SUPPLEMENTARY INFORMATION:

SI MATERIALS AND METHODS

Plant Material

Seeds were sterilized, stratified for 2 days at 4°C and sown onto Gamborg's B-5 Basal Medium (Sigma; G5893-10L) supplemented with 0.6% wt/vol agar. At 18 days seedlings were transferred to soil (Debco Seed Raising Mix supplemented with 1g/L Osmocote Extracted Mini patterned release fertilizer pellets) and grown at a light intensity of 120-190 µmol.m⁻².s⁻¹ using fluorescent tubes in 16 hour day cycle at 22°C/18°C (day/night). Preanthesis floral buds and 15 day old seedlings were collected, frozen in liquid nitrogen and stored at -80°C. All hybrids, backcrosses and outcrosses were generated by hand pollination. C24 *sde4* mutants were a gift from David Baulcombe (S1). The C24 *pollV* mutant was a gift from Drs Andy Eamens and Ming Bo Wang and contains a G to A conversion at nucleotide position 2126 of NRPD1a (*Pol IV*) resulting in a premature stop codon.

Genotyping backcrosses and outcrosses

At1g64790 was genotyped by digesting the PCR product with *BamH*I (Fermentas; bisulphite primer sequences are found in Table S2). The C24 allele contains a single *BamH*I site producing two products (43bp and ~500bp) while Ler contains no *BamH*I cut site. PCR machine settings were: 95°C/5 minutes, (95°C/1 minute, 55°C/2 minutes, 72°C/1.5 minutes) x 35, 72°C/6 minutes.

At3g43340 was genotyped by PCR using a forward primer specific to either C24 or Ler (Table S2). PCR machine settings were: 95°C/5 minutes, (95°C/30 seconds, 55°C/30 seconds, 72°C/40 seconds) x 30, 72°C/10 minutes.

Bisulphite PCR

Genomic DNA from preanthesis floral buds and 15 day old seedlings was extracted using the Plant DNeasy kit (Qiagen). 500ng-2µg of genomic DNA was bisulphite converted using the MethylEasy Xceed Kit (Human Genetic Signatures). Bisulphite PCR was carried out using unbiased bisulphite primers allowing amplification of both converted and unconverted

fragments (Table S2). Conversion rates were checked by amplifying a region of the chloroplast genome which showed a conversation rate >99% (Chloroplast region 15, ATPA2; Table S2). PCR machine settings for all bisulphite PCRs were: $95^{\circ}C/5$ minutes, $(95^{\circ}C/1 \text{ minutes}, 55^{\circ}C/2 \text{ minutes}, 72^{\circ}C/3 \text{ minutes}) \times 5$, $(95^{\circ}C/1 \text{ minutes}, 55^{\circ}C/2 \text{ minutes}, 72^{\circ}C/1.5 \text{ minutes}) \times 35$, $72^{\circ}C/6 \text{ minutes}$, using Taq polymerase (NEB) or Kapa Robust 2G readymade mix (Kapa Biosystems). PCR products were gel extracted, ligated into pGEM-T Easy (Promega) and transformed into DH5 α bacterial cells. To determine ^mC levels at least 12 clones were sequenced from parental lines and 24 clones sequenced from 1st, 2nd and 3rd generation plants. ^mC at a base were determined by dividing the number of ^mC in the clones by the total number of clones

McrBC-digest and Real-time PCR

25ng-50ng of genomic DNA was digested for 16 hours at 37°C with 1U of McrBC enzyme (NEB) followed by a heat inactivation step at 65°C for 15 minutes. For each digestion a control (undigested DNA) was also set up. Digested DNA was diluted into 200µl and 400µl, for 25ng and 50ng starting gDNA respectively. 5µl of the diluted DNA was used in each real-time PCR reaction. All results were obtained by digesting at least two biological replicates and two independent McrBC digests. For parents and F1 hybrids McrBC results are from replicates of pooled plants. In the case of plotted individuals, results shown represent the average of at least two McrBC digests.

Real-time PCR was carried out on a Corbett RG-6000 machine using the conditions: step 1: 94°C-10 min; step 2: 95°C-20 sec, 58°C-20 sec, 72°C-20 sec (45 cycles). McrBC digestion at At3g43340 was normalized to the reference gene *ACTIN* and then to the undigested control. Primer sequences are provided in Table S2. Digestion levels have been inverted to represent methylation levels.

