
A 2-category NRI and Net Benefit

For a single risk model, let B to be the benefit of identifying an event as high risk and C as the cost
of identifying a nonevent as high risk. Define the Net Benefit (3) of a risk model as

NB = B · P (event)P (high|event)− C · P (nonevent)P (high|nonevent). (1)

Now, suppose we have “old” and ”new” risk models, where the new model adds an additional marker
to the old model. It is natural to quantify the incremental value of the new marker as ∆NB, the
change in the Net Benefit by using the new marker for prediction. Let highn and higho denote that
a subject is in the high risk category according to the new and old risk models, respectively. Then

∆NB = B · P (event)[P (highn|event)− P (higho|event)]
−C · P (nonevent)[P (highn|nonevent)− P (higho|nonevent)]. (2)

For any individual, considering the old and new risk models there are four cases: the individual can
be classified low risk by both models, high risk by both models, low and then high, or high and then
low. Let ll, hh, lh, hl denote these four cases, where the first position is for the old risk model and the
second position is for the new risk model. Then we can write the first line of (2) as

B · P (event)[P (hh|event) + P (lh|event)− P (hh|event)− P (hl|event)]
= B · P (event)[P (lh|event)− P (hl|event)]
= B · P (event)[P (up|event)− P (down|event)] (3)

Similarly, the second line of (2) can be written

−C · P (nonevent)[P (up|nonevent)− P (down|nonevent)]. (4)

Therefore,

∆NB = B · P (event)[P (up|event)− P (down|event)]
−C · P (nonevent)[P (up|nonevent)− P (down|nonevent)]

= B · P (event)[
P (event|up)P (up)

P (event)
− P (event|down)P (down)

P (event)
]

−C · P (nonevent)[
P (nonevent|up)P (up)

P (nonevent)
− P (nonevent|down)P (down)

P (nonevent)
]

= B[P (event|up)P (up)− P (event|down)P (down)]

−C[P (nonevent|up)P (up)− P (nonevent|down)P (down)] (5)

Thus the wNRI is exactly the change in the Net Benefit for the old and new risk models.
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B 3-category NRI and Net Benefit

First, we generalize the definition of the 3-category NRI by considering the different ways individuals
can move between risk categories. Second, we define Net Benefit for a risk model when there are three
categories and derive ∆NB for the prediction increment. Last, we derive wNRI for the 3-category
NRI similar to the derivation of the wNRI for two-categories in Pencina et al. (4). We we show that
wNRI for three categories is the same as ∆NB, just as they are equal for two categories.

B.1 Generalized NRI for 3 categories

The definition of the NRI is

NRI = P (up|event)− P (down|event) + P (down|nonevent)− P (up|nonevent). (6)

For three categories, “up” can mean three things: move from low to medium, from medium to high,
or from low to high. Let l,m, and h represent the low, medium, and high categories. For 3 categories
we can write the NRI as

P (lm|event) + P (lh|event) + P (mh|event)
− P (ml|event)− P (hl|event)− P (hm|event)
+ P (ml|nonev) + P (hl|nonev) + P (hm|nonev)
− P (lm|nonev) + P (lh|nonev) + P (mh|nonev) (7)

= [P (event|lm)P (lm) + P (event|lh)P (lh) + P (event|mh)P (mh)]/P (event)

− [P (event|ml)P (ml) + P (event|hl)P (hl) + P (event|hm)P (hm)]/P (event)

+ [P (nonev|ml)P (ml) + P (nonev|hl)P (hl) + P (nonev|hm)P (hm)]/P (nonev)

− [P (nonev|lm)P (lm) + P (nonev|lh)P (lh) + P (nonev|mh)P (mh)]/P (nonev) (8)

This is a linear combination of P (event|∗)P (∗) and P (nonev|∗)P (∗) where ∗ represents movement
between risk categories.

B.2 Net Benefit and Three categories

Let Bh and Bm be the benefits for assigning a case to the high and medium risk categories, respectively.
Let Ch and Cm be the costs for assigning a control to the high and medium risk categories, respectively.
Then the Net Benefit or a risk model is

NB = BhP (h|event)P (event) +BmP (m|event)P (event)

− ChP (h|nonev)P (nonev)− CmP (m|nonev)P (nonev).

Use the subscript n and o for the new and old risk models, respectively. Then

∆NB = BhP (event)[P (hn|event)− P (ho|event)] (9)

+ BmP (event)[P (mn|event)− P (mo|event)] (10)

− ChP (nonev)[P (hn|nonev)− P (ho|nonev)] (11)

− CmP (nonev)[P (mn|nonev)− P (mo|nonev)] (12)
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Figure 1: Parameters for the derivation of wNRI for 3 risk categories.

