# Appendix S1

## Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species

Esa Pitkänen<sup>1,2,\*</sup>, Paula Jouhten<sup>3</sup>, Jian Hou<sup>1,5</sup>, Muhammad Fahad Syed<sup>3</sup>, Peter Blomberg<sup>3</sup>, Jana Kludas<sup>5</sup>, Merja Oja<sup>3</sup>, Liisa Holm<sup>4</sup>, Merja Penttilä<sup>3</sup>, Juho Rousu<sup>5</sup>, Mikko Arvas<sup>3</sup>

1 Department of Computer Science, University of Helsinki, 00014 Helsinki, Finland.

2 Department of Medical Genetics, Genome-Scale Biology Research Program, University of Helsinki, 00014 Helsinki, Finland.

3 VTT Technical Research Centre of Finland, 02044 VTT, Espoo, Finland.

4 Institute of Biotechnology & Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.

5 Department of Information and Computer Science, Aalto University, 00076 Espoo, Finland.

\* E-mail: esa.pitkanen@helsinki.fi

### **1** Table of Contents

- CoReCo reconstruction algorithm
- Manual model curation
- Biomass definition
- Growth media definition
- Effect of the size of phylogenetic tree to reconstruction accuracy
- Posterior probability thresholds used to compute ROC curves

# 2 CoReCo reconstruction algorithm

The CoReCo reconstruction algorithm (Algorithm 1) maintains a set of reactions  $N \subseteq \mathcal{R}$  representing the reconstructed network. Initially, N is empty. During execution of the algorithm a reaction is added to N either because 1) the reaction is has a high reaction score or 2) it is used to fill a gap. The main loop of the algorithm (lines 4–24) considers each probable, or high-scoring, reaction r in the reaction database  $\mathcal{R}$  (such as KEGG) in turn. If the reaction together with the network N reconstructed so far is *complete*, or gapless, the reaction is added to the reconstruction.

To define network completeness, we consider each reaction r to consist of a set of substrate atoms  $S(r) \subseteq \mathcal{A}$  and product atoms  $P(r) \subseteq A$ . An atom mapping  $M_r$  defines a bijection between S(r) and P(r). A pathway  $N \subseteq \mathcal{R}$  consists of a set of reactions which induce a *atom graph* G(N) = (U, E), where  $U = \bigcup_{r \in N} S(r) \cup P(r)$  and  $(u, v) \in E$  if and only if  $M_r(u) = v$  for some  $r \in N$ . Given a set of nutrient atoms  $A \subseteq \mathcal{A}$ , we say that atom u is reachable from A in N, if and only if there is a (directed) path in G(N) from  $a \in A$  to u.

**Definition 1** A pathway N is complete (gapless) if and only if any atom  $u \in \bigcup_{r \in N} S(r) \cup P(r)$  is reachable from nutrients A in N.

In practice, we often restrict ourselves to the subsets of substrate and product atoms consisting only of carbon atoms. This restriction is useful due to the difficulty of computing high-quality atom mappings for oxygens and nitrogens, for example. Biosynthetic pathways can be often identified despite this restriction, however, as carbon backbone is integral to majority of metabolites [?]. For the experiments discussed in the manuscript, we considered only carbon atoms in this regard.

Algorithm 1 Algorithm for assembling a metabolic network

1: Input: acceptance threshold  $\alpha \geq 0$ , rejection threshold  $\beta > 0$ , reaction scores  $C, k, n \in \mathbb{N}$ , nutrients A2: Output: set of reactions  $N \subseteq \mathcal{R}$ 3:  $N \leftarrow \emptyset$ 4: for all r in  $\mathcal{R}$  such that  $C(r) \leq \alpha$  do if  $N \cup \{r\}$  is complete then 5:  $N \leftarrow N \cup \{r\}$ 6: else 7:  $Q \leftarrow queue(\{r\}) //$  Priority queue of incomplete pathways 8:  $P \leftarrow \emptyset //$  Complete pathways 9: 10: while |Q| > 0 and |P| < n do  $q \leftarrow \operatorname{pop}(Q) // \operatorname{Partial}$  pathway with minimum h(q)11:  $T \leftarrow \texttt{find\_atom\_paths}(q,k)$ 12:for all  $t \in T$  do 13: $p \leftarrow q \cup R(t) //$  Candidate pathway p14:15: if p already visited or  $C(p) > \beta$  then Reject p16:else if p is complete then 17: $P \leftarrow P \cup \{p\}$ 18:19: else  $Q \leftarrow Q \cup \{p\}$ 20: 21:if |P| > 0 then  $N \leftarrow N \cup p$  where  $p \in P$  minimizes C(p)22: else if accept gaps then 23: $N \leftarrow N \cup \{r\}$ 24:25: Return N



