Supporting Information for

Stuides of Iron(III) Porphyrinates Containing Silanethiolate Ligands

Daniel J. Meininger, Jonathan D. Caranto, Hadi D. Arman, and Zachary J. Tonzetich*

Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249

zachary.tonzetich@utsa.edu

Contents

Pages

Figure S1. Electronic absorption spectrum of [Fe(STIPS)(TPP)] in dichloromethane.	S2
Figure S2. Electronic absorption spectrum of [Fe(STIPS)(TMP)] in dichloromethane.	S2
Figure S3. Electronic absorption spectrum of [Fe(SSiPh ₃)(TMP)] in dichloromethane.	S3
Figure S4. Electronic absorption spectrum of [Fe(SPh)(TMP)] in dichloromethane.	S3
Figure S5. ¹ H NMR spectrum of the reaction of [Fe(OCH ₃)(TPP)] and ^t BuSH.	S4
Figure S6. NMR spectra for iron(III) porphyrinates.	S4
Figure S7. Thermal ellipsoid drawing of [Fe(SPh)(TMP)].	S5
Figure S8 . CV of [FeCl(TMP)] in CH_2Cl_2 .	S5
Figure S9 . Additional CVs of [Fe(STIPS)(TPP)] in CH ₂ Cl ₂ .	S6
Figure S10. CV of [Fe(STIPS)(TMP)] in CH ₂ Cl ₂ .	S6
Figure S11 . CV of $[Fe(SSiPh_3)(TMP)]$ in CH_2Cl_2 .	S7
Figure S12 . CV of [Fe(SPh)(TMP)] in CH_2Cl_2 .	S7
Figure S13 . CV of (Et ₃ NH)(STIPS) in CH ₂ Cl ₂ .	S 8
Figure S14. EPR spectrum of [Fe(STIPS)(TMP)] in 2-MeTHF at 77 K.	S 8
Figure S15. EPR spectrum of [Fe(SSiPh ₃)(TMP) in 2-MeTHF at 77 K.	S9
Figure S16. EPR spectrum of [Fe(SPh)(TMP) in 2-MeTHF between 4 and 62 K.	S9
Figure S17. Thermal ellipsoid drawing of $[Fe(1-MeIm)_2(TMP)]$.	S10
Figure S18 . IR spectrum of the reaction product of [Fe(STIPS)(TMP)] and NO (<i>g</i>).	S11
Figure S19. NMR spectrum of the reaction of [FeF(TMP)] with Me ₃ SiSSiMe ₃ .	S11

Table S1. Crystallographic data and refinement parameters.

