Takáčet al., 2013, SUPPLEMENTAL DATA:

Protein extraction for two-dimensional electrophoresis and 2-D LC MS/MS

The homogenate was resuspended in 0.5 ml of extraction buffer (0.15 M Tris-HCl pH 8.8; 0.4 M EDTA; 0.2% (v/v) 2-mercaptoethanol; 0.9 M sucrose; 25 mM-KCl), thoroughly vortexed and supplemented with 0.5 ml Tris-buffered phenol (pH 8.8). After 30 min of incubation at 4°C, the extract was centrifuged at 8,000g at 4°C for 5 min. The upper phenol phase was collected, and the residual proteins from aqueous phase were re-extracted using extraction buffer and Tris-buffered phenol. Following centrifugation, the phenol phases were combined, and additional extraction buffer was added to maximize the removal of the nonprotein compounds. Next, the mixture was intensely mixed, centrifuged, and the phenol phase was collected for protein precipitation. The proteins were precipitated by addition of 5 volumes of 0.1 M ammonium acetate (in 100% methanol) to the phenol phase, and leaving at -20°C overnight. Subsequently, the precipitate was centrifuged at 16,000g at 4°C for 20 min. The supernatant was discarded and the pellet was washed twice with 0.1 M ammonium acetate (in 100% methanol), twice in 80% acetone, and twice in 75% ethanol, consequently. Between washing steps, pellet was thoroughly resuspended and incubated at -20°C for 15 min followed by centrifugation at 12,000g at 4°C for 10 min. Finally, the pellet was air-dried for 10 min.

2-D electrophoresis

Proteins (50 μ g) were focused on 7 cm long IPG strips (pH range 5-8) using Protean IEF Cell (Bio-Rad) with the following conditions: 150 V for 150 VH, 500 V for 500 VH and 4000 V for 15000 VH including initial active rehydration for 12 hours at 50 V. Next, the protein strips were equilibrated in 1% (w/v) dithiothreitol (DTT) containing equilibration solution (6 M urea; 30% (v/v) glycerin; 70 mM sodium dodecyl sulfate; 0.006% (w/v) bromphenol blue) for

15 min, and subsequently 15 min in equilibration solution containing 2.5% (w/v) iodacetamide. The strips were applied onto the SDS-gel and sealed with agarose solution (0.5% (w/v) agarose; 0.002% bromphenol blue in 1x SDS running buffer), and separated on 10% SDS-PAGE gels at 80 V.

LCQ DecaXp Plus massspectrometer set up

Globalsetting: Dynamic exclusion "on", repeat count: 2, repeat duration: 0.5 minutes, exclusion duration: 2.00 minutes; exclusion mass width low = 1.00, high = 2.50; Segment setting: Reject masses: 317.0 and 444.0, Normalized collision energy: 35%, Minimum MS signal: 10×10^4 , Minimum MS/MS: 1×10^4 , Isolation width (m/z): 3.0. Details of instrument setting: Spray voltage 2.7 kV, Capillary temperature 170° C, AGC (automaticgaincontrol) "on" with MSn Target 4 x 10^4 . Collected spectra (RAW files) were processed by Bioworks 3.1 SR1 (ThermoFinnigan, San Jose; CA) software. The subprogram TurboSequest carried out the protein identification by matching the experimentaldata (masses of parent and fragmented ions/peptides) to those in the database. Search parameters a sfollows were employed:

DTA Search: Trypsin with two internal cleavage sites, Precursor (Δ) Mass: 1.40 amu, GroupScan: 7, Minimum Group Count: 1, Minimum Ion Count: 15, Charge State: Auto, MSn level: Auto, Peptide: 2.50, Fragment Ions: 0.80, IonSeries: B and Y;

Modifications: C=57.05 (differential) for carbamidomethylation of cysteins by iodoacetamide, M= 32.0 (differential) for oxidation of methionines; Charge State Analysis: "off".

