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S1. THE DETECTOR SPECTROGRAM

The photon coincidence signal Eq. (7) is defined in terms of the time-and-frequency resolved electric field E(tf). A
frequency (spectral) gate is combined with time gate. The detector with input located at rD is represented by a time
gate Ft centered at t̄ followed by a frequency gate Ff centered at ω̄ [1]. First, the time gate transforms the electric

field at a point in the sample rS : E(rS , t) =
∑
q Êq(rS , t) with Êq(rS , t) = E(rS , ωq)e

−iωqt as follows:

E(t)(t̄; rS , t) = Ft(t, t̄)E(rS , t). (S1)

Then, the frequency gate is applied E(tf)(t̄, ω̄; rS , ω) = Ff (ω, ω̄)E(t)(t̄; rS , ω) to obtain the time-and-frequency-gated
field. The combined detected field at rD can be written as

E(tf)(t̄, ω̄; rD, t) =

∫ ∞
−∞

dt′Ff (t− t′, ω̄)Ft(t
′, t̄)E(rS , t

′), (S2)

where E(t) ≡
∑
s

√
2π~ωs/Ωâse−ωst and Ω is a mode quantization volume. For clarity we hereafter omit the position

dependence in the fields and include the propagation between rS and rD in the spectral gate function. Using Eq. (7)
- (9) we next define the detector spectrogram for the j-th detector, j = r, s

W
(j)
D (t̄j , ω̄j ; t

′, ω′;T ) =

∫ ∞
−∞

dω

2π
|F (j)
f (ω, ω̄j)|2W (j)

t (t′, ω′ − ω, t̄j)e−iωT , (S3)

where

W
(j)
t (t′, ω) =

∫ ∞
−∞

dτF
(j)∗
t (t′ + τ, t̄)F

(j)
t (t′, t̄)eiωτ . (S4)

We can freely vary the parameters of F
(j)
f and F

(j)
t . However the temporal σ̃jT and spectral σ̃jω resolutions of the

spectrogram (S3) will always satisfy the Fourier uncertainty σ̃jω/σ̃
j
T > 1. Assuming that time and frequency gates are

Gaussian

F
(j)
t (t, t̄j) = e−

1
2σ

j2
T (t−t̄j)2

, F
(j)
f (ω, ω̄j) = e

−
(ω−ω̄j)2

4σ
j2
ω , (S5)

we obtain the Wigner spectrogram of the detector

W
(j)
D (t̄j , ω̄j ; t

′, ω′;T ) =
1

σjT [(σjω)−2 + (σjT )−2]1/2
e
− 1

2 σ̃
j2
T (t′−t̄j)2−

(ω′−ω̄j)2

2σ̃
j2
ω

−iAj(ω′−ω̄j)(t′−t̄j+CjT )− 1
2 q

2
jT

2−iω̄jT
, (S6)

where σ̃j2T = σj2T + [(σjT )−2 + (σjω)−2]−1, σ̃j2ω = σj2T + σj2ω , Aj = σj2T [σj2T + σj2ω ]−1, Cj = σj2ω /σ
j2
T , and q−2

j =

(σjT )−2 + (σjω)−2. Using Eq. (S3) one can recast the signal (7) in the form of Eq. (9), where the bare spectrogram is
given by Eqs. (S12) - (S13).

S2. SPECTRAL DIFFUSION

We assume that the electronic states of molecule α = a, b are coupled to a harmonic bath described by the

Hamiltonian Ĥα
B =

∑
k ~ωk(â†αk â

α
k + 1/2). The bath perturbates the energy of state ν. This is represented by the

Hamiltonian

Ĥα
ν = ~−1〈να|Ĥ|να〉 = ενα + q̂να + Ĥα

B , (S7)

where q̂ν is a collective bath coordinate

q̂να = ~−1〈να|ĤSB |να〉 =
∑
k

dνανα,k(â†k + âk), (S8)

dmn,k represents bath-induced fluctuations of the transition energies (m = n) and the intermolecular coupling (m 6= n).
We define the line-shape function

gα(t) ≡ gναν′α(t) =

∫
dω

2π

C ′′ναν′α(ω)

