medicine, Houston TX)
Bacillus anthracis sterne	Firmicutes, Bacilli, Bacillales	Anthony Maresso (Baylor College
(Environmental)		of Medicine, Houston TX)
Agrobacterim tumefaciens	Proteobacteria, Alphaproteobacteria,	Heidi Kaplan (University of
A348 (Environmental)	Rhizobiales	Texas, Houston)
Escherichia coli B rel 606	Proteobacteria, Gamma	Elizabeth Ostrowski (University of
(Environmental)	Proteobacteria, Enterobacteriales	Houston, Houston TX)
Salmonella enterica ATCC	Proteobacteria, Gamma	Herbert DuPont (University of
14028 (Clinical)	Proteobacteria, Enterobacteriales	Texas, Houston)
Shigella flexneri ATCC	Proteobacteria, Gamma	Herbert DuPont (University of
<i>12022</i> (Clinical)	Proteobacteria, Enterobacteriales	Texas, Houston)
Micrococcus luteus	Actinobacteria, Actinobacteridae,	Peter Newell (deposited at
(Environmental)	Actinomycetales	dictyBase stock center)
Enterococcus faecalis	Firmicutes, Bacilli, Lactobacillales	Danielle Garsin (University of
OGRIF (Clinical)		Texas, Houston)

Bacterial species were classified according to their taxonomy (NCBI taxonomy website).

		*	· · · ·
DDB_G	Gene name	Forward primer (5'-3')	Reverse primer (5'-3')
number			
0267402	НЗа	GGTTCTAAACAAGCCCATAAACA	CTCTAAGAGCGACAGTAC
0275153	gpdA	GGTTGTCCCAATTGGTATTAATGG	CCGTGGGTTGAATCATATTTGAAC
0278721	cprD	TCAAACCTCTGCTTCTGGTCA	AGAAGCCATTGTTGCGATACCA
0276479	ctnC	TCAAAAGTTATGTCATCAAGCGAAGAA	TCCATAAAACCATTAATTCCAACTGCA
		TG	TC
0268848	DDB_G0268848	TCACTAGTCTCAACTCCATCAAC	AGATTTATCAAAACTAGTGACATCAGT
			TTCAG
0273063	dscA-1	TCCACACTCAATTTAATTCTGCCT	TGTATGATGTAACCCATTGATCAG
0284999	DDB_G0284999	AGAATGCTGAAAAGTTCACTGAAGCT	TGGAGCGATTTCTTGTAATGCTTC
0268600	uduB	ACCAGCAACCTCTGATCCA	TCTGTTGGCTGGTTCAGAG
0279185	cprF	TCAATCTCAAGGTTCCAATAGTTTCAC	TGTAACCATTAATACCCCAGTCAAG
0273091	DDB_G0273091	AGAACATGATCATGACCATGAAGAAG	TGAGTGGCAACAATTGGAATAACTG
0271672	DDB_G0271672	TGTCACGCTCCAAGTGGT	TGATGGAATGCTAATGCAACTAATAAA GCT
0286229	alyL	ACCAAGTTTTCGCTACTTGTGTTAG	AGAGATCCTCGCAAACTTTTGTTG
0271702	DDB_G0271702	TCTCTGGTCCAGGTTGTTC	ACTGAAACTTTTTGAGAGTCTGGAAG
0279921	gp130	TGGTAGTATACCAGAAGGGTATTG	AGTTTCACAATTGGTTGGTAATGATTT TTC
0267848	DDB_G0267848	GGTCTTATGGATACTGTAACGGT	TGTTCAACAGTGATAAGACCAGTTG
0270922	DDB_G0270922	TGTTTCTGGGATGGTAAGGTTTG	TCATTGTGGATTGATGAACAATGGACT
0275119	alyD-1	AGGTTCTGCAGGTACCTCA	ACAAACACCATAGAAACCTCCAGT
0275119	alyB	AGTTCCATCATGCAGTGGTGCT	AGTGAGAGAAGTAACAGTGGCA
0293366	hydr1	ACGCAACTTGTGGTTGTCCA	ACCACTACATGCGGTACCT
L	DDB_G0293366		
0274181	hydr2	TGCTCATATCGGTGTTTACACATC	ACAGCTGTCACCAGTGTC
1	DDD G02/4181		

	Supplement Table S4. Primers used for	RT-PCR transcriptional profile analysi
--	---------------------------------------	---

References

- 1. dictybase.org (2012).
- 2. Suzuki, R., and Shimodaira, H. (2006). pvclust: Hierarchical Clustering with P-Values via Multiscale Bootstrap Resampling.
- 3. Kuspa, A., and Loomis, W.F. (1992). Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc. Natl. Acad. Sci. USA *89*, 8803-8807.
- 4. Knecht, D.A., Cohen, S.M., Loomis, W.F., and Lodish, H.F. (1986). Developmental regulation of Dictyostelium discoideum actin gene fusions carried on low-copy and high-copy transformation vectors. Mol. Cell. Biol. *6*, 3973-3983.
- 5. Chia, C.P., Gomathinayagam, S., Schmaltz, R.J., and Smoyer, L.K. (2005). Glycoprotein gp130 of dictyostelium discoideum influences macropinocytosis and adhesion. Mol Biol Cell *16*, 2681-2693.