Chromatin Immunoprecipitation (ChIP)

ChIP experiments were carried out as described (35) with the following alterations. 50mg of preanthesis floral buds were ground using liquid nitrogen in a mortar and pestle. The ground tissue was then added to 500µl of ChIP lysis buffer. Preanthesis floral bud chromatin was then digested with 15U of Micrococcal Nuclease (MNase; Thermo Scientific) for 14

minutes at 37°C. Digested material was then sonicated for 2 x 15sec (Amplitude = 30, cycle = 1) and centrifuged for 15minutes at 4°C. 5% of the supernatant was separated for total input control then the supernatant was separated into four aliquots (125 μ l) and incubated with either no antibody (control), anti-H3K9me2 (pAB-060-050; Diagenode) or anti-H3K9ac (07-352; Upstate), along with Magna ChIP protein A magnetic beads (16-661; Millipore) for four hours at 4°C. Samples were then placed on a magnetic stand and washed four times with a low salt, high salt, LiCl and TE wash buffers for 5 minutes each at 4°C (33). DNA was then eluted 2 x 15 minutes at RT, digested with proteinase K for one hr at 45°C and DNA purified using a Qiagen PCR clean up kit.

ChIP-qRT-PCR

ChIP DNA was diluted to a 1/20 dilution and qRT-PCR carried out using the HT7900 and SDS 2.3 software (ABI) using 5 μ l per reaction. Regions of interest were normalized to regions known to contain high levels of H3K9ac (*ACTIN*) and H3K9me2 (*TA3*) (S2) using the 2^{- $\Delta\Delta$ CT} method (S3, Table S2). A two-tailed unequal variance T-test was used to determine significant differences in chromatin enrichment between samples.

Transcriptome data

Tissue for RNA extraction was harvested from aerial tissue from 15 DAS seedlings and preanthesis floral buds from C24/Ler F1 hybrids, C24, Ler and preanthesis floral buds from individual F2 C24/Ler progeny. Total RNA was extracted using QIAGEN RNeasy Plant Mini Kit[™] with on column DNA digestion using the QIAGEN RNAse free DNAse set[™]. Libraries were prepared and sequenced by a service provider using the illumina True-seq kit and sequenced on an illumina Hi-Seq as mRNA-seq pair ended 100nt runs. Raw reads were mapped to the TAIR10 Arabidopsis reference genome using BioKanga (https://code.google.com/p/biokanga/) on default settings. Mapped reads were allocated to genomic features (including Transposable Elements) in the TAIR10 annotations using the BioKanga maploci function on default settings. Reads per genomic feature were standardised across samples using reads per million (mapped to a feature) per Kb (RPMKb) and these values used as indicators for mRNA levels (see Table S1). A two-tailed unequal variance T-test was used to determine significant differences in mRNA levels between samples.

SI REFERENCES:

- 1. Dalmay T, Hamilton A, Rudd S, Angell S, & Baulcombe DC (2000) An RNA-dependent rna polymerase gene in *Arabidopsis* is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. *Cell* 101(5):543-553
- Johnson LM, Cao XF, & Jacobsen SE (2002) Interplay between two epigenetic marks: DNA methylation and histone H3 lysine 9 methylation. *Current Biology* 12(16):1360-1367.
- 3. Livak KJ & Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. *Methods* 25(4):402-408.

SI FIGURES AND TABLES:

Figure S1: Experimental design to analyze the inheritance of TCM/TCdM-derived ^mC patterns observed in the F1 hybrid.

Figure S2: Ecotype variation at At1g64790 and At3g43340/50. ^mC levels of each individual ^mC are represented by blue (^mCG), red (^mCHG) and green (^mCHH) columns. For At1g64790 the regions which undergo TCdM (blue) and TCM (red) are highlighted in boxes. C24 and Ler graphs reproduced from (6).

