Synthesis and Characterization of Oligodeoxyribonucleotides Modified with 2'-Amino-α-L-LNA Adenine Monomers: High-affinity Targeting of Single-Stranded DNA

Nicolai K. Andersen, Brooke A. Anderson, Jesper Wengel, Patrick J. Hrdlicka*

SUPPORTING INFORMATION

Table of contents

General experimental section	S2
Additional attempted synthetic strategies toward key intermediates 14/15 (Scheme S1)	S3
MS-data for modified ONs (Tables S1 and S2)	S4
Representative thermal denaturation curves (Fig. S1)	S5
DNA-selectivity of B1-B6 (Table S3)	S 6
Additional Tm data and discussion concerning mismatched duplexes (Table S4)	S7
Representative absorption spectra involving X-modified ONs (Fig. S2)	S 8
Representative absorption spectra involving Z-modified ONs (Fig. S3)	S9
Fluorescence emission spectra involving X-modified ONs (Fig. S4)	S10
Fluorescence emission spectra involving Y-modified ONs (Fig. S5)	S11
Fluorescence emission spectra of duplexes between Y1-Y6 and DNA (Fig. S6)	S12
Fluorescence emission spectra involving Z-modified ONs (Fig. S7)	S13
Fluorescence emission spectra of duplexes between X/Y/Z-modified	
ONs and matched/mismatched DNA targets (Figs. S8-S10)	S14
NMR spectra of nucleosides x-y	S16

General experimental section. All solvents and reagents were obtained from commercial suppliers and used without further purification. Petroleum ether of the distillation range 60-80 °C was used. Anhydrous DMF and pyridine were used directly as obtained from commercial suppliers. Dichloromethane, 1,2-dichloroethane and N,N-diisopropylethylamine were dried through storage over activated 4Å molecular sieves. Reactions were conducted under an atmosphere of argon whenever anhydrous solvents were used. All reactions were monitored by thin-layer chromatography (TLC) using silica gel coated plates with fluorescence indicator (SiO₂-60, F-254), which were visualized (a) under UV light, (b) by dipping in 5% concd. sulfuric acid in absolute ethanol (v/v) followed by heating, or (c) by dipping in a solution of molybdate phosphoric acid (12.5 g/L) and cerium(IV)sulfate (5 g/L) followed by heating. Silica gel column chromatography using moderate pressure (pressure ball) was performed using Silica gel 60 (particle size 0.040-0.063 mm). Evaporation of solvents was carried out under reduced pressure with a temperature not exceeding 45 °C. After column chromatography, appropriate fractions were pooled, evaporated, and dried at high vacuum for at least 8h to give products in high purity (>95% by 1D NMR techniques), unless stated otherwise. ¹H NMR and/or ¹³C NMR ascertained sample purity. ¹H NMR and ¹³C NMR spectra were recorded at either 500/125 MHz, or 300/75.5 MHz as specified. Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane or deuterated solvent as the internal standard ($\delta_{\rm H}$: CDCl₃ 7.26 ppm, DMSO- d_6 2.50 ppm; $\delta_{\rm C}$: CDCl₃ 77.00 ppm, DMSO- d_6 39.43 ppm). Exchangeable (ex) protons were identified through disappearance of signals upon D₂O addition. Assignments of NMR spectra are based on COSY, HSQC and DEPT and follow standard carbohydrate/nucleoside nomenclature. The carbon atom of C4 substituents is numbered C5" in nucleoside derivatives. Similar conventions apply for the corresponding hydrogen atoms. Quaternary carbons were not assigned in ¹³C NMR but their presence was verified through absence of signals in HSQC and DEPT. MALDI-HRMS were recorded in positive ion mode on a mass spectrometer using 2,5dihydroxybenzoic acid or 3-hydroxypicolinic acid as a matrix and mixture of polyethylene glycol (PEG 600) and (PEG 1000) as internal calibration standards. ESI-HRMS were recorded in positive ion mode on a Q-TOF mass spectrometer using NaCl in MeCN:H₂O and PEG 600 and PEG 1000 as internal calibration standards.

Scheme S1. Additional attempted synthetic strategies toward key intermediates 14/15. 18-C-6: 18-crown-6.

