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S1. THE DETECTOR SPECTROGRAM

The photon coincidence signal Eq. (7) is defined in terms of the time-and-frequency resolved electric field Et/). A
frequency (spectral) gate is combined with time gate. The detector with input located at rp is represented by a time
gate F; centered at t followed by a frequency gate F'y centered at w [1]. First, the time gate transforms the electric

field at a point in the sample rg: E(rg,t) = Zq E'q (rg,t) with Eq(rs, t) = E(rg,wy)e” 4" as follows:
EW(t;rg,t) = Fi(t, 1) E(rg,t). (S1)

Then, the frequency gate is applied E®) (t,@;7g5,w) = Fr(w, @)E® (t;rg,w) to obtain the time-and-frequency-gated
field. The combined detected field at rp can be written as

EUD (& w;rp,t) = / dt'Fy(t —t',@)Fy(t' , D) E(rg,t'), (S2)
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where E(t) = Y, \/2mhws/Qase =" and Q is a mode quantization volume. For clarity we hereafter omit the position
dependence in the fields and include the propagation between rg and rp in the spectral gate function. Using Eq. (7)
- (9) we next define the detector spectrogram for the j-th detector, j = r, s
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where
W w) = / drED* (' + ) F (1, B)e. (S4)
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We can freely vary the parameters of F ;j ) and Ft(j ). However the temporal 5% and spectral &/, resolutions of the

spectrogram (S3) will always satisfy the Fourier uncertainty &7,/ Er%} > 1. Assuming that time and frequency gates are
Gaussian

(w=;)2

FO(5) = e 2R pD () =e wlt (S5)

we obtain the Wigner spectrogram of the detector
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where 577 = o + [(07) 7> + (o) 27" 6 = of + 0l’, Ay = oflof + o7 Cj = ol /oy, and ;7 =

(67)72 4 (07,)72. Using Eq. (S3) one can recast the signal (7) in the form of Eq. (9), where the bare spectrogram is
given by Egs. (S12) - (S13).

S2. SPECTRAL DIFFUSION

We assume that the electronic states of molecule a = a,b are coupled to a harmonic bath described by the

Hamiltonian H% = >k hwr (dladg + 1/2). The bath perturbates the energy of state v. This is represented by the
Hamiltonian

HS = Y va|Hva) = €, + Gua + HS, (S7)

v

where ¢, is a collective bath coordinate

@ua = h_1<Va‘}AISB|Va> = Zduaua,k(az + dk)v (SS)
k

dyn, i Tepresents bath-induced fluctuations of the transition energies (m = n) and the intermolecular coupling (m # n).
We define the line-shape function

dw Cl///al// (w)
Jo(t) = Guavl, t)= | o—5—

hw
=5 " {coth <ﬂ2) (1 — coswt) + isinwt — iwt| , (S9)
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where the bath spectral density is given by

Cloun @) =5 [ A (G (0) a0 (510)

B = kpT with kg being the Boltzmann constant and 7" is the ambient temperature. The matter correlation function

can be evaluated using the second order cumulant expansion using Eq. (10). We shall use the overdamped Brownian

oscillator model for the spectral density, assuming a single nuclear coordinate (v, = v/),)
wA,,

a ma

where A,, is the fluctuation relaxation rate and A, is the system-bath coupling strength. The corresponding lineshape

function g, (t) in the high temperature limit kg7 > hA,, is then given by Eq. (11).
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Vava (@) = 2 (S11)

S3. THE COINCIDENCE SIGNAL

The signal Eq. (7) is guaranteed to be positive since it can be recast as a modulus square of an amplitude. By
treating explicitly the detector spectrogram (S3) we we now define a “bare signal” - a quantity that contains the
information about the field-matter interactions only and is independent of the detection. The bare signal is not an
observable. The loop diagrams which represent the process of excitation by incoming pulse and spontaneous emission of
the photon are depicted in Fig. 1c. In order to maintain the bookkeeping for all interactions and develop a perturbative
expansion for signals we describe the signal in terms of Liouville space “left” and “right” superoperators. With each
ordinary operator A we can asociate a pair of superoperators [2] AL X = AX, ARX XA, and A_ = AL — AR To
avoid confusion and distinguish the ordinary operators (e.g. A) from the superoperator quantities we hereafter denote
all superoperators by “hat” (e.g. /Al) By taking into account the input-output transformation of a beam splitter in

Eq. (8) and relation (9), the Wigner spectrograms of the bare signal RY: )(t’ whitl, wl) and R(”) (th,wi;t! w) may be
recast in terms of superoperators using the diagram shown in Fig. lc:

R()(t’ wiith W) ZZ/ drsdr,e” i e i, Ty

X (TE:E,R(t’S + 75, rb)EI,R(tT + T, ra)EUL(t;, ra)EuL(t;, rb)e_% JZ% PIL(T)dT), (S12)
R( )(t whith wl) Z / drsdrre” i, Te—iw, T

At ' T = / ; ' X B T)dT
X <TEu’R(ts + TS? Tb)Ev’R(t'r‘ + Tr, TG)EUL(tm TG)EvL(trﬂ ’rb) h > (813)

where the angular brackets denote (...) = Tr[pp...] with pg is initial density operator defined in the joint field-matter
space of the entire system. The Hamiltonian superoperator is given by

H'(t) = ES(®)V,(t) + He, v=L,R. (S14)
Our key bookkeeping device is the time ordering superoperator 7
TE,(t1)Ey(t2) = E, (t1) B, (t2)0(t, — t2) + By (t2)E, (11)0(t2 — t1), (S15)

where 6(t) is the Heaviside step function. Note that the electric field in the correlation function in Eq. (S12) is a
product of contributions from molecules a and b whereas Eq. (S13) shows that the photon is generated by a pair of
molecules according to the diagrams in Fig. lc. We further note, that when working in the field space alone, the
number of independent field modes become restricted to 2: u = u’ and v = v'. However, this is not the case in the
field plus matter joint space. By expanding the exponential operator in Egs. - (S12) - (S13) to fourth order for each
molecule we obtain

R(l(t whitl wl)

sYUry

t! T t +‘rb ‘ré
=15 ZZ / dredrre —iw, Te— i, Ty / dm / dm / dr, / drh / drs / dr4 / / dry
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S16)
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R(”)(t whith W)
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=——= E E / drgdrre — i, Ts W, Ty / dmy / dmy / dr{ / drh / drs / dry / dr} / dry
h UU 'UU/ — 00 — 00 — 00 —00 — 00 — 00 —00 — 00

X ATEL, gt + 74, 1) B (8 + 77, 70) uL<ts,ra>Ev< >E r(T4,15) Ewr(t],7) Bl (r1,70) EL  (73,73))
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S17

where ({(gg|A|gg)) = Tr[|g)(Alg)(g|] and we have replaced a classical excitation field by its expectation value. Since
the spontaneous emission modes u, v/, v, v' are initially in the vacuum state, we must expand to second order in each
mode. It is clear that the process of coincidence counting involves four radiation modes, in contrast to the field space
analysis [3]. We further evaluate the time integrals using the explicit time dependence of the spontaneous modes:
Ei(t,r) = \/2mhwy [Qage ™+ +*" and using the continuum limit: Y, — f D(wy,) %% In this case the density of

radiation modes is a slowly varying function of frequency: D(w) = Qw?/m2¢® which allows to take it outside of the
integration with the appropriate replacement of the frequency by a resonant matter frequency. The signal (S16) -
(S17) then reads

oo oo

R(l (th,wi;th w.) = D2(wa)D2(wb)/ dTpdTédedTreiiw‘;u7iw;TT/ dtpdt;,
X g;(tp —Tp =ty Ta) Ep(tp Ta) ;(t; - Tlvrb)gp(t;arb)
X (g|V (ty =)V (t) + 1)V ( ) f(tp)l9)a

; 14
X (g|V (t, = i) VIt + ) V(L) VI(E)]9)s, (S18)
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X Ex(ty = Tp — by, 7a)Ep(ty — tp,1a)Ey (t, — T, 70) Ep (L), 73)

X <9|V(tp - Tp)vT(t/r + Tr)v(t;) ! (tp)l9)a
19)6

\al
X {glV (t, = ) VIt + 7 )V )Vt |9 (S19)
where D(w) = 2nD(w)/h and we changed the time variables of the pump pulse. We further assumed that the pulse
is much longer than the dephasing time and extended the time integrations over 7, 7'];, t, and t; to infinity.
We next turn to the matter correlation functions in Egs. (S18) - (S19). In the hole burning limit dephasing
is short compare to fluctuation time scale and pump delay and detector central times 7; < ¢, ALY 5 = p, s,

a = a,b. We further assume a Gaussian excitation pulse with bandwidth o, and central frequency w,: &,(t) =
Spe_%c’gt?_wpt. Assuming that the time and frequency gate bandwidths are broader than the inverse fluctuation time
scale 0,,0%,0), > A, j = 7,5, a = a,b one may neglect the fluctuations during the detection window and pulse
duration such that g, (t;) ~ ga( ) J=15, ga(tp) ~ ga (O) = 0. Expanding the linewidth functions to second order
in 74, 7, and 7, and assuming that detector r clicks first: ¢, < ts we evaluate the time integrals in Egs. (S18) - (S19)
using Eq. (S5) and obtain

ROt wlith, wh) = FO (&, wl)F (E,, ), (S20)
RVt wlith W) = FO (£, oy wl) FOD (B, w) e~ 0en (o= t0)=Gatrte) =G (Erfo) (S21)
where

' D2 41¢ |2 _ 2 _ 2

FO(t,w) = 2ol 1B [—(W’) NQW“) L f"“(? ] (S22)
TpOpadan(t) 205, 2Ga0(t)
y D2 41&,12 - t1,t2))? — wq (t1,12))?