Figure S3: The TCM event observed in C24/Ler hybrids also occurs in Col/Ler hybrids. The unmethylated Ler allele attains the same ^mC pattern as the methylated Col. SNPs were used to differentiate allelic ^mC levels. ^mC levels are represented by blue (^mCG), red (^mCHG) and green (^mCHH) columns. * denotes allele derived from F1.

Figure S4: Additional individuals analyzed for the inheritance of ^mC patterns at At3g43340/50. A) Four more backcross individuals with a Ler*/Ler genotype B) McrBC qRT-PCR of preanthesis floral buds from backcrossed individuals (Fig. 1B and S4A) C) Bisulphite PCR graphs of C24/Ler FI hybrid at 15 DAS seedlings. In A) & C) ^mC are represented by blue (^mCG), red (^mCHG) and green (^mCHH) columns. * denotes allele derived from F1 with individual plants labelled C to F. In B) column colours denote allelic combinations. Black dotted line represents MPV. Error bars = SEM.

Figure S5: Individuals analyzed for the inheritance of ^mC patterns at At3g43340/50 in outcrosses between C24/Ler and Cvi. ^mC are represented by blue (^mCG), red (^mCHG) and

green (^mCHH) columns. Boxes demonstrate how the individuals were derived. * denotes allele derived from F1 with individual plants labelled A to D.

Figure S6: Inheritance of ^mC patterns into the third generation. A) Experimental design used to examine the ^mC level in third generation plants derived from two backcrosses, or third generation plants derived from one backcross followed by one selfing. All third generation plants were derived from (Ler x F1) –A or –B. Red lines represent C24 allele, blue lines represent Ler allele and black dots represent ^mC B) McrBC qRT-PCR of parents, F1 hybrids and third generation plants at 15 DAS seedlings C) McrBC qRT-PCR of parents, F1 hybrids and individual third generation plants at 15das demonstrating the variability in ^mC between individuals with error bars representing the SEM of two independent McrBC digests. Column colours denote allelic combinations. Black dotted line represents MPV.

Figure S7: ^mC at the TCM region At1g64790 is lost in *pollV* mutants. Red box indicates region which normally undergoes TCM in the hybrid. ^mC levels are represented by blue (^mCG), red (^mCHG) and green (^mCHH) columns. C24 graph reproduced from (6).

Figure S8: Outcrosses, backcrosses and F2 individuals analyzed for the inheritance of ^mC patterns at At1g64790. 5 individuals were analyzed for both out/backcrosses and F2 plants. * denotes allele derived from F1 with individual plants labelled A to D. Boxes demonstrate how the individuals were derived. Regions which undergo TCdM (blue) and TCM (red) are highlighted in boxes. ^mC levels are represented by blue (^mCG), red (^mCHG) and green (^mCHH) columns. C24 and Ler graph reproduced from (6).

Figure S9: Histone acetylation and methylation levels at At1g64790. Bisulphite PCR graphs illustrate the regions analyzed by ChIP qRT-PCR (blue and green lines; Fig. 5). The blue and green graphs represent the results from primer set 1 (blue) and primer set 2 (green). H3K9ac levels at the TCM region were normalized against *ACTIN*, while H3K9me2 levels at the TCM region were normalized against TA3. For the ChIP graphs columns represent the relative fold change compared to C24. Error bars =SEM from three independent ChIP experiments. Bisulphite PCR graphs reproduced from (6). * indicates statistically significant differences (P≤0.05) in IP pull down between MPV and hybrids while * indicates statistically significant differences (P≤0.05) in IP pull down between the two parental accessions.

Table S1:

Deep sequencing data from 15 day old seedlings and preanthesis floral buds. Tables include number of reads mapped to genomic features (including TEs) along with raw read count numbers for At3g43340, At3g43350 and At1g64790. These numbers were used to calculate read per million per kilobase by the aligner software Biokanga (see SI material and methods). An unequal variance two-tailed Ttest was used to look for statistical differences between the average mRNA levels between the parents (red) and between the hybrids and MPV (green).