Figure 1. An example of a single iteration of Algorithm 1 on a set of six reactions (rectangles,  $r_1, \ldots, r_6$ ). Metabolites drawn as circles including nutrients (blue) and metabolites reached during previous iterations (magenta). Rectangle colors indicate the degree of evidence towards reactions (green: high, yellow: low). Reactions  $r_1$  and  $r_3$  have already been added to the reconstructed network. To add the highly probable reaction  $r_6$ , algorithm finds a biosynthesis pathway for both its substrates. Two iterations of lines 11–20 are required to add the two necessary pathways, first containing reaction  $r_2$  and second reactions  $r_4$  and  $r_5$ .

The algorithm attempts to build a gapfilling pathway for each incomplete reaction r (lines 8–24). The search is conducted in reverse from reaction r towards nutrients A. The algorithm maintains a priority queue Q where incomplete, or partial, pathways generated during the algorithm are stored. At each iteration, the partial pathway q with minimum cost estimate h(q) generated so far is augmented to decrease the number of unreached atoms on the pathway. Function h estimates the cost of completing the partial pathway q as the sum of *atom costs* for each unreached atom on the pathway q. The atom cost of atom u is defined as the cost of the minimum cost path in the atom graph  $G(\mathcal{R})$  from nutrients Ato u. Thus, the cost for adding a pathway to independently produce each unreached atom is considered.

Possible augmentations to the partial pathway are found by computing k shortest atom paths in  $G(\mathcal{R})$ from source atoms to atoms of q that are not reachable from nutrients in G(q) (procedure find\_atom\_paths, line 12). In particular, source atoms contain the nutrient atoms A and also the product atoms of reactions already added to the network. For each of these paths, a candidate pathway p is generated (line 14) by adding the reactions R(t) of the atom path t to pathway q. If the candidate pathway is complete, it is added to the list of solution pathways that may be used to gapfill reaction r. Otherwise if the candidate pathway cost does not exceed the rejection threshold  $\beta$ , it is added to the priority queue for possible subsequent augmentation.

When either all candidate pathways or the maximum number of gapfilling pathways per each reaction has been generated, the minimum cost gapfilling pathway is added to the reconstructed network (line 22). If no complete pathway was found, the algorithm may be configured to add the high-scoring reaction to the network nonetheless (parameter 'accept gaps') — this behaviour may result in a gapped reconstruction. It is important to note that connectivity problems in the underlying reaction database leave gaps in reconstructions when plausible reactions cannot be connected to nutrients. In particular, we allowed gaps when we reconstructed models for the 49 fungi presented in the manuscript to include reactions clearly supported by sequence data but for which no gapfixing pathway could be found.

Figure 1 illustrates the operation of the algorithm.

## 3 Manual model curation

Manual model curation of CoReCo reconstructed models was carried out to ensure positive biomass yield on minimal media in all models. A total of eight reactions were found to be essential to biomass production that were not added by CoReCo into one or more reconstructed models. To rectify this and enable positive biomass yield in all models, these reactions, if missing from a reconstructed model, were added manually. The following table lists the added reactions. Column 'Pathways' shows the KEGG pathways for each reaction. Column 'Comment' shows a reason for omission from models, if any. Two reactions that had a complete EC number were missing from a small number of models. Other reactions had not been associated with protein sequences due to missing or incomplete EC numbers. In addition, one reaction was nonenzymatic. These reactions were missing from the models because they were not used to fill gaps leading to a high-scoring reaction. Column NumModels shows the number of models where the particular reaction was added to.