ONs	Sequence	Calc. <i>m</i> / <i>z</i> [M-H]	Found m/z [M-H]
X1	5'-GTG <u>X</u> TA TGC	2995	2995
X2	5'-GTG AT <u>X</u> TGC	2995	2993
X3	5'-GTG <u>X</u> T <u>X</u> TGC	3236	3236
X4	3'-CAC T <u>X</u> T ACG	2924	2923
X5	3'-CAC TAT <u>X</u> CG	2924	2923
X6	3'-CAC T <u>X</u> T <u>X</u> CG	3165	3163
Y1 ^a	5'-GTG <u>Y</u> TA TGC	3009	3008
Y2	5'-GTG AT <u>Y</u> TGC	3009	3009
Y3	5'-GTG <u>Y</u> T <u>Y</u> TGC	3264	3264
Y4	3'-CAC T <u>Y</u> T ACG	2937	2937
Y5	3'-CAC TAT <u>Y</u> CG	2937	2936
Y6	3'-CAC T <u>Y</u> T <u>Y</u> CG	3192	3192
Y7 ^b	3'-CAC T <u>Y</u> A ACG	2947	2948
Y8	3'-CAC T <u>Y</u> C ACG	2923	2923
Y9 ^c	3'-CAC T <u>Y</u> G ACG	2963	2962

Table S1. MS-data for X/Y-modified ONs used in the current study.

Purity: ^a70%, ^b84% ^c75% purity.

Table S2. MS-data for X/Y-modified	l ONs used in the current study.
------------------------------------	----------------------------------

ONs	Sequence	Calc. <i>m</i> / <i>z</i> [M]	Found m/z [M+H]
W1 ^a	5'-GTG <u>W</u> TA TGC	2780	2781
$W2^{b}$	5'-GTG AT <u>W</u> TGC	2780	2781
W3 ^c	5'-GTG <u>W</u> TW TGC	2807	2808
$W4^d$	3'-CAC T <u>W</u> T ACG	2709	2710
W5 ^e	3'-CAC TAT <u>W</u> CG	2709	2710
W6 ^f	3'-CAC T <u>W</u> T <u>W</u> CG	2736	2737
Z1	5'-GTG <u>Z</u> TA TGC	3022	3023
Z2	5'-GTG AT <u>Z</u> TGC	3022	3023
Z3	5'-GTG <u>Z</u> T <u>Z</u> TGC	3291	3292
Z4	3'-CAC T <u>Z</u> T ACG	2951	2952
Z5	3'-CAC TAT <u>Z</u> CG	2951	2952
Z6	3'-CAC T <u>Z</u> T <u>Z</u> CG	3220	3221

Purity: ^a72%, ^b58%, ^c73%, ^d71%, ^e63%, ^f58% - we hypothesize that the low purities are due to the presence of 'skipmers' (i.e., ONs without the **W** monomer), which arose due to inadequate capping during fabrication of **W**-modified ONs.

Figure S1. Representative thermal denaturation curves for modified and reference duplexes.

			$\Delta\Delta T_{\rm m}$ (DNA-RNA)/°C			
ON	Sequence	B =	W	X	Y	Z
B1	5'-GTG <u>B</u> TA TGC		-3.0	+6.0	+9.5	+2.5
B2	5'-GTG AT <u>B</u> TGC		-2.0	+6.0	+9.0	+3.0
B3	5'-GTG <u>B</u> T <u>B</u> TGC		-4.0	+6.5	+9.0	+5.0
B4	3'-CAC T <u>B</u> T ACG		-4.5	+7.0	+9.0	+1.0
B5	3'-CAC TAT <u>B</u> CG		-7.0	+2.0	+5.5	-2.0
B6	3'-CAC T <u>B</u> T <u>B</u> CG		-9.0	+5.0	+6.5	±0.0

 Table S3. DNA-selectivity of B1-B6.^a

^a DNA selectivity defined as $\Delta\Delta T_{\rm m}$ (DNA-RNA) = $\Delta T_{\rm m}$ (vs DNA) - $\Delta T_{\rm m}$ (vs RNA).