Table S2:

Primer sequences

Table S1 : Deep sequencing data

		J			17370973	19099460								
	pre-anthesis floral buds	8	40813564	21413779	65771193	41779241								
		A	59526290	63922311	19319307	36710190	79743424	32506109	6444503	66747168	126638346	36164383	53834976	28065606
		RepF	43269649	34548979										
		RepE	48915303	82840226										
Kb)	sedlings	RepD	77250354	74597367	75791754	41934086								
es (used for RPM	15 DAS 54	RepC	77700508	78445675	79289759	60217489								
nnotated feature		RepB	72742953	71758991	72247153	74484998								
ping to TAIR 10 a		RepA	68544515	75967316	68105162	74332606								
Number of aligned reads map			C24	Ler	C24xLer	Ler x C24	F2-1	F2-2	F2-3	F2-4	F2-5	F2-6	F2-7	F2-8

			RepE	10	1314			
		eedlings	RepD	19	444	401	217	
		15 DASs	RepC	6	453	391	273	
			RepB	24	673	305	452	
			RepA	14	673	216	343	
F2-8	Raw read counts At 3g 43340			C24	Ler	C24xLer	Ler x C24	

				100	100		100	1000	100	1000	1000
		16	15								
4	186	179	124								
8	676	16	21	2	125	53	12	947	62	28	6E
7	477										
10	1314										
19	444	401	217								
6	453	391	273								
24	673	305	452								
14	673	216	343								
C24	Ler	C24xLer	Ler x C24	F2-1	F2-2	F2-3	F2-4	F2-5	F2-6	F2-7	F2-8
	C24 14 24 9 19 10 7 8 4 1	C24 14 24 9 19 10 7 8 4 Ler 673 673 453 444 1314 477 676 186	C4 14 24 9 19 10 7 8 4 Lef 673 63 643 44 134 477 676 136 Color 13 44 134 477 167 166 156 Color 28 381 401 134 477 166 179 166	C4 14 24 9 19 10 7 8 8 4 C4 13 53 53 53 53 53 53 54 4 7 56 18 4 7 16 17 56 16 16 7 16	CA 14 24 9 19 10 7 8 14 4 UCM 23 63 63 41 314 27 65 184 4 CMM 216 305 301 61 314 27 65 136 56 Unicida 36 301 611 314 27 56 136 56 Unicida 34 611 314 27 56 136 56 F21 313 621 231 217 36 134 36 F21 51 317 71 71 71 74 34	C4 14 24 9 19 10 7 8 8 4 C1 21 23 63 63 13 14 7 56 18 4 15 C4 23 53 63 63 13 14 77 56 157 157 <td>CM 14 24 9 19 10 7 8 8 4 UCM 13 53 63 63 63 65 16 16 16 CAMAR 26 33 63 63 61 314 67 65 136 55 UAL 26 33 81 61 314 77 56 136 56 UAL 34 61 71 61 77 56 136 56 F21 34 61 71 71 71 34 34 F23 5 5 71 71 71 34 34 F33 5 7 71 71 73 34 34</td> <td>C4 14 24 9 19 10 7 8 4 4 C1 73 63 63 64 14 7 6 36 36 C1 73 63 63 64 17 65 16 36 C1 215 53 53 30 13 14 77 56 136 16 C1 13 70 21 11 77 15 13 14 31 F1 13 71 21 12 13 31</td> <td>Q4 B1 D4 B1 B1<</td> <td>C4 14 24 9 19 10 7 8 4 C14 13 73 63 63 10 7 8 4 4 C14 13 63 63 61 11 7 65 166 166 C1444 136 63 83 91 11 7 67 179 95 16 C1444 13 61 13 7 7 12 13 96 15 151 13 21 21 13 13 14 13 152 13 21 21 13 13 13 14 13 152 13 21 13 13 13 13 14 13 152 14 13 13 13 13 14 13 13 14 14 14 14 14 14 14 14 14</td> <td>QA 14 24 6 44 14 7 6 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7</td>	CM 14 24 9 19 10 7 8 8 4 UCM 13 53 63 63 63 65 16 16 16 CAMAR 26 33 63 63 61 314 67 65 136 55 UAL 26 33 81 61 314 77 56 136 56 UAL 34 61 71 61 77 56 136 56 F21 34 61 71 71 71 34 34 F23 5 5 71 71 71 34 34 F33 5 7 71 71 73 34 34	C4 14 24 9 19 10 7 8 4 4 C1 73 63 63 64 14 7 6 36 36 C1 73 63 63 64 17 65 16 36 C1 215 53 53 30 13 14 77 56 136 16 C1 13 70 21 11 77 15 13 14 31 F1 13 71 21 12 13 31	Q4 B1 D4 B1 B1<	C4 14 24 9 19 10 7 8 4 C14 13 73 63 63 10 7 8 4 4 C14 13 63 63 61 11 7 65 166 166 C1444 136 63 83 91 11 7 67 179 95 16 C1444 13 61 13 7 7 12 13 96 15 151 13 21 21 13 13 14 13 152 13 21 21 13 13 13 14 13 152 13 21 13 13 13 13 14 13 152 14 13 13 13 13 14 13 13 14 14 14 14 14 14 14 14 14	QA 14 24 6 44 14 7 6 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7

