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Supporting Information

Additional information, mostly technical details, to complete the description of SCAMPI:

• Supporting Information 1 – Workflow and input data

• Supporting Information 2 – Covariances

• Supporting Information 3 – Reassessing peptide abundances

• Supporting Information 4 – Selecting outliers in the measured peptides

• Supporting Information 5 – ILSE parameter estimates

• Supporting Information 6 – Input data preparation for SCAMPI

• Supporting Information 7 – Computation times

• Supporting Information 8 – Parameter estimates

• Supporting Information 9 – Additional Figures

– SI 9.1 – Interpretation of diagnostic plots

– SI 9.2 – SRM experiment on Leptospira interrogans

– SI 9.3 – Directed MS human data [4]

– SI 9.4 – SILAC labeled human shotgun proteomics data

• Supporting Information 10 – Materials and Methods for the SILAC data set

• Supporting Information 11 – SCAMPI on TOP3 input

• Supporting Information 12 – SCAMPI results compared to MaxQuand output

In addition, the compressed file SupportingInformation13_inputData.zip contains the input

files for SCAMPI for all discussed datasets.
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Supporting Information 1 – Workflow and input data

SCAMPI is implemented in the R package ’protiq’ [1]. This section gives an overview of the

typical workflow and the required input data.

Typical workflow of bottom-up MS data analysis using SCAMPI

The peptides are identified (and typically filtered at 1% FDR) and quantified by using a method

of choice. The three data frames required as input for the protein quantification procedure are

prepared. The model parameters can then be estimated on the data and the protein concentrations

are predicted. Optionally, peptide abundances can be reassessed, and the model can be re-run

after having eliminated some outliers in the input data and adapted the graph structure (dashed

boxes/arrows in the above figure).
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Structure of the input data

• peptides – Each row describes one (unique) experimentally identified peptide sequence. The

mandatory columns are:

– peptide identification number (pepId)

– peptide sequence (pepSeq)

– peptide abundance score (pepQty), typically log-transformed intensity measurement

• proteins – Each row defines one (unique) protein sequence matching to at least one experimen-

tally identified peptide sequence. The mandatory columns are:

– protein identification number (protId)

– protein name (protName)

Ensuring that this table holds each protein sequence only once requires particular attention when

some sequences are described by several accession numbers.

• edgespp – Each row defines one edge of the bipartite graph. The mandatory columns are:

– peptide identification number (pepId)

– protein identification number (protId)

A convenient way to provide the input is to pack the required input into three separate CSV files.

Consistency checks

Before starting with the computations a couple of constraints are checked to make sure that the

provided input is suitable for SCAMPI:

• peptides:

– the columns pepSeq and pepId are present and contain unique entries

– each pepId occurs in at least one edge

– the column pepQty is present and holds well-defined numeric values
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– the values in pepId range from 1 to n (where n is the number of peptides)

• proteins:

– the columns protName and protId are present and contain unique entries

– each protId occurs in at least one edge

– the values in protId range from n+ 1 to n+m (where m is the number of proteins)

• edgespp:

– holds the columns pepId and protId

– holds only ids present in peptides or proteins

– each row is unique, i.e. each edge is recorded exactly once

If the input data does not pass the consistency checks SCAMPI stops with an error message.

The input files for all datasets presented in this publication are available in SupportingInforma-

tion12_inputData.zip.

User’s choices

Data preprocessing – It is up to the user to decide which peptides and proteins have been

reliably identified and should be used for the quantification process. Furthermore, peptides can be

quantified by the user’s method of choice.

It is also up to the user to decide how to handle issues such as modifications, different charge states

or semi-tryptic peptides. As an example, one could decide to have each charge state of a peptide

contributing separately by providing separate input lines PEPSEQ_2, PEPSEQ_3 and PEPSEQ_4 in the

data frame peptides. Alternatively, the contributions from the different charge states could be

combined during the preprocessing steps, and a single value for PEPSEQ would then be included in

the data frame peptides.
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SCAMPI options – Details about the options of the different functions can be found in the

documentation of the R package ’protiq’ [1]. The list below provides merely a brief overview.