S12

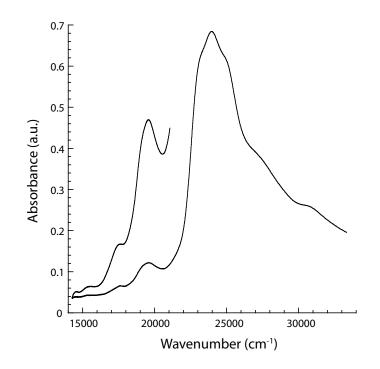
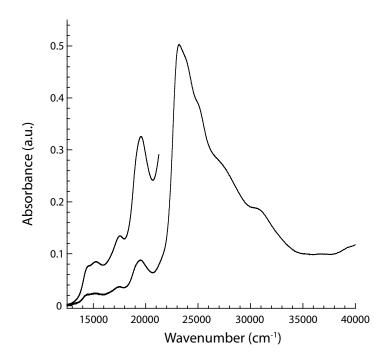
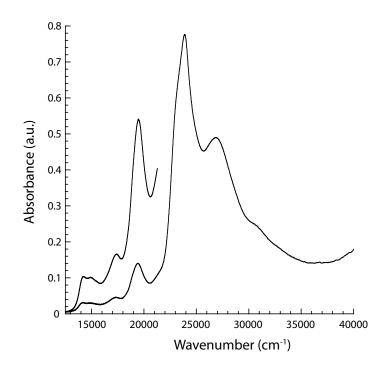
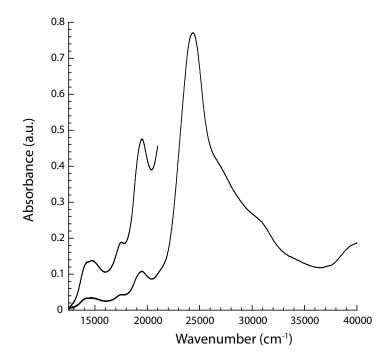
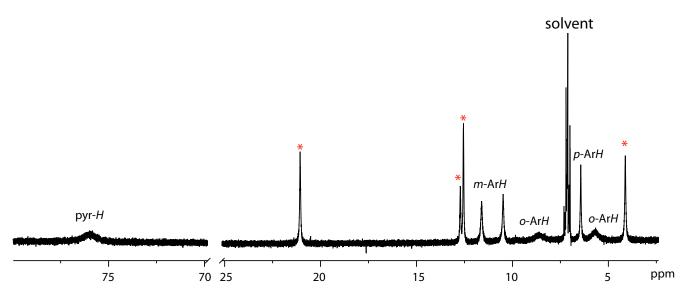
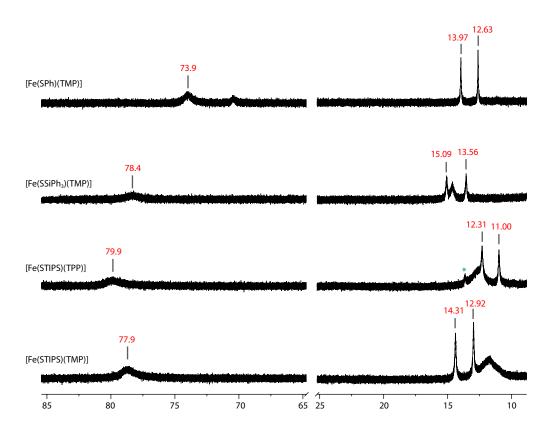
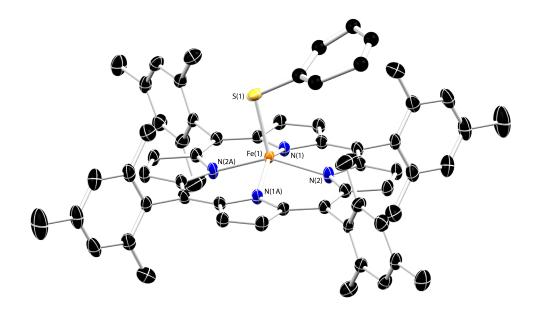




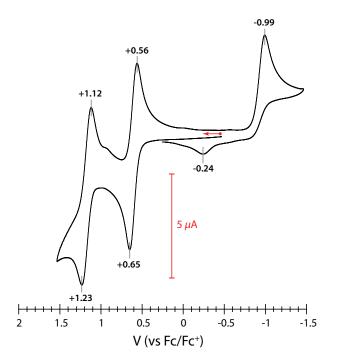
Figure S1. Electronic absorption spectrum of [Fe(STIPS)(TPP)] in dichloromethane.

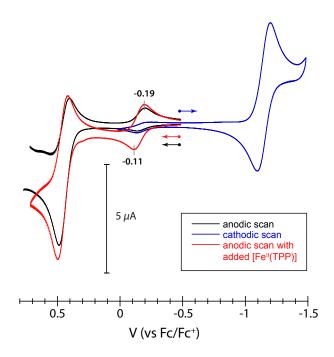
Figure S2. Electronic absorption spectrum of [Fe(STIPS)(TMP)] in dichloromethane.

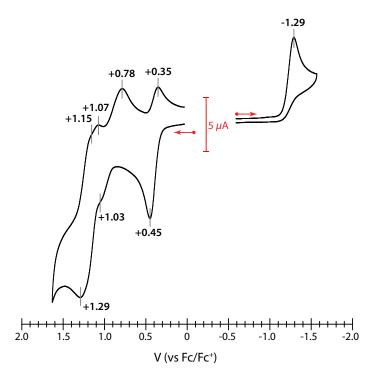
Figure S3. Electronic absorption spectrum of [Fe(SSiPh₃)(TMP)] in dichloromethane.