ω2

[
coth

(
β~ω

2

)
(1− cosωt) + i sinωt− iωt

]
, (S9)
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where the bath spectral density is given by

C ′′ναν′α(ω) =
1

2

∫ ∞
0

dteiωt〈[q̂να(t), q̂ν′α(0)]〉, (S10)

β = kBT with kB being the Boltzmann constant and T is the ambient temperature. The matter correlation function
can be evaluated using the second order cumulant expansion using Eq. (10). We shall use the overdamped Brownian
oscillator model for the spectral density, assuming a single nuclear coordinate (να = ν′α)

C ′′νανα(ω) = 2λα
ωΛα

ω2 + Λ2
α

, (S11)

where Λα is the fluctuation relaxation rate and λα is the system-bath coupling strength. The corresponding lineshape
function gα(t) in the high temperature limit kBT � ~Λα is then given by Eq. (11).

S3. THE COINCIDENCE SIGNAL

The signal Eq. (7) is guaranteed to be positive since it can be recast as a modulus square of an amplitude. By
treating explicitly the detector spectrogram (S3) we we now define a “bare signal” - a quantity that contains the
information about the field-matter interactions only and is independent of the detection. The bare signal is not an
observable. The loop diagrams which represent the process of excitation by incoming pulse and spontaneous emission of
the photon are depicted in Fig. 1c. In order to maintain the bookkeeping for all interactions and develop a perturbative
expansion for signals we describe the signal in terms of Liouville space “left” and “right” superoperators. With each
ordinary operator A we can asociate a pair of superoperators [2] ÂLX = AX, ÂRX = XA, and Â− = ÂL − ÂR. To
avoid confusion and distinguish the ordinary operators (e.g. A) from the superoperator quantities we hereafter denote

all superoperators by “hat” (e.g. Â). By taking into account the input-output transformation of a beam splitter in

Eq. (8) and relation (9), the Wigner spectrograms of the bare signal R
(i)
B (t′s, ω

′
s; t
′
r, ω
′
r) and R

(ii)
B (t′s, ω

′
s; t
′
r, ω
′
r) may be

recast in terms of superoperators using the diagram shown in Fig. 1c:

R
(i)
B (t′s, ω

′
s; t
′
r, ω
′
r) =

∑
u,u′

∑
v,v′

∫ ∞
−∞

dτsdτre
−iω′sτs−iω

′
rτr

× 〈T Ê†u′R(t′s + τs, rb)Ê
†
v′R(t′r + τr, ra)ÊvL(t′r, ra)ÊuL(t′s, rb)e

− i
~
∫∞
−∞ Ĥ′−(T )dT 〉, (S12)

R
(ii)
B (t′s, ω

′
s; t
′
r, ω
′
r) = −

∑
u,u′

∑
v,v′

∫ ∞
−∞

dτsdτre
−iω′sτs−iω

′
rτr

× 〈T Ê†u′R(t′s + τs, rb)Ê
†
v′R(t′r + τr, ra)ÊuL(t′s, ra)ÊvL(t′r, rb)e

− i
~
∫∞
−∞ Ĥ′−(T )dT 〉, (S13)

where the angular brackets denote 〈...〉 ≡ Tr[ρ0...] with ρ0 is initial density operator defined in the joint field-matter
space of the entire system. The Hamiltonian superoperator is given by

Ĥ ′ν(t) = Ê†ν(t)V̂ν(t) +H.c, ν = L,R. (S14)

Our key bookkeeping device is the time ordering superoperator T
T Êν(t1)Êν′(t2) = Êν(t1)Êν′(t2)θ(t1 − t2) + Êν′(t2)Êν(t1)θ(t2 − t1), (S15)

where θ(t) is the Heaviside step function. Note that the electric field in the correlation function in Eq. (S12) is a
product of contributions from molecules a and b whereas Eq. (S13) shows that the photon is generated by a pair of
molecules according to the diagrams in Fig. 1c. We further note, that when working in the field space alone, the
number of independent field modes become restricted to 2: u = u′ and v = v′. However, this is not the case in the
field plus matter joint space. By expanding the exponential operator in Eqs. - (S12) - (S13) to fourth order for each
molecule we obtain