• parameter estimation method: can be either ILSE, MLE or both (see Parameter estimation)

• rescaling the input data: if it has not already been done in the pre-processing, it probably

makes sense to ask SCAMPI to logarithmize the input peptide abundances

• SCAMPI can be run iteratively, removing outlier peptides after each iteration step, to recur-

sively improve the abundance predictions
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Supporting Information 2 – Covariances

Covariance between peptide scores

The diagonal elements of |Σ correspond to the variance of U :
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The fact that the εi are i.i.d. and independent of the protein scores Cj was used for these derivations.

Combining the obtained results leads to the matrix in Equation 5 in the manuscript.
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Covariance between peptide and protein scores

Cov (Cj , Ui) is zero when there is no edge between peptide i and protein j (Markovian assumption).

When there is an edge between peptide i and protein j, the covariance between Ui and Cj can be

computed as

(
Γ
CjU
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= Cov
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i
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= Cov

Cj , α + β
∑
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= Cov

Cj , β
∑

j′∈Ne(i)

Cj′ + εi


= Cov

Cj , β
∑

j′∈Ne(i)

Cj′


= β Var (Cj)

= β,

which leads to the result in Equation 6 in the mauscript. The fact that the ε are independent of

the protein scores Cj was used.

Supporting Information 3 – Reassessing peptide abundances

Equation 1 (in the manuscript) models the peptide abundances as a function of the abundance

scores of their neighboring proteins. In the process of estimating the latter values, Ĉjs, all peptide

data are used. Therefore, simply computing E [Ui] would lead to over-fitting and to over-optimistic

results. Hence, in order to estimate the abundance of peptide i, Ûi, we want to use all peptide
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measurements, except for the ith one. The peptide abundance estimate Ûi is then defined as

Ûi = E [Ui|{Ukri}]

= E
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Note that the summation (
∑

j∈Ne(i)

. . . ) in the equation above is zero for connected components

holding a single peptide. In these cases, Ûi = α + β µDii. The abundances of the matching

proteins do not contribute to Ûi (since there is no further evidence to estimate Ĉj without using

peptide i). However, the parameters learned on the whole dataset as well as the number of matching

proteins allow to provide an estimate for Ui even in these cases.

Supporting Information 4 – Selecting outliers in the measured peptides

A threshold is needed to decide which residuals (Ri = Ui − Ûi) are “too large”, i.e. at which values

the two dashed horizontal lines should be drawn in Figure 7B (in the manuscript). A criteria based

on the inter-quartile range (iqr = Q3−Q1) is used, where Q1 is the first quartile in the distribution

of the residuals and Q3 the third one. Concretely, a peptide i is labeled as outlier (marked by gray

stars in Figure 7 B in the manuscript) if Ri /∈ [Q1 − k · iqr, Q3 + k · iqr], with k = 2.
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Supporting Information 5 – ILSE parameter estimates

The solution to Equation 13 in the manuscript can be written in closed form:
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∑
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The solution to Equation 14 in the manuscript has a closed form:
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Supporting Information 6 – Input data preparation for SCAMPI

This section holds information about:

• SRM experiment on Leptospira interrogans

• Directed MS human data

• SILAC labeled human shotgun proteomics data

The SCAMPI input files for each of the discussed datasets are available in SupportingInforma-

tion12_inputData.zip

SRM experiment on Leptospira interrogans

The data published in [2] was used. The peptide quantities were averaged over the three techni-

cal replicates as follows: (i) select the three most intense transitions (on average over the three
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replicates) for each peptide sequence, (ii) compute the peptide intensity by averaging these three

numbers and then (iii) average the values for each peptide over the three replicates. The log10

of these quantities are used as input scores Ui. Charge states were not treated as specific pep-

tide identifications. Since the data come from an SRM experiment, all peptides are proteotypic.

Modifications and semi-tryptic peptides were not considered.

Directed MS human data

The progenesis [3] output with peptides filtered at a 1% FDR is used to prepare the input data

for SCAMPI. Charge states and modifications were not treated as specific peptide identifications.

Hence, all progenesis values matching to a same peptide sequence were summed up and then

logarithmized (log10) to obtain the input peptide abundance scores (Ui).

