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ABSTRACT Mossbauer spectra of 57Fe in proteins fluctu-
ating between different conformational substates are evaluat-
ed by means of a two-sided Padee approximation, which can
reproduce the low and high frequency dependence of the spec-
tral line shape I(Z) to any desired accuracy. The dynamics of
the atom is modeled as Brownian motion in a multiminimum
potential and described by a Fokker-Planck equation. The
Mossbauer spectrum is expanded in terms of Lorentzian con-
tributions, which can be attributed separately to fluctuations
between conformational substates (potential minima) and to
relaxation within the substates. In the limit of closely spaced
substates, the Mossbauer spectra can be accounted for by an
effective diffusion coefficient with Arrhenius-type tempera-
ture dependence. We demonstrate that the observed tempera-
ture dependence of Mossbauer spectra of proteins [Parak, F.,
Knapp, E. W. & Kucheida, D. (1982) J. Mol. Biol. 161, 177-
194] can be accounted for by stochastic motion in a multimini-
mum potential.

In recent years experimental and theoretical investigations
have focussed on the dynamic aspect of protein structure
and function. High resolution x-ray scattering data revealed
that proteins exhibit innate temperature-dependent confor-
mational distributions (1). These distributions may be related
to the functional states of proteins as indicated by rate con-
stant measurements (2). The question arises which dynamic
processes produce the observed conformational distribu-
tions. This question cannot be answered by x-ray scattering,
which reveals only the static distribution of atoms. A valu-
able extension of these observations is provided by Moss-
bauer spectroscopy, which probes the motion of an excited
atomic nucleus during the lifetime of its excitation.
The information entailed in a Mossbauer spectrum can

best be characterized in the case of 57Fe, the most common
Mossbauer atom. Observation of this atom as a constituent
of heme groups and iron-sulfur redox centers in proteins is of
obvious interest. Mossbauer spectral data over a broad tem-
perature range have been obtained for a number of proteins,
including myoglobin (3-7), hemoglobin (8), cytochrome (9),
and ferritin (10).

In an analysis of Mossbauer data, the observed spectral
line shape function I(w) is usually expanded in terms of Lor-
entzian lines

I(w) = (o.Or/2)Re{E fn/(Fn + i)4. [1]

The quantities appearing in this expansion will be discussed
further below. The quality of the observations usually justi-
fies only a fit of two or three Lorentzian lines. Furthermore,
the accuracy of the data is significant only in the central, low

frequency part of I(w) and covers solely frequencies between
1 and -100 times the natural linewidth r. The linewidth of
57Fe is r = 7 x 106 s-'-i.e., the Mossbauer spectrum
probes the motion of this atom for times between about 1 ns
and 100 ns. On this time scale, the motion of a single atom in
a protein is actually part of a concerted motion involving a
larger protein fragment and, therefore, a large effective
mass. One can safely consider this motion as classical, influ-
enced by thermal noise and friction. In fact, one can expect
that the motion is in the strong friction limit. By assuming
the magnitude of the thermal noise to increase linearly with
temperature (11), the fluctuation-dissipation theorem dic-
tates a diffusion coefficient with a linear temperature depen-
dence D = DOT. Mossbauer spectroscopy actually observes
only the Fourier component of the spatial motion that cor-
responds to the wavelength X = 0.86 A of the y-quantum
emitted by 57Fe. Molecular dynamics simulations (12) show
that relaxation on this length scale occurs within less than 10
ps. Accordingly, the effective diffusion coefficient D of the
57Fe atom should assume values small compared to FX2, and
only the slowest Brownian processes-e.g., barrier cross-
ings-should contribute to the observed Mossbauer spec-
trum.
The discussion above suggests that a proper theory of