	c				4.09	7.91								
his minimum monihim and	8	0.44	38.60	19.52	12.10	13.19								
	A	09.0	47.00	23.80	3.68	2.54	2.17	17.09	1.59	1.40	1.61	3.56	2.31	1.11
	RepF	0.72	61.36	31.04										
	RepE	0.00	70.50	35.70										
- Pannon	RepD	1.09	26.45	13.77	23.51	23.00								
	RepC	0.51	25.67	13.09	21.92	20.15								
	RepB	1.46	41.68	21.57	18.76	26.97								
	RepA	0.91	39.37	20.14	14.10	20.51								
		C24	Ler	MPV	C24xLer	Ler x C24	F2-1	F2-2	F2-3	F2-4	F2-5	F2-6	F2-7	F2-8
		_	_	_		_	_	_	_	_	_	_	_	_

RPMKb)

werage:

thesis flora	в	47	266	273	237								
pre-au	¥	83	872	68	86	46	117	111	126	295	98	112	128
	RepF	73	825										
	RepE	82	2307										
eedlings	RepD	100	568	546	349								
15 DAS :	RepC	112	609	529	458								
	RepB	96	877	413	597								
	RepA	83	869	319	471								
		C24	Ler	C24xLer	Ler x C 24	F2-1	F2-2	F2-3	F2-4	F2-5	F2-6	F2-7	E28

29

			15 DAS	seedlings			pre-an	thesis flore	al buds
	RepA	RepB	RepC	RepD	RepE	RepF	A	8	J
C24	0.49	0.52	0.57	0.51	0.67	0.68	0.56	0.46	
Ler	4.60	4.90	3.11	3.05	11.17	9.58	5.17	4.98	
MPV	2.54	2.71	1.84	1.78	5.92	5.13	2.87	2.72	
C24xLer	1.88	2.29	2.67	2.89			0.81	1.66	0.67
Ler x C 24	2.54	3.22	3.05	2.34			1.02	2.28	2.14
F2-1							0.64		
F2-2							1.44		
F2-3							0.69		
F2-4							0.76		
F2-5							0.93		
F2-6							0.95		
F2-7							0.83		
F2-8							0.66		
verage: Standard	lized Reads	(RPMKb) A	t3g43350						
		15 DAS see	adlings	bré	P-anthesis fi	loral buds			
	Average	SEM	Ttest (ps0.05)	Average	SEM	Ttest (p ≤ 0.05)			
C24	0.573	0.034	0.011	0.511	0.049	0.003			
Ler	690'9	1.411	0.011	5.077	0.094	0.003			
C24xLer	2.433	0.222	0.284	1.048	0.311	0.026			
Ler x C 24	2.788	0.208	0.504	1.811	0.399	0.129			
1 1 1 1 1									

5	0.66							
			loral buds	Ttest (p ≤ 0.05)	0.003	0.003	0.026	0.129
			P-anthesis f	SEM	0.049	0.094	0.311	0300
			bre	Average	0.511	5.077	1.048	1811
		13843350	dlings	Ttest (ps0.05)	0.011	0.011	0.284	0 504
		(RPMKb) A	15 DAS see	SEM	0.034	1.411	0.222	0.208
		ized Reads		Average	0.573	690'9	2.433	2 788
	F2-8	ge: Standard			C24	Ler	24xLer	NY C 24