The data published in [4] hold 53 anchor proteins. However, in the provided data, the experimentally

measured concentrations for eight of these proteins are based on shared peptides. There are two

possible explanations for this: (i) changes in the used database and (ii) protein grouping. Beck

et al. [4] worked with ProteinProphet [5], which groups indistinguishable proteins. If an AQUA

peptide uniquely maps to such a group, this is counted as a unique match; SCAMPI, however,

strives at providing a quantification score for each identified protein sequence, and hence requires

AQUA peptides uniquely matching to a single protein sequence. These 8 sequences were excluded

from the set of ground truth for this study. Among the 45 remaining anchor proteins, three cannot

be quantified based on the provided progenesis data (no matching peptide has been quantified for

any of these three protein sequences). Hence, finally the performance of the quantification results

is assessed on a set of 42 anchor proteins.
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SILAC labeled human shotgun proteomics data

The MaxQuant [6] output files evidence.txt and proteinGroups.txt (filtered at 1% FDR) are

used to extract the input data for SCAMPI. Different charge states and modifications were not

considered as specific peptide identifications. Hence, all MaxQuant peak intensities corresponding

to a same peptide sequence were summed up. These values were logarithmized (log10) and then

used as input peptide abundance scores in SCAMPI.

Supporting Information 7 – Computation times

The table below provides a summary of the dataset sizes and the approximate computation times

required to run SCAMPI (MLE and ILSE) on each of them. The provided timings were obtained

with the R function system.time(). We report the time used to run the function runScampi() from

the R package ’protiq’ on the datasets provided in SupportingInformation12_inputData.zip

on a single CPU.

# peptides % shared # edges # proteins # cc ILSE time MLE time

L. interrogans 151 0 151 39 39 < 1s < 1min

human (directed MS) 49190 6 54720 6257 4984 < 2h < 5h

human (SILAC, control) 30323 17 38019 3892 2659 < 1h < 2h

human (SILAC, treated) 30326 17 38025 3890 2658 < 1h < 2h

In the table above, “# cc” stands for the number of connected components in the bipartite graph.

“% shared” stands for the percentage of the peptides matching to at least two proteins.

Supporting Information 8 – Parameter estimates

SCAMPI’s parameter value estimates for all datasets presented in the manuscript and supporting

information are provided below:
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MLE ILSE

α̂ β̂ µ̂ τ̂ α̂ β̂ µ̂ τ̂

L. interrogans (SRM) 2.81 0.67 4.39 0.39 5.88 0.6 0 0.48

human (directed MS) 5.81 0.43 0 0.56 5.96 0.4 0.16 0.56

human (SILAC, shotgun, control) 6.56 0.53 0 0.55 6.77 0.51 0.09 0.61

human (SILAC, shotgun, treated) 6.41 0.51 0 0.55 6.62 0.51 0.07 0.59

Since the first dataset, L. interrogans, does not include any shared peptides, the four parameters

are not identifiable. The estimates of Ĉj are still well-defined, though. The reported values for the

MLE parameter estimates correspond to a (potentially local) minimum. In the case of ILSE, µ̂ was

constrained to zero.

Supporting Information 9 – Additional Figures

This section holds information about the interpretation of diagnostic plots (SI 9.1 – Interpretation

of diagnostic plots) as well as additional figures for:

• SI 9.2 – SRM experiment on Leptospira interrogans

• SI 9.3 – Directed MS human data [4]

• SI 9.4 – SILAC labeled human shotgun proteomics data
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SI 9.1 – Interpretation of diagnostic plots

Some of the additional figures in this section are diagnostic plots applied on the peptide level.

They allow to graphically check whether some assumptions are fulfilled or not. We consider two

plots: the Tukey-Anscombe Plot and the Normal Plot. Brief descriptions of these plots are given

below. Further information can be found in statistics books about regression, for example in [7, 8].

Furthermore, we provide Bland-Altman plots [9] (also known as Tukey mean-difference plot or MA

plot) as a further comparison between computed protein abundance scores.