R
(i)
B (t′s, ω

′
s; t
′
r, ω
′
r)

=
1

~8

∑
u,u′

∑
v,v′

∫ ∞
−∞

dτsdτre
−iω′sτs−iω

′
rτr

∫ t′r

−∞
dτ1

∫ τ1

−∞
dτ2

∫ t′r+τr

−∞
dτ ′1

∫ τ ′1

−∞
dτ ′2

∫ t′s

−∞
dτ3

∫ τ3

−∞
dτ4

∫ t′s+τs

−∞
dτ ′3

∫ τ ′3

−∞
dτ ′4

× 〈T Ê†u′R(t′s + τs, rb)Ê
†
v′R(t′r + τr, ra)ÊvL(t′r, ra)ÊuL(t′s, rb)Êu′R(τ ′3, rb)Êv′R(τ ′1, ra)Ê†vL(τ1, ra)Ê†uL(τ3, rb)〉

× E∗p (τ ′2, ra)Ep(τ2, ra)E∗p (τ ′4, rb)Ep(τ4, rb)〈〈gg|T V̂
†
R(τ ′1)V̂L(τ1)V̂R(τ ′2)V̂ †L(τ2)|gg〉〉a〈〈gg|T V̂ †R(τ ′3)V̂L(τ3)V̂R(τ ′4)V̂ †L(τ4)|gg〉〉b,

(S16)
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R
(ii)
B (t′s, ω

′
s; t
′
r, ω
′
r)

= − 1

~8

∑
u,u′

∑
v,v′

∫ ∞
−∞

dτsdτre
−iω′sτs−iω

′
rτr

∫ t′s

−∞
dτ1

∫ τ1

−∞
dτ2

∫ t′r+τr

−∞
dτ ′1

∫ τ ′1

−∞
dτ ′2

∫ t′r

−∞
dτ3

∫ τ3

−∞
dτ4

∫ t′s+τs

−∞
dτ ′3

∫ τ ′3

−∞
dτ ′4

× 〈T Ê†u′R(t′s + τs, rb)Ê
†
v′R(t′r + τr, ra)ÊuL(t′s, ra)ÊvL(t′r, rb)Êu′R(τ ′3, rb)Êv′R(τ ′1, ra)Ê†uL(τ1, ra)Ê†vL(τ3, rb)〉

× E∗p (τ ′2, ra)Ep(τ2, ra)E∗p (τ ′4, rb)Ep(τ4, rb)〈〈gg|T V̂
†
R(τ ′1)V̂L(τ1)V̂R(τ ′2)V̂ †L(τ2)|gg〉〉a〈〈gg|T V̂ †R(τ ′3)V̂L(τ3)V̂R(τ ′4)V̂ †L(τ4)|gg〉〉b,

(S17)

where 〈〈gg|A|gg〉〉 ≡ Tr[|g〉〈A|g〉〈g|] and we have replaced a classical excitation field by its expectation value. Since
the spontaneous emission modes u, u′, v, v′ are initially in the vacuum state, we must expand to second order in each
mode. It is clear that the process of coincidence counting involves four radiation modes, in contrast to the field space
analysis [3]. We further evaluate the time integrals using the explicit time dependence of the spontaneous modes:

Ek(t, r) =
√

2π~ωk/Ωâke−iωkt+ikr and using the continuum limit:
∑
k →

∫∞
−∞ D̃(ωk)dωk2π . In this case the density of

radiation modes is a slowly varying function of frequency: D̃(ω) = Ωω2/π2c3 which allows to take it outside of the
integration with the appropriate replacement of the frequency by a resonant matter frequency. The signal (S16) -
(S17) then reads