Additional discussion – mismatch discrimination of B3-series ONs. The specificity of ONs with two modifications positioned as next-nearest neighbors (**B3** series) was evaluated against DNA targets with a single central mismatched nucleotide opposite of the central thymidine (Table S4). **X3** and **Y3** display very poor binding specificity, whereas **Z3** displays binding specificity that is comparable to unmodified reference strand **D1**.

			DNA : 3'-CAC T <u>B</u> T ACG			
			$T_{\rm m}/^{\rm o}{\rm C}$	$\overline{\Delta}T_{ m m}/^{\circ}{ m C}$		
ON	Sequence	<u>B</u> =	А	С	G	Т
D1	5'-GTG ATA TGC	_	27.5	-16.5	-9.5	-17.0
X3	5'-GTG <u>X</u> T <u>X</u> TGC		32.5	+2.0	+0.5	+2.0
Y3	5'-GTG <u>Y</u> T <u>Y</u> TGC		41.0	-5.0	-2.0	-2.0
Z3	5'-GTG <u>Z</u> T <u>Z</u> TGC		43.5	-14.5	-11.5	-9.5

Table S4. Discrimination of mismatched DNA targets by B3-series and reference ONs.^a

^a For conditions of thermal denaturation experiments, see Table 1. $T_{\rm m}$'s of fully matched duplexes are shown in bold. $\Delta T_{\rm m}$ = change in $T_{\rm m}$ relative to fully matched DNA:DNA duplex.

Figure S2. Representative absorption spectra of **X**-modified ONs and the corresponding duplexes with complementary DNA/RNA.

Manuscript in preparation

Figure S3. Representative absorption spectra of **Z**-modified ONs and the corresponding duplexes with complementary DNA/RNA.

Figure S4. Steady-state fluorescence emission spectra of **X1-X6** in the presence of absence of complementary DNA/RNA. $T_{exp} = 5 \text{ °C}$; $\lambda_{ex} = 350 \text{ nm}$; each ON used at 1 µM concentration in T_{m} buffer.

Figure S5. Steady-state fluorescence emission spectra of **Y1-Y6** in the presence of absence of complementary DNA/RNA. $T_{exp} = 5 \text{ °C}$; $\lambda_{ex} = 350 \text{ nm}$; each ON used at 0.15 µM concentration in T_{m} buffer.

Figure S6. Steady-state fluorescence emission spectra of duplexes between **Y1-Y6** and complementary DNA. The spectra for **Y2**:DNA and **Y5**:DNA are overlapping. $T_{exp} = 5$ °C; $\lambda_{ex} = 350$ nm; each ON used at 0.15 μ M concentration in T_m buffer.

Figure S7. Steady-state fluorescence emission spectra of **Z**-modified ONs in the presence or absence of complementary DNA/RNA. $T_{exp} = 5$ °C; $\lambda_{ex} = 350$ nm; each ON used at 1 μ M concentration in T_{m} buffer.

Additional discussion – mismatch discrimination via fluorescence. Probes **X4/Y4/Z4** were evaluated as probes for potential discrimination of single nucleotide polymorphisms (SNPs). Thus, these probes were hybridized with DNA strands with mismatched nucleotides opposite of the **X-Z** monomers. Although differences in fluorescence emission are observed, the differences are too small to be practically useful (Fig. S8-S10).

Figure S8. Steady-state fluorescence emission spectra of duplexes between X4 and matched or mismatched DNA targets (mismatched nucleotide listed in parenthesis). Spectra were recorded at 5 °C using λ_{ex} = 350 nm and 1 μ M concentration of each ON.

Figure S9. Steady-state fluorescence emission spectra of duplexes between Y4 and matched or mismatched DNA targets (mismatched nucleotide listed in parenthesis). Spectra were recorded at 5 °C using λ_{ex} = 350 nm and 0.15 µM concentration of each ON.

Figure S10. Steady-state fluorescence emission spectra of duplexes between Z4 and matched or mismatched DNA targets (mismatched nucleotide listed in parenthesis). Spectra were recorded at 5 °C using λ_{ex} = 350 nm and 1 μ M concentration of each ON.

9 9 H

S33

BZO-UH-N-TFA

ABz

16

DMTro-OH-N-DMTr 16

DMTro-OH-NABz 18 Py