Tukey-Anscombe Plot : plot of the residuals versus the fitted values (on the x-axis). Ideally, the

points in the Tukey-Anscombe plot are “randomly distributed” around the horizontal line through

zero. Typical deviations which indicate a problem with the model and/or data are:

• non-constant variability around the reference line,

• trend in the plot indicating that the linear model assumption is not correct.

Normal Plot : quantile-quantile (Q-Q) plot where the empirical quantiles of the residuals are

plotted versus the theoretical quantiles of a N (0, 1) distribution (on the x axis). If the residuals are

normally distributed with expectation µ and variance σ2, the Normal Plot shows approximately a

straight line. The plot allows for example to visually recognize long-tailed and skewed distributions.

Bland-Altman Plot : plot of the difference between two measurements versus the mean of two

measurements (on the x axis). Bland-Altman plots go a step further than correlation anaylsis by

checking how well two measurements of a same characteristic agree. In our case it can be used to

compare the predicted (log-transformed) concentrations C̃. The plots are generated as follows:

• take the computed abundance scores: ĈA and ĈB

• use the reference proteins to fit a linear model between the log-scaled (base-10) known con-

centrations and the computed scores (for ĈA and ĈB)

• apply the trained parameters to all samples for the respective score (→ C̃A and C̃B)
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• only consider proteins for which the predicted (log-transformed) concentration lies within the

abundance range of the reference proteins

• draw the Bland-Altman plot using the predicted (log-transformed) concentrations

• highlight reference proteins (subject to overfitting since they were used to fit the linear model)

SI 9.2 – SRM experiment on Leptospira interrogans

SRM – Diagnostic plots for peptide residuals with ILSE parameter estimation
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B

The diagnostic plots (residual plot in panel A and normal Q-Q plot in panel B) for the peptide

abundance residuals show no major violation of the assumptions on the noise term ε (see Equation 1

in the manuscript).

SRM – Bland-Altman plots for protein scores (ILSE parameter estimation)
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Panel A compares the (log-scaled) concentrations predicted by SCAMPI and by TOP3. Panels B

and C compare the (log-transformed) concentrations predicted by SCAMPI and TOP3, respectively,

to the known (log-scaled) ground truth concentrations. There is no major difference between TOP3

and SCAMPI. The triangles correspond to the reference proteins (used to learn the parameters of

the linear model).

SRM – Comparing the SCAMPI scores to the scores published in [2]
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The x-axis shows the predicted concentrations (log10) computed by SCAMPI. The y-axis shows the

mean of the results published for the three technical replicates in [2] (also log10 of the predicted

protein concentrations). The latter scores were computed with a “flexible” TOP3 approach, where

proteins are also quantified when they only have one or two experimentally quantified unique

peptides. The correlation between the two approaches is very high, even though the input is not

exactly the same for the two approaches (different number of transitions considered for the peptide

abundances).
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SRM – Protein quantification results with MLE parameter estimation
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The correlation coefficients for SCAMPI and the TOP3 approach are very similar. The error bars

in panel A show the 95% prediction intervals for the computed protein abundance scores. Note that

the scale on the x-axis is different in the two panels. The range of the computed scores depends on

the underlying model. We cannot compare the scores from SCAMPI and from TOP3 directly, but

can look at correlations with a reference score, as presented in this figure.

SRM – Diagnostic plots for peptide residuals with MLE parameter estimation
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The diagnostic plots (residual plot in panel A and normal Q-Q plot in panel B) for the peptide

abundance residuals show no major violation of the assumptions on the noise term ε (see Equation 1

in the manuscript).
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SRM – Bland-Altman plots for protein scores (MLE parameter estimation)
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Panel A compares the (log-scaled) concentrations predicted by SCAMPI and by TOP3. Panels B

and C compare the (log-transformed) concentrations predicted by SCAMPI and TOP3, respectively,

to the known (log-scaled) ground truth concentrations. There is no major difference between TOP3

and SCAMPI. The triangles correspond to the reference proteins (used to learn the parameters of

the linear model).