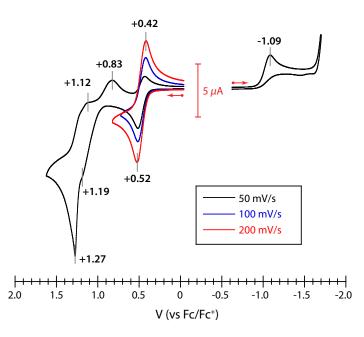




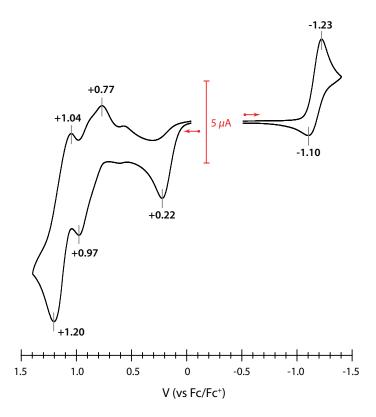

Figure S4. Electronic spectrum of [Fe(SPh)(TMP)] in dichloromethane.

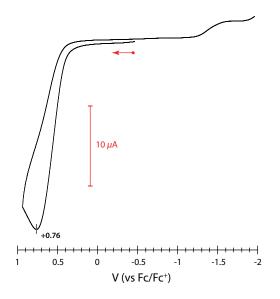

Figure S5. 500 MHz ¹H NMR spectrum of the reaction of [Fe(OMe)(TPP)] and ^{*t*}BuSH in benzene- d_6 . Red asterisks denote peaks due to [Fe^{II}(TPP)].

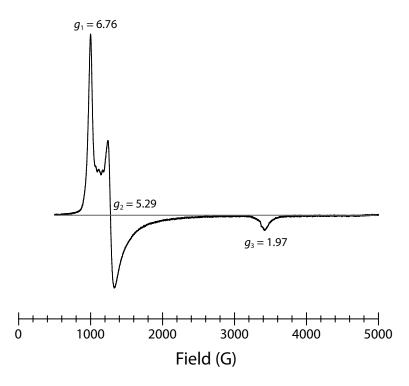

Figure S6. Pyrrolic and *m*-Ar region of the 500 MHz ¹H NMR spectra (benzene- d_6) for several iron(III) porphyrinates containing sulfur ligands. The green asterisk in the spectrum of [Fe(STIPS)(TPP)] corresponds to a minor impurity, most likely [Fe^{II}(TPP)].

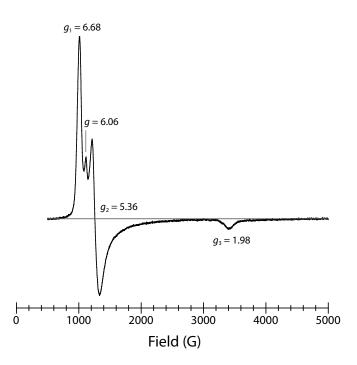

Figure S7. Depiction of the solid-state structure of [Fe(SPh)(TMP)] showing the geometry and connectivity of the atoms.

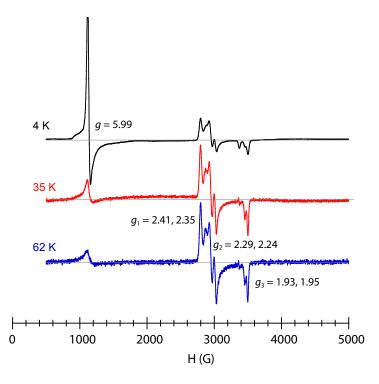

Figure S8. Cyclic voltammogram of [FeCl(TMP)] at a Pt disk electrode in CH_2Cl_2 displaying two reversible oxidation events centered at +1.18 V and +0.61 V, and an irreversible reduction event at -0.99 V. The small event at -0.24 V observed in the return wave is likely due to oxidation of a species formed by chloride dissociation from [FeCl(TMP)]⁻. Scan rate is 50 mV/s and the supporting electrolyte is 0.1 M Bu₄NPF₆.