Figure SD 1. FDR vs. peptide scores (A), and protein probability vs. sensitivity & error (B). Data are shown for total set of identified proteins, as per ProteoIQ software (Premier Biosoft) analysis.**Supplemental Table 1.**The classification of differentially regulated proteins in Arabidopsis roots after LY294002 treatment according KEGG pathways (output of STRING web based aplication http://string-db.org)

GO_id	Term	NumberOfGenes	p-value	p-value_fdr	p-value_bonferroni
ath00290	Valine, leucine and isoleucine biosynthesis	8	1.01E-8	1.13E-6	1.13E-6
ath00710	Carbon fixation in photosynthetic organisms	7	5.61E-5	3.14E-3	6.29E-3
ath00620	Pyruvate metabolism	6	3.4E-4	1.27E-2	3.8E-2
ath00660	C5-Branched dibasic acid metabolism	2	6.98E-4	1.95E-2	7.82E-2
ath00250	Alanine, aspartate and glutamate metabolism	4	3.05E-3	6.83E-2	3.42E-1
ath00330	Arginine and proline metabolism	4	6.87E-3	1.28E-1	7.69E-1
ath00010	Glycolysis / Gluconeogenesis	5	9.69E-3	1.37E-1	1.00E+00
ath00950	Isoquinoline alkaloid biosynthesis	2	9.77E-3	1.37E-1	1.00E+00
ath00020	Citrate cycle (TCA cycle)	4	1.16E-2	1.44E-1	1.00E+00
ath00360	Phenylalanine metabolism	5	1.34E-2	1.5E-1	1.00E+00
ath00270	Cysteine and methionine metabolism	4	1.71E-2	1.74E-1	1.00E+00
ath00051	Fructose and mannose metabolism	3	2.46E-2	2.29E-1	1,00E+00
ath00966	Glucosinolate biosynthesis	2	3.4E-2	2.93E-1	1.00E+00
ath04145	Phagosome	3	3.9E-2	3.06E-1	1.00E+00
ath00650	Butanoate metabolism	2	4.09E-2	3.06E-1	1.00E+00
ath00960	Tropane, piperidine and pyridine alkaloid biosynthesis	2	4.46E-2	3.12E-1	1,00E+00
ath00350	Tyrosine metabolism	2	5.23E-2	3.44E-1	1.00E+00
ath00630	Glyoxylate and dicarboxylate metabolism	2	6.46E-2	4.02E-1	1.00E+00
ath00562	Inositol phosphate metabolism	2	1.11E-1	6.56E-1	1.00E+00
ath00910	Nitrogen metabolism	2	1.27E-1	7.09E-1	1,00E+00
ath00400	Phenylalanine, tyrosine and tryptophan biosynthesis	2	1.43E-1	7.5E-1	1.00E+00
ath03010	Ribosome	6	1.47E-1	7.5E-1	1.00E+00
ath04146	Peroxisome	2	1.59E-1	7.73E-1	1.00E+00

ath00190	Oxidative phosphorylation	4	1.82E-1	8.48E-1	1,00E+00
ath00940	Phenylpropanoid biosynthesis	3	2.29E-1	1.00E+00	1.00E+00
ath00260	Glycine, serine and threonine metabolism	1	1.00E+00	1,00E+00	1.00E+00
ath00945	Stilbenoid, diarylheptanoid and gingerol biosynthesis	1	1.00E+00	1,00E+00	1.00E+00
ath00030	Pentose phosphate pathway	1	1,00E+00	1.00E+00	1,00E+00
ath00941	Flavonoid biosynthesis	1	1.00E+00	1,00E+00	1.00E+00
ath00240	Pyrimidine metabolism	1	1.00E+00	1.00E+00	1.00E+00
ath00590	Arachidonic acid metabolism	1	1.00E+00	1.00E+00	1.00E+00
ath00480	Glutathione metabolism	1	1.00E+00	1.00E+00	1.00E+00
ath03060	Protein export	1	1.00E+00	1.00E+00	1.00E+00
ath00380	Tryptophan metabolism	1	1.00E+00	1.00E+00	1.00E+00
ath04070	Phosphatidylinositol signaling system	1	1.00E+00	1.00E+00	1.00E+00
ath00300	Lysine biosynthesis	1	1.00E+00	1.00E+00	1.00E+00
ath04140	Regulation of autophagy	1	1.00E+00	1.00E+00	1.00E+00
ath00450	Selenoamino acid metabolism	1	1.00E+00	1.00E+00	1.00E+00
ath03050	Proteasome	1	1.00E+00	1.00E+00	1.00E+00