Raw read counts At 1gt	64790						
			15 DAS	seedlings			pre
	RepA	RepB	RepC	RepD	RepE	RepF	۷
C24	9858	11550	14291	19714	8696	6650	1140
Ler	13352	11753	14468	16984	18440	6912	1126
C24xLer	11753	11204	17280	16686			308(
Ler x C24	10484	10424	10088	1877			669
F2-1							1587
F2-2							530
F2-3							1250
F2-4							1638
F2-5							2713

			15 DA	5 seedlings			pre-an	thesis flora	al buds
	RepA	RepB	RepC	RepD	RepE	RepF	٨	8	с
C24	17.40	19.25	22.30	30.94	21.56	18.64	22.99	22.38	
Ler	21.32	19.86	22.36	27.61	26.99	24.26	21.37	19.11	
MPV	19.36	19.56	22.33	29.28	24.28	21.45	22.18	20.74	
C24xLer	20.92	18.80	26.43	26.70			19.17	22.63	19.98
Ler x C24	17.10	16.97	20.31	22.78			22.86	26.35	25.72
F2-1							24.14		
F2-2							19.58		
F2-3							23.29		
F2-4							29.77		
F2-5							25.98		
F2-6							22.01		
F2-7							26.62		
F2-8							24.04		

	(50.05)	6	6	3	2	2
oral buds	Ttest (p:	0.25	0.25	0.54	0.07	0.06
Hanthesis fi	SEM	0.303644	1.131772	1.0447	1.072562	1.090502
pre	Average	22.68402	20.23716	20.59292	24.97858	24.42879
edlings	Ttest (p.so.05)	0.410	0.410	0.846	0.136	
15 DAS %	SEM	1.997	1.273	1.984	1.396	
	Average	21.682	23.733	23.213	19.290	
		C24	Ler	C24kLer	Ler x C24	Combined F2's

Table S2: PCR primer sets

Bisulphite PCR primer sequences

Locus	Forward primer	Reverse Primer
C15	ATGATGTTGTTAGAATTTYATATAGG	CATCATTTARCTATCRCAATTCTTT
ATPA2	ATGGATTAGAAATTGGAYAAGTAAGAAAATTT	AATACCTTCTTTCAAAAARCTTTCTRCTTCA
AT1g64790	AGATGGTGATGTTYAGYGAATTT	TATTTTCTAATATCTAACTATACARACATA
AT3g43340	AGAAYTTTAAAAYTGAGAAAG	CTCAACAAAACARTARAAAAC

McRBC qRT-PCR primer sequences

Locus	Forward primer	Reverse Primer
ACTIN	CTAAGCTCTCAAGATCAAAGGC	AACATTGCAAAGAGTTTCAAGG
At3g43340	GGTCACGCTCACAGTTCTCTC	TCTTTTAGACTCCACCGCTCA

ChIP qRT-PCR primer sequences

Locus	Forward primer	Reverse Primer
At3g43340 primer set 1	GAAAGCTTTGGAAAAGTACCAC	CAAACGACACTTAATGGCAATC
At3g43340 primer set 2	CCGTGGTAATATATCTGCAATTTT	TCGTGAACGAGATGTTGAACC
At3g43340 primer set 3	GGTCACGCTCACAGTTCTCTC	TCTTTTAGACTCCACCGCTCA
At1g64790 primer set 1	CTTCAGAGCTGATCGGTGGT	TTGATTTAGGGTTGGACACG
At1g64790 primer set 2	CCTGGCCTGTTAATTTCCAT	TTTTGTCGGCCATTTTGATT
ACTIN 7	CGCTGTTGTTTCTCCTCCAT	GCGAACGGATCTAGACTCA
TA3	AGACAGCTCTGCGTGGAAGTC	TTATCAGTCTCAGCATTACACAG
FUS3	ACTTTTGCTACACTTGTTCACCA	CGCAACAAGATCTAATGCCACT

Allele specific primer sequences

Locus	Forward primer	Reverse Primer
At3g43340 C24 specific F	TTTAAAAAAGAAAGATAATAAGAGC AG	СТСААСААСАААСАGTAGAAAA
At3g43340 Ler specific F	TTTAAAAAAGAAAGATAATAAGAGC TA	