Mossbauer line shapes must reproduce well the low-frequen-
cy part of I(w). In addition, one wishes to describe correctly
the total intensity fdwI(w). We have introduced an algorithm
(13) involving a generalization of the first-passage-time ap-
proximation (14, 15), which can reproduce the total intensity
and the low-frequency behavior of 1(w) to any desired accu-
racy. In ref. 13 the algorithm had been tested for Mossbauer
spectra of Brownian particles in a harmonic potential and
applied to a double-minimum potential, a case for which re-
sults were not obtainable previously. In this paper we will
extend the application to realistic models of protein dynam-
ics.
The temperature dependence of Mossbauer-spectra ob-

served for proteins reveal with increasing temperature a
sharp decrease of the Lamb-Mossbauer factor-i.e., the
amplitude of the resonant line-and an accompanying broad
line with increasing linewidth. It is, of course, most desirable
to understand this observation in terms of the actual protein
dynamics. According to the investigations of Frauenfelder et
al. (1, 2), the dynamics of proteins involve transitions be-
tween many conformational substates. The most simple rep-
resentation of these substates is furnished by a one-dimen-
sional multiminimum potential. Hence, we will apply in this
paper the algorithm of ref. 13 to Brownian motion in such
potentials and study the temperature dependence of the re-
sulting Mossbauer spectra. We also will consider the case of
closely spaced substates and show that, in this limit, the sub-
states may be accounted for by an effective diffusion coeffi-
cient with an Arrhenius-type temperature dependence. Fi-
nally, we will demonstrate that the observed temperature de-
pendence of Mossbauer spectra (5, 16) can be accounted for
by stochastic motion in a multiminimum potential.
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Method

We briefly summarize the algorithm introduced in ref. 13.
The distribution function p(x, t) of a Brownian particle with
diffusion coefficient D = DOT in a potential U(x) is described
by the Fokker-Planck equation,

ap(x, t) = L(x)p(x, t), [2]

L(x) = axD[ax + f3U'(x)], [3]

together with appropriate boundary conditions that assure
particle-number conservation. The solution of Eq. 2 for long
times develops into the Boltzmann distribution po(x) -

exp[-,/U(x)]. The Mossbauer lineshape function I(w) can be
expressed in terms of L(x) by means of the following equa-
tions:

I(w) = (ooF/2)Re{fc(w)}, [4]

o,(w) = fdx exp(ikx)[iw - L(x) + F/2]-1exp(-ikx)pO(x). [5]

Spectral expansion of the structure function o-(cw) yields

ao(Z) = >E1 In(k)I2[it)- A,, + F/2]f' [6]
n=O

Here A,, - 0 denotes the eigenvalues of L(x) assumed to be
discrete, and 4j(k) denotes the corresponding Fourier-trans-
formed nonorthogonal eigenfunctions with normalization
ndx0(x)po (x) = 1. However, the spectral expansion (Eq.
6) does not provide a procedure for an evaluation of Moss-
bauer spectra except for very simple potentials-e.g., for a
square well and a harmonic (13, 17) potential.
Observed lineshape functions are usually fitted by means

of Eq. 1 for a few Lorentzian lines. Accordingly, we also
seek for the theoretical description of the lineshape an ap-
proximate structure function s(w) oa(w) in terms ofN Lor-
entzian contributions,

N-1

s(w)) = >A fn/(iW + ]Fn). [7]
n=O

This approximate s(w) can be chosen to reproduce the Nh
leading terms of the high-frequency expansion of a(w),

o(wl) ~ . /EIlun . ) [8]
iW n=O \liW

and the N, leading terms of the low-frequency expansion,

ar(co) - I 9s-(n + 1)(-t) 19]a 0 n=O

where 2N = Nh + N,. s(w) as defined in Eq. 7 can be viewed
as the partial-fraction expansion of a [N - 1, N] Padee ap-
proximant. Conditions 8 and 9 characterize then the algo-
rithm presented here as a two-sided Padee approximation
(18, 19). The appropriate amplitudes f, and linewidths rn in
Eq. 7 must obey the conditions