SRM – Comparing MLE results to the scores published in [2]
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Again, the correlation between the two approaches (SCAMPI with MLE parameter estimates and

“flexible” TOP3) is very high, even though the input is not exactly the same for the two approaches

(different number of transitions considered for the peptide abundances).
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SI 9.3 – Directed MS human data [4]

Directed MS – Diagnostic plots for peptide residuals

with ILSE parameter estimation

The diagnostic plots (residual plot in panel A and normal Q-Q plot in panel B) for the peptide

abundance residuals show no major violation of the assumptions on the noise term ε (see Equation 1

in the manuscript).

Directed MS – Bland-Altman plots for protein scores (ILSE parameter estimation)
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Panel A compares the (log-scaled) concentrations predicted by SCAMPI and by TOP3. Panels B

and C compare the (log-transformed) concentrations predicted by SCAMPI and TOP3, respectively,
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to the known (log-scaled) ground truth concentrations. There is no major difference between TOP3

and SCAMPI. The triangles correspond to the reference proteins (used to learn the parameters of

the linear model). The strong line patterns appearing in panel A correspond to proteins with a

single, two or three matching unique peptide(s) as only input. We discuss the linear relationship

between SCAMPI and top3 in these cases in Supporting Information 11 – SCAMPI on TOP3 input.

Directed MS – Protein quantification results with MLE parameter estimation
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The correlation coefficients for SCAMPI and the TOP3 approach are similar. The error bars in

panel A show the 95% prediction intervals for the computed protein abundance scores. Note that

the scale on the x-axis is different in the two panels. The range of the computed scores depends on

the underlying model. We cannot compare the scores from SCAMPI and from TOP3 directly, but

can look at correlations with a reference score, as presented in this figure.

Directed MS – Diagnostic plots for peptide residuals
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with MLE parameter estimation

The diagnostic plots (residual plot in panel A and normal Q-Q plot in panel B) for the peptide

abundance residuals show no major violation of the assumptions on the noise term ε (see Equation 1

in the manuscript).

Directed MS – Bland-Altman plots for protein scores (MLE parameter estimation)
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Panel A compares the (log-scaled) concentrations predicted by SCAMPI and by TOP3. Panels B

and C compare the (log-transformed) concentrations predicted by SCAMPI and TOP3, respectively,

to the known (log-scaled) ground truth concentrations. There is no major difference between TOP3

and SCAMPI. The triangles correspond to the reference proteins (used to learn the parameters of

the linear model). The strong line patterns appearing in panel A correspond to proteins with a
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single, two or three matching unique peptide(s) as only input. We discuss the linear relationship

between SCAMPI and top3 in these cases in Supporting Information 11 – SCAMPI on TOP3 input.

Directed MS – Concrete example of SCAMPI’s handling of shared peptides

The picture below shows a connected component with 2 proteins and 10 peptides from the“Directed

MS” data set. The names of the proteins and sequences of the peptides are provided. The scores

correspond to the input peptide abundances and computed protein abundance scores, respectively.

The mean abundance of the peptides matching uniquely to protein Q15907 is 6.62, while protein

P62491 has a single unique peptide with an abundance score of 5.77. The mean abundance of

the shared peptides is 7.10. Both proteins could also be quantified with the (non-strict) TOP3

approach. However, SCAMPI can use the additional information in the shared peptides to gain a

better understanding of the data. In this case, this leads to additional confidence (i) in the computed

protein abundance scores and (ii) in the fact that both proteins are present in the sample.
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SI 9.4 – SILAC labeled human shotgun proteomics data

SILAC – Protein score distributions for MLE results
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The distributions are comparable (similar median and quartiles).

SILAC – Protein score differences for MLE results
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SCAMPI with the MLE parameter estimates identifies a set of 65 differentially abundant proteins.

All 59 differentially abundant proteins found by SCAMPI with the ILSE parameter estimates belong

to this set.
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SILAC – Running SCAMPI (ILSE estimates) iteratively:

diagnostic plots after second iteration

The R package ’protiq’ provides an option to run SCAMPI iteratively. This means:

• After running SCAMPI on the original data, the peptide outliers are selected with an inter-

quartile range criterion (constant can be set by the user). These outliers are the 234 peptides

labeled by stars in panel B of Figure 7 in the manuscript.

• All peptides marked as outliers are removed from the dataset for the second run. The data

frames holding the proteins and edges are adapted accordingly.