Now, P (hn) = P (lh)+P (mh)+P (hh) and P (ho) = P (hl)+P (hm)+P (hh), so P (hn)−P (ho) =
P (lh) + P (mh)− P (hl)− P (hm). The same holds when conditioning on event status and the same
reasoning can be applied to P (mn) − P (mo). Applying this reasoning and Bayes’ rule gives the
following expression for the change in Net Benefit for using the new risk model instead of the old risk
model:

∆NB = Bh[P (event|lh)P (lh) + P (event|mh)P (mh)− P (event|hl)P (hl)− P (event|hm)P (hm)]

+ Bm[P (event|lm)P (lm) + P (event|hm)P (hm)− P (event|ml)P (ml)− P (event|mh)P (mh)]

− Ch[P (nonev|lh)P (lh) + P (nonev|mh)P (mh)− P (nonev|hl)P (hl)− P (nonev|hm)P (hm)]

− Cm[P (nonev|lm)P (lm) + P (nonev|hm)P (hm)− P (nonev|ml)P (ml)− P (nonev|mh)P (mh)].

B.3 wNRI derived for three categories

Following Pencina et al. (4), let slm be the savings for re-classifying an event from low risk to medium
risk and smh be the savings for re-classifying an event from medium risk to high risk. The savings
from re-classifying an event from low risk to high risk is then slm + smh. Similarly, for nonevents we
use parameters shm and sml. The total savings using the new risk model instead of the old risk model
is

nmh[P (event|mh)smh − P (nonev|mh)shm] +

nlm[P (event|lm)slm − P (nonev|lm)sml] +

nlh[P (event|lh)(smh + slm)− P (nonev|lh)(shm + sml)] +

nhm[−P (event|hm)smh + P (nonev|hm)shm] +

nml[−P (event|ml)slm + P (nonev|ml)sml] +

nhl[−P (event|hl)(smh + slm) + nlhP (nonev|lh)(shm + sml)]
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Divide through by n so that nmh/n = P (mh) and so forth. Then the expected savings for use of the
new risk model:

smh[P (event|mh)P (mh) + P (event|lh)P (lh)− P (event|hm)P (hm)− P (event|hl)P (hl)]

+ slm[P (event|lm)P (lm) + P (event|lh)P (lh)− P (event|ml)P (ml)− P (event|hl)P (hl)]

+ shm[P (nonev|hm)P (hm) + P (nonev|hl)P (hl)− P (nonev|mh)P (mh)− P (nonev|lh)P (lh)]

+ sml[P (nonev|ml)P (ml) + P (nonev|hl)P (hl)− P (nonev|lm)P (lm)− P (nonev|lh)P (lh)]

Compare this expected savings with expression (8) for the generalized definition of the 3-category
NRI. The expected savings can be viewed as a differently-weighted linear combination of P (event|∗)P (∗)
and P (nonev|∗)P (∗) where ∗ represents movement between risk categories.

Now return to the expression for ∆NB and reparametrize: replace Bm with slm and Bh with
slm + smh. Then from the first two lines we get:

slm[P (event|lh)P (lh) + P (event|lm)P (lm)− P (event|hl)P (hl)− P (event|ml)P (ml)]

+ smh[P (event|lh)P (lh) + P (event|mh)P (mh)− P (event|hl)P (hl)− P (event|hm)P (hm)]

= slmP (event)[P (lh|event) + P (lm|event)− P (hl|event)− P (ml|event)]
+ smhP (event)[P (lh|event) + P (mh|event)− P (hl|event)− P (hm|event)]

For the second two lines replace Cm with sml and Ch with shm + sml. The last two lines of ∆NB are:

sml[P (nonev|hl)P (hl) + P (nonev|ml)P (ml)− P (nonev|lh)P (lh)− P (nonev|lm)P (lm)]

+ shm[P (nonev|hl)P (hl) + P (nonev|hm)P (hm)− P (nonev|lh)P (lh)− P (nonev|mh)P (mh)]

= smlP (nonev)[P (hl|nonev) + P (ml|nonev)− P (lh|nonev)− P (ln|nonev)]
+ shmP (nonev)[P (ml|nonev) + P (mh|nonev)− P (lm|nonev) + P (hm|nonev)]
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C Simulation Study: Methods

Our primary simulation model is Binormal Equal Correlation data (5). Let ρ denote disease preva-
lence. The old marker X and the new marker Y are bivariate Normal in both events and nonevents.(
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A feature of this model is that the logistic model holds for both P (D = 1|X = x, Y = y) and
P (D = 1|X = x).

logitP (D = 1|X = x) = log
ρ

1− ρ
− µ2

x

2
+ µxx

logitP (D = 1|X = x, Y = y) =
µX − rµY

1− r2
x+

µY − rµX

1− r2
y + log

ρ

1− ρ
− µ2

X + µ2
Y − 2rµXµY

2(1− r2)
.