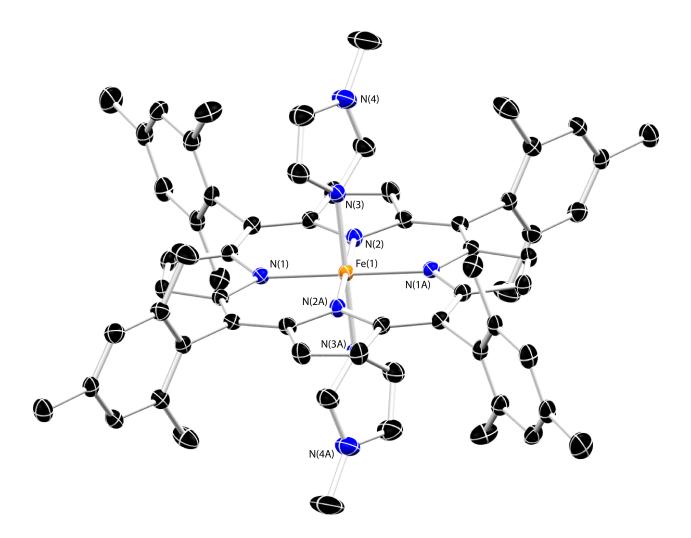

Figure S9. Cyclic voltammogram of [Fe(STIPS)(TPP)] at a Pt disk electrode in CH_2Cl_2 . Depicted are the anodic and cathodic scans comprising Figure 4 of the text and the effect of added [Fe^{II}(TPP)]. Scan rate is 50 mV/s and the supporting electrolyte is 0.1 M Bu₄NPF₆.

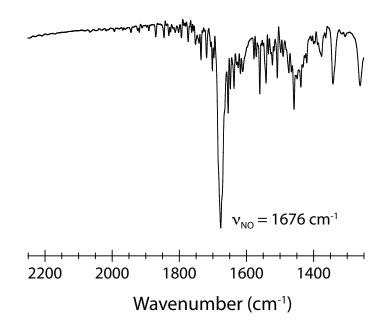

Figure S10. Cyclic voltammogram of [Fe(STIPS)(TMP)] at a Pt disk electrode in CH_2Cl_2 . Scan rate is 50 mV/s and the supporting electrolyte is 0.1 M Bu_4NPF_6 .


Figure S11. Cyclic voltammogram of $[Fe(SSiPh_3)(TMP)]$ at a Pt disk electrode in CH_2Cl_2 . Scan rate is 50 mV/s and the supporting electrolyte is 0.1 M Bu_4NPF_6 .


Figure S12. Cyclic voltammogram of [Fe(SPh)(TMP)] at a Pt disk electrode in CH_2Cl_2 . Scan rate is 50 mV/s and the supporting electrolyte is 0.1 M Bu_4NPF_6 .


Figure S13. Cyclic voltammogram of $HSSi'Pr_3$ at a Pt disk electrode in CH_2Cl_2 in the presence of excess Et_3N displaying the oxidation of free $-SSi'Pr_3$. Scan rate is 50 mV/s and the supporting electrolyte is 0.1 M Bu_4NPF_6 . The potentials are referenced to an external ferrocene/ferrocenium couple.


Figure S14. EPR spectrum of [Fe(STIPS)(TMP)] in a 2-MeTHF glass at 77 K; E/D = 0.0323.


Figure S15. EPR spectrum of [Fe(SSiPh₃)(TMP)] in a 2-MeTHF glass at 77 K; E/D = 0.0297.

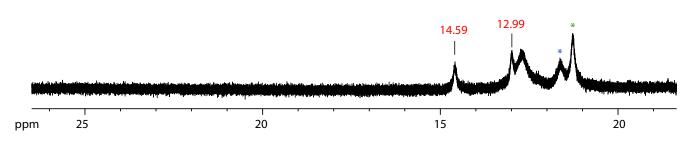

Figure S16. EPR spectra of [Fe(SPh)(TMP)] in a 2-MeTHF glass at several temperatures between 4 and 62 K showing a decrease in the low field $S = \frac{5}{2}$ signal (E/D = 0.0026) and growth of the high field signals ($S = \frac{1}{2}$) as the temperature increases.

Figure S17. Thermal ellipsoid (50%) drawing of the structure of $[Fe(1-MeIm)_2(TMP)]$. Hydrogen atoms and cocrystallized benzene molecules omitted for clarity. Selected bond lengths (Å) and angles (deg): Fe(1)-N(1) = 1.990(2); Fe(1)-N(2) = 1.991(2); Fe(1)-N(3) = 1.992(2); N(3)-Fe(1)-N(3A) = 180.0(2).

Figure S18. IR (KBr) spectrum of the product obtained from the reaction of [Fe(STIPS)(TMP)] and NO (*g*).

Figure S19. *m*-Ar region of the 500 MHz ¹H NMR spectrum of the reaction of [FeF(TMP)] with Me₃SSiSMe₃ in benzene- d_6 . Note the resemblance of the peaks indicated in red with those in Figure S6. Asterisks denote resonances due to the starting material (blue) and [Fe^{II}(TMP)] (green).