N-1

Z fnrnm =F ns m =N, -N + 1, ..., Nh- 1. [10]
n=O

This shows that for an N Lorentzian description, 2N condi-
tions (Eq. 10) have to be met. The proposed algorithm de-
pends on a knowledge of the expansion coefficients 4,u in
Eqs. 8 and 9-the so-called generalized moments:

gn = (-l)' fdx exp(ikx)[L(x) - F/2]nexp(-ikx)po(x). [11]

The evaluation of g,, for positive n is straightforward. For
negative n one can use a discretization scheme for the differ-
ential operator, resulting in a tridiagonal matrix for L and,
thereby, evaluate the u,, numerically (see ref. 13). Hence,
the g,, can be constructed to include any desired feature of
model potential surfaces. If the spectral expansion (Eq. 6) is
known, the moments can be evaluated by means of

ln==1 (r/2 - km)nlIm(k)12.
m=O

[12]

In this case the algorithm gives a good description of the
spectrum in terms of a few lines, whereas a truncation of Eq.
6 after the first few terms may result in a bad approximation.
We have demonstrated (13) that, in case of a double mini-

mum potential, a three-Lorentzian description with Nh = 1
and N, = 5 yields an accurate lineshape function. This de-
scription reproduces only the leading term of the high-fre-
quency expansion (Eq. 8) that carries the total intensity of
I(w). The results showed that further terms in Eq. 8 can be
neglected. For Brownian dynamics in potentials with more
than two minima, an accurate description of the lineshape
function should involve more Lorentzian lines. Since for N
> 3 the algebraic solution of Eqs. 10 is cumbersome, we de-
termined f, and F,, through an equivalent matrix representa-
tion (20).t

Results for model potentials

We assume a situation where conformational substates have
identical free energies. This situation is modeled by the po-
tential

U(x) = b exp[-sin2(nwx/2xo)], [13]
where b(e - 1)/e is the height of the barriers between adja-
cent substates. The stochastic motion of the 57Fe Mossbauer
atom governed by this potential will be confined to the inter-
val 0 - x - 2xo. The number of substates is then n.
As an illustration for the typical temperature dependence

of the Mossbauer spectrum we consider the case n = 4. Fig.
1 presents the linewidths and amplitudes resulting from an
application of the algorithm according to Eqs. 8-12 with Nh
= 1 and N, = 9-i.e., involving five Lorentzian contribu-
tions. Each Lorentzian line describes a certain relaxation
process. The linewidths in Fig. 1 Upper show that the relax-
ation processes can be grouped into four slow processes (r0-
F3) and one fast process (F4).
The fast process can be attributed to relaxation within the

individual wells. This supposition is proved by the appear-
ance of the same linewidth value for a single-well potential.
In fact, one can provide approximations for the linewidth
and amplitude of the fast relaxation process solely in terms
of single-well properties (unpublished results):

as/VS =I x[DpO,(x)]1j dy po (y)[exp(iky) -Os(k)]2,£LX[L/Po~X)IIJ

as = 1 - I(exp(ikx))s12. [14]

Here a, denotes the approximate amplitude; Vs, the approxi-
mate linewidth; po(x), the Boltzmann distribution inside a
single wall; and po(k), its Fourier transform. ( ), denotes the
thermal average over a single well, and a and b stand for
integration limits around a well. The a, and ys determined
from Eqs. 14 are in very close numerical agreement with f4
and r4 in Fig. 1. We like to point out, however, that the
Fokker-Planck equation may be inadequate to describe mo-

tThere is a typographical error in ref. 20, equation 20, where a
should be replaced by a'.
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where the n x n matrix R is

-1 1 1

1-2 1
0 1-2

R=1
2r

-2 1

1 -1

and r is the first passage time between wells (15),

1r = adx[Dpos(x)]-Il dy po(y)12.