• SCAMPI runs again on this modified dataset. Again, it performs peptide outlier selection.

Basically this iterative procedure can be repeated until none of the peptides are selected as outliers

anymore. There are however two important points to keep in mind:

• The points which are removed are outliers with respect to the implemented model. There is no

guarantee that they correspond to real biological outliers. Hence, such an iterative approach

can be useful in an explorative analysis to get a list of potential outliers, but it is important
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to validate these sequences manually before removing them definitely from the final analysis.

For this purpose, SCAMPI returns the list of outliers it discards (after each iteration).

• There is a potential risk of over-fitting. If the number of discarded peptides becomes too large

compared to the total number of peptides in the original dataset, one should be cautious.

In the example presented in this paper, the peptide diagnostic plots after the second iteration of

SCAMPI (with ILSE parameter estimates) look much better (see plot above). The major outliers

are gone. The normal Q-Q plot (panel B in the figure above) indicates that only a few peptides

would still be selected as outliers to be removed in a third iteration step.

Supporting Information 10 – Materials and Methods for the SILAC data set

Cell lines and culture conditions

Human leukemic cell lines KG1a were cultured in cultured in Iscove’s modified Dulbecco’s medium

(Invitrogen) supplemented with 20% fetal bovine serum (PAA Laboratories), 2mM L-glutamine,

100units/ml penicillin, 100mg/ml streptomycin and containing either 0.5 mM each of L-Lysine-

2HCl and L-Arginine-HCl or 13C6 L-Lysine-2HCl and 13C615N4 L-Arginine-HCl. All reagents

for isotope metabolic protein labeling of the cells were from Pierce (Rockford, IL) except that L-

glutamine and penicillin/streptomycin were from Invitrogen (Carlsbad, CA). Cells were grown in a

humidified atmosphere at 37◦C and 5% CO2. Cell viability was assessed by standard trypan blue

dye exclusion assay. KG1a cells were treated with 5uM MG132 for up to 6 hours. A sample of 3 ×

106 cells from the “heavy” and “light” isotope protein-labeled populations were treated separately

with 5uM MG132 or dimethyl sulfoxide (DMSO) (0.05% v/v final concentration) for 6 hours,

respectively. Cells were mixed equally and washed three times with ice cold PBS. The harvested

cells were resuspended in lysis buffer (10mM HEPES, pH 7.5, 10mM KCl, 1mM MgCl2) containing

protease inhibitors (Roche, Indianapolis, Indiana, USA). Crude cell extracts were centrifuged for
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10min at 800g and the resulting supernatants were centrifuged at 100 000g for 1h. The latter

supernatants correspond to the cytosolic extracts and protein concentration was determined using

the BioRad Protein Assay (BioRad, Hercules, CA, USA).

1D SDS-PAGE Fractionation and Nano-LC-MS/MS Analysis

One hundred micrograms of proteins were diluted in Laemmli buffer and boiled for 5 min before

being separated on a 12% acrylamide SDS-PAGE gel. Proteins were visualized by Coomassie Blue

staining. Each lane was cut into 20 homogenous slices that were washed in 100mM ammonium

bicarbonate for 15min at 37◦C followed by a second wash in 100mM ammonium bicarbonate,

acetonitrile (1:1) for 15min at 37◦C. Reduction and alkylation of cysteine residues were performed

by mixing the gel pieces in 10mM DTT for 35min at 56◦C followed by 55mM iodoacetamide for

30min at room temperature in the dark. An additional cycle of washes in ammonium bicarbonate

and ammonium bicarbonate/acetonitrile was then performed. Proteins were digested by incubating

each gel slice with 0.6µg of modified sequencing grade trypsin in 50mM ammonium bicarbonate

overnight at 37◦C. The resulting peptides were extracted from the gel by three steps: a first

incubation in 50mM ammonium bicarbonate for 15min at 37◦C and two incubations in 10% formic

acid, acetonitrile (1:1) for 15min at 37◦C. The three collected extractions were pooled with the

initial digestion supernatant, dried in a SpeedVac, and resuspended with 14µl of 5% acetonitrile,

0.05% trifluoroacetic acid.