Compound	[Fe(STIPS)(TPP)]	[Fe(STIPS)(TMP)]	[Fe(SSiPh ₃)(TMP)]	[Fe(1-MeIm) ₂ (TMP)]
Empirical formula	C ₅₃ H ₄₉ FeN ₄ SSi ⁻¹ / ₂ C ₆ H ₆	$C_{65}H_{73}FeN_4SSi\cdot C_5H_{12}$	C74H67FeN4SSi·CH2Cl2	$C_{64}H_{64}FeN_8 \cdot 2(C_6H_6)$
Formula weight (g/mol)	897.02	1098.42	1196.26	1229.36
Temperature (K)	98(2)	98(2)	98(2)	98(2)
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/n$	Orthorhombic, Pcca
Unit cell dimensions (Å, deg)	a = 11.113(3) b = 12.600(3) c = 16.927(4)	a = 13.4086(5) b = 14.4072(7) c = 17.3566(12)	a = 16.4254(13) b = 18.9508(14) c = 22.8901(19)	a = 23.0929(16) b = 14.8314(10) c = 19.2077(11)
	$\alpha = 80.693(11)$ $\beta = 85.049(12)$ $\gamma = 77.332(11)$	$\alpha = 110.724(8)$ $\beta = 102.571(7)$ $\gamma = 95.034(7)$	$\beta = 108.668(8)$	
Volume (Å ³)	2278.9(10)	3010.6(3)	6750.2(9)	6578.6(7)
Z	2	2	4	4
Calculated density (g/cm ³)	1.307	1.155	1.177	1.241
Absorption coefficient (mm ⁻¹)	0.446	0.347	0.379	0.282
F(000)	944	1117	2514	2600
Crystal size (mm)	$0.14 \times 0.12 \times 0.10$	$0.36 \times 0.35 \times 0.06$	$0.20\times0.07\times0.05$	$0.19 \times 0.09 \times 0.07$
Θ range	2.2 to 26.0°	3.1 to 25.1°	3.0 to 23.1°	3.1 to 25.1°
Limiting indices	$-13 \le h \le 13,$ $-14 \le k \le 15,$ $-20 \le l \le 20$	$-15 \le h \le 15,$ $-17 \le k \le 16,$ $-18 \le l \le 20$	$-18 \le h \le 17,$ $0 \le k \le 20,$ $0 \le l \le 25,$	$-27 \le h \le 26,$ $-13 \le k \le 17,$ $-22 \le l \le 22$
Reflections collected / unique	13515 / 8871 [R _{int} = 0.0435]	17753 / 10578 [R _{int} = 0.0263]	9440 / 9440	33972 / 5821 [R _{int} = 0.0556]
Completeness to Θ	99.1%	99.3%	99.3%	99.8%
Absorption correction	multi-scan ABSCOR	multi-scan ABSCOR	multi-scan ABSCOR	multi-scan ABSCOR
Min. and max transmission	0.777 and 1.000	0.467 and 1.000	0.362 and 1.000	0.751 and 1.000
Data / restraints / parameters	8871 / 2 / 568	10578 / 0 / 676	9440 / 0 / 757	5821 / 0 / 412
Goodness-of-fit on F ²	1.008	1.018	1.034	1.029
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0587,$ $wR_2 = 0.1288$	$R_1 = 0.0561,$ $wR_2 = 0.1447$	$R_1 = 0.0900,$ $wR_2 = 0.1813$	$R_1 = 0.0517,$ $wR_2 = 0.1251$
R indices (all data)	$R_1 = 0.0687,$ $wR_2 = 0.1358$	$R_1 = 0.0603,$ $wR_2 = 0.1471$	$R_1 = 0.1424,$ $wR_2 = 0.1982$	$R_1 = 0.0697,$ $wR_2 = 0.1349$
Largest diff. peak and hole $(e \cdot \text{\AA}^{-3})$	0.604 and -0.627	0.998 and -0.464	1.167 and -0.818	0.534 and -0.422

Table S1. Crystallographic data and refinement parameters for iron porphyrinates.[‡]

^{*}Refinement method was full-matrix least-squares on F²; wavelength = 0.71073 Å. R₁ = $\sum ||F_o| - |F_c|| / \sum |F_o|;$ wR₂ = { $\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]$ }^{1/2}.