'2

3
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FIG. 1. Linewidths (Upper) and amplitudes (Lower) for a 57Fe
Brownian atom moving in the potential (Eq. 13) with n = 4 in
the interval 0 x S 2xo [xN = 1.2 A, D = 108 (kBT/b) A2 s-] result-
ing from a five Lorentzian representation reproducing the moments
PO to u-9; the amplitude fO(2) (Lower) has been obtained from a
two-Lorentzian representation reproducing AO to A-3.

tion in narrow potential wells with ensuing strong forces.
This limitation will not affect the following conclusions ex-
cept that the intrawell relaxation frequencies may assume
different values than predicted by Eq. 14. Since these fre-
quencies are likely to be outside the accessible frequency
window of Mossbauer spectra, the resulting error should be
of no consequence.
The slow relaxation processes can be attributed to barrier

crossing between adjacent substates. To demonstrate this in-
terpretation, we note that a separation of time scales of fast
intrawell and slow interwell processes is tantamount to a

fractorization of the distribution function
n

p(x, t) = E Pi(t)ps(x - Xi, t), [15]

where Ps(y, t) describes motion in a single well assumed
identical for all wells, pi(t) describes the distribution among
wells, xi denotes the position of the well minima, and the
index i labels the different wells. The factor ps(y, t) accounts
for the fast relaxation processes discussed above. The distri-
bution pi(t) results from the rate equation

atPi = Rijpj,

The amplitudes and linewidths connected with the slow pro-

cesses can then be determined by means of the n eigenvalues
Kj and n eigenvectors vj of R. where we use the normalization

V2p1 =1; Pi is the equilibrium distribution among the
wells. With gj = I. lexp(ikxl)vj,12, one derives for the
linewidths and amplitudes

yj = r/2 - Kj
a1 = I(exp(ikx))s|2g

[19]

These quantities coincide numerically with the Fj and fj forj
= 0, 1, 2, and 3 in Fig. 1, thereby proving our interpretation
of the slow relaxation processes.
The relaxation matrix R has always one vanishing eigen-

value Ko = 0. One should expect, therefore, that the natural
line would always contribute to the Mossbauer spectrum
with the amplitude ao. However, for low temperatures at
which the rate constant r-1 is significantly smaller than F/2,
the magnitudes of the eigenvalues of R are all less than F/2,
and the slow relaxation processes cannot be resolved from
the natural line. In this temperature range, the effective am-

plitude of the natural line, the Lamb-Mossbauer factor, is fo
+ fl + f2 + f3 - ao + a, + a2 + a3 or, in general, is Xj
I(exp(ikx))812gj. This quantity is equal to I(exp(ikx)),I2, an
identity which is demonstrated in Fig. 1 Lower. At higher
temperatures, when the rate constant rT1 sufficiently ex-

ceeds F/2, the three lines with Kj < 0 will be resolved from
the natural line, and the Lamb-Mossbauer factor reduces to
the Debye-Waller factor fo = ao I(exp(ikx))12 as shown in
Fig. 1 Lower. The temperature at which we declare the lines
0, 1, 2, and 3 resolved in Fig. 1 Lower is chosen rather arbi-
trarily. To conform to an experimental situation where the
resolution is more gradual, we present in Fig. 1 Lower also
the Lamb-Mossbauer factor f0(2) resulting from a two-line-
fit algorithm using Nh = 1 and N1 = 3. f0(2) is shown to
approach I(exp(ikx))812 at low temperatures, and the Debye-
Waller factor I(exp(ikx))12 at higher temperatures.
Our description generalizes in an obvious way to an arbi-

trary number n of substates. In this case one expects n slow
interwell relaxation processes and faster intrawell relax-
ation. Hence, a minimal description should include n + 1
lines. However, an experimental resolution of all slow pro-
cesses may be impossible, and one may want to resort to a

theoretical description with a smaller number of lines.
In the limit of large numbers of closely spaced substates,

one can make a coarse-grained approximation-i.e., elimi-
nate the fast intrawell relaxation and account for the slow
interwell relaxation processes by an effective diffusion coef-
ficient. As is well known, Brownian motion in an envelope
potential with a superimposed periodic potential, if viewed
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on a length scale greater than the unit-cell length, can be
described by the effective diffusion coefficient (21),

Deff = D/(exp(f3U))p (exp(-13U))p. [20]

Here, ( )p denotes the arithmetic average over one period. In
the case of sufficiently high barriers between substates, as
considered here, the diffusion coefficient can be approxi-
mated well by an Arrhenius temperature dependence Deff =
D-exp(-f3E) for some activation energy E. For a demonstra-
tion of this coarse-grained approximation, we considered the
periodic potential (Eq. 13) superimposed over a square well
and over a harmonic potential as envelopes.