| Reaction | Name                                   | Pathways               | Comment              | NumModels |
|----------|----------------------------------------|------------------------|----------------------|-----------|
| R01121   | ATP:(R)-5-                             | Terpenoid backbone     | Complete EC number   | 4         |
|          | diphosphomevalonate carboxy-           | biosynthesis           |                      |           |
|          | lyase                                  |                        |                      |           |
| R03348   | Nicotinate-                            | Nicotinate and nicoti- | Complete EC number   | 5         |
|          | nucleotide:pyrophosphate               | namide metabolism      |                      |           |
|          | phosphoribosyltransferase              |                        |                      |           |
| R04293   | Quinolinate + H2O $\Leftrightarrow$ 2- | Tryptophan             | Nonenzymatic         | 47        |
|          | Amino-3-carboxymuconate                | metabolism             |                      |           |
|          | semialdehyde                           |                        |                      |           |
| R04457   | 5-amino-6-(D-                          | Riboflavin metabolism  | No sequence evidence | 49        |
|          | ribitylamino)uracil butane-            |                        |                      |           |
|          | dionetransferase                       | ~                      |                      |           |
| R07505   | lathosterol oxidase                    | Steroid biosynthesis   | Incomplete EC number | 47        |
| R07506   | C-22 sterol desaturase                 | Steroid biosynthesis   | Incomplete EC number | 47        |
| R07280   | 5-Amino-6-(5'-phospho-                 | Riboflavin metabolism  | Incomplete EC number | 47        |
|          | D-ribitylamino)uracil +                |                        |                      |           |
|          | H2O $\Leftrightarrow$ 5-Amino-6-(1-D-  |                        |                      |           |
|          | ribitylamino)uracil + Or-              |                        |                      |           |
|          | thophosphate                           |                        |                      |           |
| R07497   | C-8 sterol isomerase                   | Steroid biosynthesis   | No EC number         | 14        |

R01121 was added to A. nidulans, E. cuniculi, L. elongisporus and S. japonicus models. R03348 was added to A. nidulans, C. globosum, E. cuniculi, S. japonicus and S. pombe models. R04293 was added to all models except A. niger and L. elongisporus. R07505 and R07506 were added to all models except B. cinerea and C. globosum. R07280 was added to all models except A. gossypii and C. glabrata. R07497 was added to the following 14 models: A. clavatus, B. dendrobatidis, C. cinereus, E. cuniculi, F. graminearum, F. oxysporum, F. verticillioides, H. capsulatum, M. grisea, P. chrysosporium, P. placenta, S. cerevisiae, S. sclerotiorum and T. reesei.

### 4 Biomass definition

The following biomass function, derived from the iMM904 *S. cerevisiae* and modified to take into account differences between KEGG and iMM904 model stoichiometry, was used to compute biomass production in steady-state for the 49 fungal models (Table 1).

# 5 Growth media definition

The following growth media composition was used for computing the steady-state biomass production for reconstructed fungal models (Table 2). The composition is derived from Snitkin *et al.* (2008).

We added 5-Methyltetrahydropteroyltri-L-glutamate uptake because it appears as cofactor in the KEGG reactions 5-Methyltetrahydropteroyltri-L-glutamate:L-homocysteine S-methyltransferase (R04405) and 5-methyltetrahydropteroyltri-L-glutamate:L-selenohomocysteine Se-methyltransferase (R09365), and is a necessary metabolite on cysteine and methionine metabolisms, but no KEGG pathway exists to produce the metabolite from nutrients.

| KEGG Compound | Coefficient | Name                 |  |
|---------------|-------------|----------------------|--|
| C00965        | -1.1348     | 1,3-beta-D-Glucan    |  |
| C00041        | -0.4588     | ala-L                |  |
| C00020        | -0.046      | amp                  |  |
| C00062        | -0.1607     | arg-L                |  |
| C00152        | -0.1017     | asn-L                |  |
| C00049        | -0.2975     | asp-L                |  |
| C00002        | -59.276     | atp                  |  |
| C00575        | -0.000001   | camp                 |  |
| C00461        | -0.000001   | chitin               |  |
| C00055        | -0.0447     | cmp                  |  |
| C00010        | -0.000001   | CoA                  |  |
| C00097        | -0.0066     | cys-L                |  |
| C00360        | -0.0036     | damp                 |  |
| C00239        | -0.0024     | dcmp                 |  |
| C00362        | -0.0024     | dgmp                 |  |
| C00364        | -0.0036     | dtmp                 |  |
| C01694        | -0.0007     | ergst                |  |
| C00016        | -0.000001   | FAD                  |  |
| C00064        | -0.1054     | gln-L                |  |
| C00025        | -0.3018     | glu-L                |  |
| C00037        | -0.2904     | gly                  |  |
| C00369        | -0.5185     | starch/glycogen      |  |
| C00144        | -0.046      | gmp                  |  |
| C00051        | -0.000001   | gthrd                |  |
| C00001        | -59.276     | $H_2O$               |  |
| C00135        | -0.0663     | his-L                |  |
| C00407        | -0.1927     | ile-L                |  |
| C00123        | -0.2964     | leu-L                |  |
| C00047        | -0.2862     | lys-L                |  |
| C00073        | -0.0507     | met-L                |  |
| C00003        | -0.000001   | NAD                  |  |
| C00079        | -0.1339     | phe-L                |  |
| C00148        | -0.1647     | pro-L                |  |
| C00255        | -0.00099    | ribfly               |  |
| C00065        | -0.1854     | ser-L                |  |
| C00059        | -0.02       | $SO_4$               |  |
| C00101        | -0.000001   | $\operatorname{thf}$ |  |
| C00188        | -0.1914     | thr-L                |  |
| C01083        | -0.0234     | tre                  |  |
| C00078        | -0.0284     | trp-L                |  |
| C00082        | -0.102      | tyr-L                |  |
| C00105        | -0.0599     | ump                  |  |
| C00183        | -0.2646     | val-L                |  |
| C05437        | -0.0015     | zvmst                |  |
| C00096        | -0.8079     | GDP-mannose          |  |
| C00008        | 59.276      | ADP                  |  |
| C00080        | 117.40002   | Н                    |  |
| C00009        | 59.305      | Orthophosphate       |  |
| C00035        | 0.8079      | GDP                  |  |