Supplemental Table 2. The comparison of GO anotations (as asigned by Blast2GO aplication) of differentially regulated proteins af	ìter
LY294002 and wortmannin treatment in Arabidopsis roots in terms of biological process.	

			wortmannin		LY294002	
LevelGO	Term(Acc)	Term(Name)	#Seq	Score	#Seq	Score
1	GO:0008150	biological_process	69	111.16	53	77.47
2	GO:0009987	cellular process	51	50.32	30	29.8
2	GO:0050896	response to stimulus	36	39.6	24	25.8
2	GO:0008152	metabolic process	51	37.33	31	21.25
2	GO:0032501	multicellular organismal process	13	7.8	9	5.4
2	GO:0032502	developmental process	13	7.8	9	5.4
2	GO:0071840	cellular component organization or biogenesis	11	6.6	6	3.6
2	GO:0023052	signaling	5	3	-	-
2	GO:0051179	localization	6	2.16	4	1.44
2	GO:0065007	biological regulation	5	1.08		
3	GO:0006950	response to stress	30	30	23	23
3	GO:0009628	response to abiotic stimulus	27	27	17	17
3	GO:0043170	macromolecule metabolic process	-	-	16	9.36
3	GO:0044238	primary metabolic process	-	-	16	9.22
3	GO:0007275	multicellular organismal development	13	13	9	9
3	GO:0016043	cellular component organization	11	11	6	6
3	GO:0043170	macromolecule metabolic process	17	9.96	-	-
3	GO:0044238	primary metabolic process	17	9.82	-	-
3	GO:0009607	response to biotic stimulus	6	6	3	3
3	GO:0051234	establishment of localization	6	3.6	4	2.4
3	GO:0007154	cell communication	5	3	-	-
3	GO:0051716	cellular response to stimulus	5	3	-	-
3	GO:0044237	cellular metabolic process	5	2.53	3	1.33
3	GO:0050789	regulation of biological process	5	1.8		
3	GO:0006807	nitrogen compound metabolic process	1	0.13	1	0.13
4	GO:0019538	protein metabolic process	16	16	15	15
4	GO:0006810	transport	6	6	4	4
4	GO:0007165	signal transduction	5	5	-	-

4	GO:0006091	generation of precursor metabolites and energy	4	4	2	2
4	GO:0050794	regulation of cellular process	5	3	-	-
4	GO:0044260	cellular macromolecule metabolic process	1	0.6	1	0.6
4	GO:0006139	nucleobase-containing compound metabolic process	1	0.36	1	0.36
4	GO:0034641	cellular nitrogen compound metabolic process	1	0.22	1	0.22
5	GO:0090304	nucleic acid metabolic process	1	0.6	1	0.6
6	GO:0006259	DNA metabolic process	1	1	-	-
6	GO:0006260	RNA metabolic process	-	-	1	1

Supplemental Table 3. The comparison of GO anotations (as asigned by Blast2GO aplication) of differentially regulated proteins after LY294002 and wortmannin treatment in *Arabidopsis* roots.in terms of molecular function.

			wortmannin		LY294002	
LevelGO	Term(Acc)	Term(Name)	#Seq	Score	#Seq	Score
1	GO:0003674	molecular_function	69	49.7	57	45.72
2	GO:0003824	catalytic activity	48	36.26	36	29.03
2	GO:0005488	binding	37	31.24	34	30.84
2	GO:0005198	structural molecule activity	6	6	6	6
2	GO:0005215	transporter activity	6	6	2	2
3	GO:0005515	protein binding	15	15	18	18
3	GO:0016740	transferase activity	17	14.44	7	5.72
3	GO:0016787	hydrolase activity	11	11	11	11
3	GO:0036094	small molecule binding	7	4.2	5	3
3	GO:0003676	nucleic acid binding	2	1.2	6	5.4
4	GO:0000166	nucleotide binding	7	7	5	5
		transferase activity, transferring phosphorus-containing				
4	GO:0016772	groups	4	2.4	2	1.2
4	GO:0003677	DNA binding	1	1	3	3
4	GO:0003723	RNA binding	1	1	1	1
5	GO:0016301	kinase activity	4	4	2	2