Fig. 2 compares the two-line-fit Lamb-Mossbauer-factor
fo(2) evaluated for the complete potential and for the square-
well envelope potential with effective diffusion coefficient.
The results demonstrate that for an increasing number of
substates n, the two descriptions converge. Fig. 3 compares
the two descriptions for a harmonic-oscillator envelope po-
tential and the periodic potential (Eq. 13) superimposed. The
Lamb-Mossbauer factors in Fig. 3 Upper agree closely ex-
cept for the trivial difficulty that the coarse-grained descrip-
tions yield two contributions to the natural line at low tem-
peratures, which cannot be resolved. The two contributions
add to 1-i.e., the total amplitude of the natural lines agrees
with the result for the complete potential. However, setting a
resolution limit on the linewidths would be arbitrary; there-
fore, we have terminated the coarse-grained description be-
low kBT/b = 0.08. Fig. 3 Lower compares the linewidths. At
higher temperatures the linewidths obtained by the two de-
scriptions coincide. At lower temperatures the complete po-
tential description yields the natural linewidth r/2 and a larg-
er linewidth corresponding to intrawell relaxation. However,
the latter carries only a very small amplitude. The coarse-
grained description at low temperatures develops two
linewidths close to F/2. Altogether this shows that the two
descriptions yield very similar Mossbauer spectra except for
small deviations at intermediate temperatures.

Comparison with experintental data

Fig. 4 shows a fit to the experimental data fo, f1, and rF of
refs. 5 and 16, modeling the stochastic dynamics of 57Fe by a
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FIG. 2. Lamb-Mossbauer factors determined from a two-Lor-

entzian representation reproducing At0to /A3. Solid lines result from
the complete potential (Eq. 13) in the square well 0 < x S 2±o [x0 =

1.5 A, D = 108 (kETlb) 2.sl]; the density of substates per A
is indicated. The dashed line results from a coarse-grained descrip-
tion (see text) with D = D exp(-E/kBT) (D = 1.513 x 16 A2s-1, E
= 0.632-b); these constants were obtained from a numerical fit to
Eq. 20. The dotted line represents the Debye-Waller factor for the
square wdll.
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FIG. 3. Lamb-Mossbauer factor (Upper) and linewidths (Lower)

determined from a two-Lorentzian representation reproducing /io to
/A-3 for a "7Fe Brownian atom moving in a harmonic envelope poten-
tial U(x) = b(x/xo)2 with the potential (Eq. 13) superimposed (xO = 1
A, n = 6). The solid line results from the complete potential andD as
in Fig. 2. The dashed line results from the coarse-grained descrip-
tion, TD and E as in Fig. 2. The dotted line (Upper) represents the
Debye-Waller factor I(exp(ikx))12 of the harmonic envelope poteh-
tial.

coarse-grained description of diffusion in a harmonic enve-
lope potential accounting for conformational stubstates by a
diffusion coefficient with Arrhenius-type temperature de-
pendence D = D exp(-E/kBT). In order to accoUnt accu-
rately for the data, it has proven necessary to introduce at
least one additional substate ss* with the following dyhami-
cal property: the rate constants to and from ss* are chosen
such that the equilibrium probability to be in the substate is
given by