Therefore, when we apply logistic regression with data simulated from this model the risk model is
correctly specified.

Note that µX and µY summarize the marginal predictive abilities of X and Y respectively. r is the
conditional correlation between the markers – conditional on disease status. Throughout this paper
X represents the established marker(s) and Y represents the new predictor. The incremental value
of Y depends not just on µY but also on r and µX . In general the incremental value of Y is not a
monotone function of µY when r ̸= 0 (2).

A convenient feature of this model is that there is a simple formula for NRI>0:

NRI>0
e = NRI>0

ne =
1

2
NRI>0 = 2Φ

(√M2
X,Y −M2

X

2

)
− 1.

where M2
X,Y is the squared Mahalanobis distance between events and nonevents in the distribution of

(X, Y ) and M2
X is the squared Mahalanobis distance between events and nonevents in the distribution

of X. Φ is the distribution function of a standard Normal random variable. Any choice of simulation
parameters, µX , µY , and r exactly determine NRI>0. When we consider the two-category NRI we use
consider NRI0.1. We calculated true values for NRI0.1 by simulating datasets of size 5,000,000 and
fitting the logistic models to get very precise estimates of the proportion of subjects with predicted
risks above and below the high-risk threshold.
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D Confidence intervals for NRI

Investigators seek to understand the nature of the improvement in risk prediction offered by a marker.
To that end, it is of interest to estimate summaries of the prediction increment, and to quantify the
uncertainty of those estimates using confidence intervals. For example, researchers routinely provide
estimates and confidence intervals for the change in the area under the ROC curve, ∆AUC.

Many researchers are familiar with constructing confidence intervals for a parameter using the
point estimate for the statistic and an estimate of its standard error: a 95% confidence interval for
a parameter θ is formed as θ̂ ± 1.96 · ŜE(θ̂). There are three requirements for a confidence interval
constructed in this way to have the proper coverage: the estimate must be (1) consistent, which means
that it estimates the true value in large samples; (2) have a Normal sampling distribution; and (3)

ŜE must be a consistent estimate of the standard error of the estimate.
Pencina et al. (4) provide a formula for estimating V1, the variance of N̂RI. It is natural to

construct a 95% confidence interval for the NRI using N̂RI ± 1.96 ·
√

V̂1. However, a confidence
interval constructed in this way is valid only if conditions (1), (2), and (3) in the previous paragraph
are true (or approximately true).

Pepe et al. (6) noted that V̂1 does not account for the variability of the fitted model. That is,
when a risk model is fit to a dataset, there is uncertainty in coefficients of the model. This uncertainty
should be incorporated into inferences about summaries of prediction performance or the increment
of prediction. V̂1 ignores this uncertainty. Appendix E further elucidates problems with V̂1 as an

estimate of the variance of (N̂RI>0).
We conducted a simulation study to investigate whether confidence intervals have the correct

coverage. We considered confidence intervals constructed as described above. We also evaluated

confidence intervals constructed using N̂RI ± 1.96 · ŜEB(N̂RI), where ŜEB(N̂RI) is a bootstrap
estimate of the standard error. Bootstrap estimates are obtained as follows. Re-sample rows of the
original dataset with replacement to construct a “bootstrap dataset” of the same size as the original
dataset. For a bootstrap dataset, re-fit the “old” and “new” risk models and calculate the NRI
summary measures. Repeat this procedure a large number of times (e.g., 1000). This produces
a distribution of values for the summary measure called the bootstrap distribution. The standard

deviation of the bootstrap distribution is ŜEB. Note that the bootstrap procedure incorporates the

variability of the fitted model coefficients into estimating SE(N̂RI) because the risk model is re-fit
on each bootstrap dataset.

Appendix C describes the simulation study. Table 1 gives the results for confidence intervals
constructed using V̂1 and various bootstrap methods. Values in Table 1 should be compared to a
target value of 0.05. Confidence intervals constructed using the formula for V̂1 have non-coverage
proportions substantially above or below the target value. Non-coverage proportions substantially
below 5% indicate conservative inference – confidence intervals are wider than they should be. Non-
coverage proportions above 5% indicate anti-conservative inference. With anti-conservative inference,
confidence intervals are too narrow and one is falsely confident of the precision of results. The worst
performance was making confidence intervals for NRI>0

ne and NRI0.1ne , with non-coverage proportions
2-5 times as large as the target value.