The peptide mixtures were analyzed by nano-LC-MS/MS using an Ultimate3000 system (Dionex)

coupled to an LTQ-Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). Five

microliters of each sample were loaded on a C18 precolumn (300-µm inner diameter× 5mm; Dionex)

at 20µl/min in 5% acetonitrile, 0.05% trifluoroacetic acid. After 5min of desalting, the precolumn

was switched on line with the analytical C18 column (75-µm inner diameter × 15cm; PepMap C18,

Dionex) equilibrated in 95% solvent A (5% acetonitrile, 0.2% formic acid) and 5% solvent B (80%
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acetonitrile, 0.2% formic acid). Peptides were eluted using a 5-50% gradient of solvent B during

80min at a 300nl/min flow rate. The LTQ-Orbitrap was operated in data-dependent acquisition

mode with the Xcalibur software. Survey scan MS spectra were acquired in the Orbitrap on the

300-2000m/z range with the resolution set to a value of 60,000. The five most intense ions per

survey scan were selected for CID fragmentation, and the resulting fragments were analyzed in the

linear trap (LTQ). Dynamic exclusion was used within 60s to prevent repetitive selection of the

same peptide.

Supporting Information 11 – SCAMPI on TOP3 input

A strict implementation of TOP3 simplifies the problem by discarding all shared peptides, and

by focusing on proteins with enough unique peptide evidence. Furthermore, if a protein has “too

much” peptide evidence, TOP3 only uses the three most intense matching peptides to quantify the

protein. The question arises how well SCAMPI would actually perform if used on exactly the same

input data as a strict TOP3 approach, namely a bipartite graph holding only:

• proteins with at least three matching quantified unique peptides

• the three most intense unique peptides for each of these proteins

In particular, the graph does not include any shared peptides and each connected component holds

exactly one protein and three peptides. The formula to estimate the protein abundance is given in

Equation 3 in the manuscript.

Ĉj = µ +


U

(j)

1 − α − βµ

U
(j)

2 − α − βµ

U
(j)

3 − α − βµ



ᵀ 
β2 + τ2 β2 β2

β2 β2 + τ2 β2

β2 β2 β2 + τ2



−1 
β

β

β


for all proteins.
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This leads to Ĉj =

(
U

(j)

1 + U
(j)

2 + U
(j)

3 − 3α
)
· β + µτ2

3β2 + τ2
.

In the case of TOP3, the protein abundance estimate is ĈTOP3
j =

U
(j)

1 + U
(j)

2 + U
(j)

3

3
.

Combining both equations leads to Ĉj =
3β

3β3 + τ2
ĈTOP3
j +

µτ2 − 3αβ

3β2 + τ2
.

Hence, in this particular case, the SCAMPI protein abundance scores can be obtained from the

strict TOP3 scores by linear transformation. In other words, if (i) one is willing to discard all

information, except the input required by a strict TOP3, and (ii) one is only interested in protein

abundance estimates, then there is no advantage in running SCAMPI. It is simpler and quicker to

take the average of the three selected peptide intensities for each protein. The (potential) drawbacks

of such a choice are:

• Proteins matched by less than three unique peptides do not get quantified,

• additional information contained in shared peptides is not taken into account,

• no model is available to reassess/validate the peptide abundance scores, and

• no model is available to compute prediction intervals for the protein abundance scores.

Supporting Information 12 – SCAMPI results compared to MaxQuand output

There are several reasons to explain the differences between the list of high abundant proteins

returned by SCAMPI and the one from MaxQuant:

• Part of the high abundant proteins quantified by SCAMPI did not get an abundance estimate

in MaxQuant, because they only have a single unique peptide (the corresponding peptide has

been quantified, but no summary score for the protein is available in the MaxQuant output).
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• MaxQuant uses further data bases for contaminants. For example, MaxQuant does not return

the protein REFSEQ:NP_004684 in its protein level output (recognizing it as a contaminant)

while we did not yet filter it out.

From a biological point of view, both output lists seem to have some interesting aspects. In the

presented data set (SILAC labeled human shotgun proteomics data), at least one of the proteins

discarded by MaxQuant (due to too little evidence), but recognized as high abundant by SCAMPI,

is of biological interest.
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