SUPPLEMENTARY FIGURES

Protein	Fluorochrome	Clone	Isotype	Supplier
CCR7	PE-Cy7	G043H7	Ms IgG2a, к	Biolegend
CD1c	PeCy7	L161	Ms IgG₁,κ	BioLegend
CD3	FITC	SK7	Ms IgG₁,κ	BD
CD3	PE	SK7	Ms IgG ₁ , к	BD
CD3	V500	UCHT1	Ms IgG ₁ , к	BD
CD4	FITC	SK3	Ms IgG ₁ , к	BD
CD4	PE-Cy7	SK3	Ms IgG ₁ , к	BD
CD4	PE	SK3	Ms IgG ₁ , к	BD
CD8	APC	SK1	Ms IgG ₁ , к	BD
CD8	APC-Cy7	SK1	Ms IgG ₁ , к	BD
CD11c	V450	B-Ly6	Ms IgG₁,κ	BD
CD14	BV650	M5E2	Ms IgG _{2a} , к	BioLegend
CD16	APC-H7	3G8	Ms IgG₁,κ	BD
CD19	FITC	4G7	Ms IgG₁,κ	BD
CD20	FITC	L27	Ms IgG₁,κ	BD
CD25	APC-Cy7	M-A251	Ms IgG₁,κ	BD
CD27	BV421	O323	Ms IgG₁,κ	Biolegend
CD34	PE	8G12	Ms IgG ₁ ,κ	BD
CD38	PE-Cy7	HB7	Ms IgG₁,κ	BD
CD45RA	APC-Cy7	HI100	Ms IgG _{2b} , к	Biolegend
CD45RA	Q605	MEM-56	Ms IgG _{2b} , к	Invitrogen

Supplementary Table 1. Antibodies used for flow cytometry.

CD56	FITC	NCAM16.2	Ms IgG _{2b} , к	BD
CD56	BV421	HCD56	Ms IgG ₁ , к	Biolegend
CD56	PERCPCy5.5	HCD56	Ms IgG _{2a} , к	Biolegend
CD56	PERCPCy5.5	MEM-188	Ms IgG _{2a} , к	Biolegend
CD62L	PE-Cy7	DREG-56	Ms IgG ₁ , к	Biolegend
CD123	PERCPCy5.5	7G3	Ms IgG _{2a} , к	BD
CD127	APC	A019D5	Ms IgG₁	Biolegend
CD141	APC	AD5-14H12	Ms IgG1	Miltenyi
CD158e1/e2	PE	Z27.3.7	Ms IgG₁	Beckman C
CD158a,h	PE	EB6.B	Ms IgG ₁	Beckman C
CD158 b1/b2,j	PE	GL183	Ms IgG ₁	Beckman C
CD161	BV421	HP-3G10	Ms IgG ₁ , к	Biolegend
HLA-DR	V500	L243	Ms IgG _{2a} , к	BD
HLA-DR	A700	G46-6	Ms IgG _{2b} , к	BD
NKG2A	APC	Z199	Ms IgG _{2b} , к	Beckman C
NKG2C	PerCP	134591	Ms IgG ₁ , к	R&D
TCRVα24Jα18	PE	6B11	Ms IgG ₁ , к	Biolegend
ΤCRγδ	FITC	B1	Ms IgG ₁ , к	BD
TCRVα7.2	APC	3C10	Ms IgG ₁ , к	Biolegend

Supplementary Figure 1. Distribution of GATA2 mutation

Summary of distribution of *GATA2* mutations in the cohort. ZF1 and ZF2 indicate the two zinc finger regions. Superscript numerals indicate the more than one pedigree with the same mutation.

Supplementary Figure 2. Effect of GATA2 knock-down on human progenitors.

Short hairpin RNA (shRNA) lentiviral vectors were constructed to knock-down *GATA2* to 50% or less in the HSC compartment in an attempt to recapitulate the effect of a *GATA2* heterozygous phenotype. The best of six shRNAs tested was used for subsequent experiments:

Forward:CCGGTGTGCAAATTGTCAGACGACAACTCGAGTTGTCGTCTGACAATTTG CACTTTTTG

Reverse:AATTCAAAAAGTGCAAATTGTCAGACGACAACTCGAGTTGTCGTCTGACA ATTTGCACA

Lineage-negative (Lin-) CD34+CD38- cord blood (CB) cells from 2 independent pools of CB were transduced with lentiviral constructs expressing GATA2-short hairpin RNA (shRNA) or LacZ-shRNA . After 48h, Lin-CD34+CD38-CD90+ GFP+ or BFP+ hematopoietic stem cells (HSC) were sorted and equal number of GATA2-shRNA induced and control cells transplanted into the right femur of mice irradiated with 225 rads 24 h beforehand. Cells were harvested after 8 weeks and analyzed for surface markers by flow cytometry. The development of CD19+ B cells, CD33+ myeloid cells, common myeloid progenitors (CD34+CD38+CD45RA-CD135+) and MLP (CD34+CD38-CD45RA+) to compare the competitive performance of HSC transduced by *GATA2* shRNA compared with control LacZ shRNA.

A: Efficiency of *GATA2* knock-down in primary lineage-negative cord blood cells. RNA was prepared from sorted GFP+ progenitor cells and relative GATA2 expression measured by RT-PCR. LacZ: LacZ control; G2shRNA: *GATA2* short hairpin RNA. B: The frequency of progenitors in competitive repopulation assays with *GATA2* short hairpin RNA transduced human cord blood HSC compared with control LacZ transduced HSC after 8 weeks xenografting in NSG mice. Left: myeloid progenitors (CD34+CD38+CD135+CD45RA-) and right: multilymphoid progenitors (CD34+CD38+CD135+CD45RA-) and right: multilymphoid progenitors (CD34+CD38-CD45RA+). LG: LacZ-shRNA GFP; LB: LacZ-shRNA BFP; G2G: GATA2-shRNA GFP. C: Representative flow cytometry plots of xenografts in NSG mice bearing LacZ-shRNA BFP or GATA2-shRNA GFP transfected HSC showing CD19+ B cells, CD33+ myeloid cells and the primitive CD34+CD38- progenitor compartment. There was no significant effect of *GATA2* knock-down in the generation of hematopoietic progenitors or balance of lymphoid/myeloid output.

Supplementary Figure 2

Supplementary Figure 3. Other biomarkers of GATA2 mutation

Comparison of stromal growth factors EGF and FGF-2 and serum GM-CSF and CD40L in controls, *GATA2* mutation and MDS. Data shown were derived independently of the multiplex screening assay, using a dedicated ELISA for each marker and a larger collection of serum from *GATA2* patients * P<0.05; ** P<0.01.