Confidence intervals constructed using ŜEB show a clear tendency to give conservative results.
While conservative inference is not desirable, anti-conservative inference is not acceptable, particularly
at the levels we see in the tables for the formula for V̂1.

The other bootstrap methods for constructing confidence intervals did not work as as well as
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N̂RI ± 1.96 · ŜEB(N̂RI). We therefore recommend constructing confidence intervals by using a
bootstrap estimate of the standard error of the statistic. Note that this method relies on approximate

Normality for N̂RI. This is true asymptotically, but may not be a good assumption in small samples
or for weak biomarkers, especially for the 2-category NRI (7).

Table 1 gives results of our simulation study evaluating seven methods of forming confidence
intervals. Data were simulated as described in Appendix C with µX = 0.74, r =0, and three values
for µY . We considered seven methods for constructing confidence intervals.

1. N̂RI ± 1.96 ·
√

V̂1

2. N̂RI ± 1.96 · ŜEB(N̂RI). This is the same as 1 but uses resampling-subjects bootstrapping to
estimate the standard error.

3. Unadjusted. Uses resampling-subjects bootstrap but keeps the fitted models fixed.

4. Normal. This is similar to 2 but attempts to bias-correct the bootstrap estimate of the standard
error.

5. Basic

6. Percentile. Take the .025 and .975 quantiles of the bootstrap distribution of the statistic.

7. Bias-corrected and accelerated intervals.

The last four methods are described at
www.unc.edu/courses/2007spring/enst/562/001/docs/lectures/lecture28.htm.
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E The Variance of N̂RI

We simulated data as described in Supplement C. For all simulations we set the prevalence at 10%
(ρ = 0.1) and conditional independence (r = 0). We considered various values for the marginal
strength of the new marker Y , as indicated in the horizontal axis in the figures. We also considered
small, medium, and large samples sizes (300, 1000, and 10000). For each simulated dataset, we fit the
logistic model, computed NRI>0, and computed V̂1. Across the 4000 simulations, we also computed

the empirical variance of N̂RI>0. This resulted in a single empirical estimate of variance(N̂RI>0) to
compare to 4000 values of V̂1.

Figure 2 shows some of the problems with using V̂1 to estimate the variance of NRI>0. If the
incremental value of a marker is away from the null, V̂1 tends to underestimate the variance of NRI>0.
Near the null, V̂1 tends to overestimate the variance of NRI>0. This may be because of boundary
effects as described in Demler et al. (1) for ∆AUC.
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Figure 2: V̂1 as an estimate of the variance of N̂RI>0. Results here are based on 4000 simulations for
each µY with ρ = 0.1 and r = 0. The sample size of the simulated datasets is given over each set of

boxplots. The boxplots show the ratio of
√

V̂1 divided by the empirical standard deviation across the
4000 simulations. V̂1 tends to overestimate the variance when the incremental value of the marker is
small and the sample size is small. For markers of modest incremental value and medium to larger
sample sizes, V̂1 tends to underestimate the standard error of NRI>0.
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weak new marker (µY = 0.17)
NRI>0

e NRI>0
ne NRI0.1e NRI0.1ne

formula 0.009 0.135 0.134 0.091

ŜEB 0.012 0.035 0.004 0.004
Unadjusted 0.006 0.134 0.206 0.101
Normal 0.074 0.141 0.096 0.059
Basic 0.098 0.162 0.087 0.066

Percentile 0.009 0.024 0.001 0.002
BCA 0.066 0.132 0.142 0.097

medium new marker (µY = 0.34)
NRI>0

e NRI>0
ne NRI0.1e NRI0.1ne

formula 0.011 0.179 0.061 0.113

ŜEB 0.035 0.067 0.011 0.011
Unadjusted 0.007 0.183 0.067 0.114
Normal 0.072 0.084 0.091 0.052
Basic 0.079 0.099 0.09 0.055

Percentile 0.016 0.040 0.001 0.009
BCA 0.065 0.065 0.124 0.087

stronger new marker (µY = 0.74)
NRI>0

e NRI>0
ne NRI0.1e NRI0.1ne

formula 0.008 0.178 0.044 0.266

ŜEB 0.042 0.043 0.022 0.049
Unadjusted 0.006 0.179 0.046 0.268
Normal 0.068 0.051 0.061 0.064
Basic 0.073 0.056 0.071 0.079

Percentile 0.026 0.040 0.009 0.037
BCA 0.060 0.0423 0.074 0.067

Table 1: Non-coverage proportions for different types of confidence intervals. The method we recom-

mend is in the row labeled ŜEB (it is called simply “bootstrap” in Table 3 in the article). Unadjusted,
Normal, Basic, Percentile, and BCA are various types of bootstrap confidence intervals and are de-
scribed in Appendix D.
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