 Table 1. Biomass composition used in experiments.

| Name                                     | KEGG compound | Coefficient |
|------------------------------------------|---------------|-------------|
| Water                                    | C00001        | 1000.0      |
| Glucose                                  | C00031        | 22.6        |
| Bicarbonate                              | C00288        | 100.0       |
| Diphosphate                              | C00013        | 100.0       |
| Iron                                     | C00023        | 100.0       |
| Oxygen                                   | C00007        | 6.3         |
| NH3                                      | C00014        | 100         |
| SLF                                      | C00059        | 100         |
| PI                                       | C00009        | 0.89        |
| Potassium                                | C00238        | 4.44        |
| Sodium                                   | C01330        | 0.75        |
| Biotin                                   | C00120        | 0.00000142  |
| Choline                                  | C00114        | 0.000092    |
| Inositol                                 | C00137        | 0.00193     |
| (R)-Pantothenate                         | C00864        | 0.0002      |
| Uracile                                  | C00106        | 0.4         |
| Antimycin                                | C11339        | 1000        |
| 5-Methyltetrahydropteroyltri-L-glutamate | C04489        | 12000       |

Table 2. Growth media used in experiments.

# 6 Effect of the size of phylogenetic tree to reconstruction accuracy

We evaluated the effect of varying the number of related species to reconstruction accuracy. At the same time, we also varied the fraction of protein sequences of *S. cerevisiae* randomly deleted. Seven subtrees of the original phylogenetic tree of 49 fungi with *S. cerevisiae* and  $n \in \{1, 2, 5, 10, 20, 30, 40\}$  related species (Figure 2) along with the original tree of 49 species were constructed. Deletion frequency was varied from 0 to 0.5 in increments of 0.1. A metabolic network *S. cerevisiae* was then reconstructed given each combination of a phylogenetic tree and deletion frequency, and the result compared against the Yeast consensus model [?]. We summarized the reconstruction accuracy as Area Under Curve of the ROC curve shown in Figure 3.

In an unperturbed case with no deleted sequences, we observe that the reconstruction accuracy is already at a high level with 5 neighbors in the phylogenetic tree, reaching maximum with 20 neighbors. When protein sequences are removed from yeast, the reconstruction quality drops somewhat as expected, with local optimum with 5 neighbors. The results suggest that when dealing with comprehensive sequence data and well-annotated related species, only a few related species are needed for a high-quality reconstruction. However, in our experiment, having only a small number of related species gives an edge over a larger number likely due to the noise introduced by the additional species further away from *S. cerevisiae*.

### 7 Posterior probability thresholds used to compute ROC curves

The following probability thresholds  $\alpha$  were used to compute ROC curves shown in Figure 3 of the manuscript:

0, 0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 0.9999, 0.99999, 0.999999, 1.

| h                          |                             |
|----------------------------|-----------------------------|
|                            |                             |
| figs/jiansfig/S_tree_1.png | figs/jiansfig/S_tree_20.png |
| figs/jiansfig/S_tree_2.png | figs/jjansfig/S tree 30.png |
| figs/jiansfig/S_tree_5.png | Tigs/Jiansiig/S_tree_S0.png |

figs/jiansfig/S\_tree\_10.png

!h

**Figure 3.** *S. cerevisiae* reconstruction accuracy compared to Yeast consensus model with respect to varying the number of species related to *S. cerevisiae* specified in the phylogenetic tree (neighbors,  $n \in \{1, 2, 5, 10, 20, 30, 40, 48\}$ ) and fraction of deleted protein sequences of *S. cerevisiae* given as Area Under Curve (AUC).