F(gll)(t17t27W) — (wa)|,u0z| ‘ P| eXp |:_ (Wp wpo;( 1, 2)) _ ((.U Wa( 1, 22)) :l 70[ — a,, b (S23)

UpUpa(t17t2)Ja0(t17t2) 20pa QUao(tl,tg)

A
in Section S4. Combining the bare spectrograms (S20) - (S21) with the detector spectrogram (S6) and using Eq. (9)
we finally obtain Eq. (1).

. 2
Here g, (t1,t2) = 2ida [Fo(t1) — Folte)] + [% + Z%} F,(to —t1) with t; < t and the remaining parameters are listed
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S4. GATING AND SPECTRAL DIFFUSION PARAMETERS

In Eq. (1) - (3) the normalization functions for « = a,b and j =r, s:

D?(wa) |l *|Ep]* D?(wa) ol *|Ep|?

Clo(t) = —— L o, I (ty,t) = — . : , (S24)
o GTpadao(t)[Fag (t) + op3] /2 o Tha(t1,t2)000 (t1, t2)[(02) ~2(t1, t2) + o 511/2
where o = ftag and Wy = Wo — Wy = w? + A\y. Time dependent frequency shifts:
A2 _,,0 _ >\a
Qalt) = Wl — Ao + M, (t) {2&1 + a(w Nzw“ )] , (S25)
Opa
w;a(tlth) = Wg + Aa[l - Ma(tQ) + Ma(tl)]a W;a(tl»tQ) = Wg + Aa[l + Ma(tQ) - Ma(tl)]a (826)
1 A2fw, — wr (t1,t2))]
"(t1,t2) = = (wa —AaM,(ta —t Ma(t1) |2Xa = pe ,
wa(tr t2) = 5(wa +ws) (t2 = t1) + Ma(t1) + T (0, 12)
1 A2 wp — wpo (t, )]
5 (t1,t2) = = (we AaMy(ty —t Mo (t2) |2Xa = P , 2
walt t2) = 5 (wa +wp) + (ta = t1) + Ma(t2) + o5 (0, 12) (527)
, oi2 ,
wla(tl,tg,w) =w+ %[wé(tl,tg) — w], (828)
oo (t1,t2)
where M, (t) = e~ *=t. Time dependent dispersions:
1 ; A2 M2(t 1 ;
=y AL S0 = (0ot a0 =02 [1-RIROT o L Saraar (s
pa
r2 _1 2 AQ _ 52 _ 1 2 AQ _
opalti,ta) = 5% T all + Mo (t1) = Ma(ta)l, opa(ti tz) = 5%+ all + My (t2) — Mo (t1)],
ol2(t1,t2) = 0p; + olg(t1, ta),
A% M, (1) A% M, (ts)
r2 2 ata\ll s2 2 atlal\l2
tito) = A2 | Ma(ty — t1) — =210 0 652 (4) 1y) = A2 [ My (ty — 1) — =222 S30
T 1) = 83 [ Matta = 1) - Sl () = 2 | Mot — 1) - ZeTele (530)

j2
072 (t1,t5) = 072 1-—Je | S31
Ta( 1 2) w [ UéQ(tl,tz)] ( )

In the absence of fluctuations A, = 0 a = a, b for the identical detector o], = ¢, = 0,, and 0} = 0} = or such that
0%, = 307 + o2 the coincidence counting signal (1) becomes (4) where

2 2 2 2
_ _ oo _ o: o o
Qr =0, —ws + g—%’[a}a — ] — U—%’[wb — W], 03 = O'i {2 - U—g - U‘g] , (S32)
frjs jsjr o 7(@j7w,1)2 _ (@j-wa)? W2,
e e~ SN S SR S MR (833)
T S + S
a~'b a~b
Here
A2 (w, —w
Do = W + =(wa — Wa), Do =wa + Balwp = wa) ed O‘), (S34)
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where a=aifa=band a=bif a« = a,

A2
02 =oh + A2 {1 - &20‘} . (S35)
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