Pss* = lSs*exp(AG/kBT)/[lh + lss*exp(AG/kj1T)], [21]

where 1h = ((x2))112 is the mean width of the distribution in
the harmonic envelope potential and is in the range 0.2-0.3 A
within the temperature range considered; 155* << k-' is the
width of the substate, and AG = AE - AS * T denotes the free
energy change connected with the transition from substate to
envelope potential. In our calculation the diffusion space is
"discretized," and ss* is represented by a single point at the
envelope potential minimum; rate constants to and from ss*
are D/82 and (D/82) exp(-AG/kBT), respectively, where 8
is the discretization length. From a comparison of predic-
tions and data, we obtained E = 0.16 eV; for the entropy
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FIG. 4. Comparison of predicted and observed (5, 16) Moss-
bauer line shapes at different temperatures. fo denotes the Lamb-
Mossbauer factor (z, ); f1 denotes the amplitude (+, ---) and F,
the width (A, -) of the broad line. As done in ref. 16, we subtracted
the amplitude for a superimposed harmonic mode. The curves result
from a three-Lorentzian representation of the spectrum, reproduc-
ing ALO to /j-5 for a 57Fe Brownian atom in a harmonic potential U(x)
= (1/2)(x/xo)2 and an additional substate at the potential minimum
(see text) with AE/kB = 1900 K and I.55exp(-AS/kB) = 1.61 x 1O-
A. The shape of the harmonic potential has been chosen in accord-
ance with the high temperature x-ray data for (x2) in ref. 1 by setting
ksAo = 3.6 x 1o- A2/K. The diffusion coefficient assumed is D =
TDexp(-E/kBT) withD = 8.25 x 10' A2/s and E/kB = 1100 K. The
third line in the theoretical spectrum was assumed to represent the
background and has been omitted.

contribution we found 1SS*exp(-AS/kBT) = 1.61 x 10-4 A.
This value, in comparison with 1h, implies that ss* assumes
only a very small volume of phase space. This implication
has been suggested previously in refs. 16 and 22. The small
phase space volume of ss* may contribute to the observed
flexibility of proteins, since the protein, once it has fluctuat-
ed out of the narrow substate ss*, needs a long time to find
and fall back into this substate.
The small magnitude of the phase space volume of ss* can

be readily understood if one considers the fact that the sto-
chastic motion of 57Fe coupled to the many degrees of free-
dom of the protein is taking place in a space of high dimen-
sion N. The ratio r of the extension of ss* to the extension of
the thermal motion in any coordinate is certainly smaller
than one; the ratio of the volume of ss* to the volume of
thermal motion is rNLi.e., must be a small number for large
N. This feature of the substates may pose problems for the
determination of stable protein conformations by computer
simulation.

Fig. 4 demonstrates that the resulting predictions agree
well with the observations. Inaccuracies are found only for
the amplitude f1 of the broadened line. The decrease of the
amplitude f1 at higher temperatures results from a shift of
the intensity to very broad lines, considered to represent the
background of the Mossbauer spectrum. The differentiation
between background and broad lines entails also a certain
degree of arbitrariness, which could explain the deviation of
predictions and data. The diffusion coefficient fitted to the
data has the value D = 8.25 x 108 A2/s, which is in the range
of values observed for the diffusion coefficients of lipid
probes in the liquid-crystalline phase of lipid membranes
(23). The activation energy for the diffusive motion is about
0.09 eV. In order to account for the Debye-Waller factor as
observed by x-ray scattering at very low temperatures (i.e.,
a nonvanishing (x2) value), one needs to include more than
one substate ss* or one needs to assume randomly posi-

tioned ss* substates in an ensemble of proteins (static disor-
der).

Outlook

We believe that our method for the evaluation of the
structure factor o-(c) provides a new basis for analyzing
Mossbauer spectra of proteins since it allows a model-inde-
pendent analysis-i.e., for arbitrary (one-dimensional) po-
tentials. We like to mention, however, that a unique, time-
invariant potential for the Mossbauer particle as used in this
paper may not represent fully the complex dynamics of a
protein atom. One may rather consider a distribution of po-
tential shapes (e.g., barrier heights as suggested in refs. 1
and 2) leading to a distribution of Arrhenius-type diffusion
coefficients and also study the effect of fluctuating poten-
tials and high-dimensional motions.
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