R
(i)
B (t′s, ω

′
s; t
′
r, ω
′
r) = D2(ωa)D2(ωb)

∫ ∞
−∞

dτpdτ
′
pdτsdτre

−iω′sτs−iω
′
rτr

∫ ∞
−∞

dtpdt
′
p

× E∗p (tp − τp − t̄p, ra)Ep(tp − t̄p, ra)E∗p (t′p − τ ′p, rb)Ep(t′p, rb)

× 〈g|V̂ (tp − τp)V̂ †(t′r + τr)V̂ (t′r)V̂
†(tp)|g〉a

× 〈g|V̂ (t′p − τ ′p)V̂ †(t′s + τs)V̂ (t′s)V̂
†(t′p)|g〉b, (S18)

R
(ii)
B (t′s, ω

′
s; t
′
r, ω
′
r) = −D2(ωa)D2(ωb)

∫ ∞
−∞

dτpdτ
′
pdτsdτre

−iω′sτs−iω
′
rτr

∫ ∞
−∞

dtpdt
′
p

× E∗p (tp − τp − t̄p, ra)Ep(tp − t̄p, ra)E∗p (t′p − τ ′p, rb)Ep(t′p, rb)

× 〈g|V̂ (tp − τp)V̂ †(t′r + τr)V̂ (t′s)V̂
†(tp)|g〉a

× 〈g|V̂ (t′p − τ ′p)V̂ †(t′s + τs)V̂ (t′r)V̂
†(t′p)|g〉b, (S19)

where D(ω) = 2πD̃(ω)/~Ω and we changed the time variables of the pump pulse. We further assumed that the pulse
is much longer than the dephasing time and extended the time integrations over τp, τ

′
p, tp and t′p to infinity.

We next turn to the matter correlation functions in Eqs. (S18) - (S19). In the hole burning limit dephasing
is short compare to fluctuation time scale and pump delay and detector central times τj � t̄j , Λ−1

α , j = p, s, r,
α = a, b. We further assume a Gaussian excitation pulse with bandwidth σp and central frequency ωp: Ep(t) =

Epe−
1
2σ

2
pt2−iωpt. Assuming that the time and frequency gate bandwidths are broader than the inverse fluctuation time

scale σp, σ
j
T , σ

j
ω � Λα, j = r, s, α = a, b one may neglect the fluctuations during the detection window and pulse

duration such that gα(t′j) ' gα(t̄j), j = r, s, gα(tp) ' gα(0) = 0. Expanding the linewidth functions to second order
in τs, τr and τp and assuming that detector r clicks first: t̄r < t̄s we evaluate the time integrals in Eqs. (S18) - (S19)
using Eq. (S5) and obtain

R
(i)
B (t′s, ω

′
s; t
′
r, ω
′
r) = F (i)

a (t̄r, ω
′
r)F

(i)
b (t̄s, ω

′
s), (S20)

R
(ii)
B (t′s, ω

′
s; t
′
r, ω
′
r) = F (i)

a (t̄r, t̄s, ω
′
r)F

(ii)
b (t̄r, t̄s, ω

′
s)e
−iωab(t′s−t

′
r)−g̃a(t̄r,t̄s)−g̃∗b (t̄r,t̄s), (S21)

where

F (i)
α (t, ω) =

D2(ωα)|µα|4|Ep|2

σpσ̃pασ̃α0(t)
exp

[
− (ωp − ωα)2

2σ̃2
pα

− (ω − ω̃α(t))2

2σ̃α0(t)2

]
, (S22)

F (ii)
α (t1, t2, ω) =

D2(ωα)|µα|4|Ep|2

σpσpα(t1, t2)σα0(t1, t2)
exp

[
− (ωp − ωpα(t1, t2))2

2σ2
pα

− (ω − ωα(t1, t2))2

2σα0(t1, t2)2

]
, α = a, b. (S23)

Here g̃α(t1, t2) = 2iλα
Λα

[Fα(t1)−Fα(t2)] +
[

∆2
α

Λ2
α

+ i λαΛα

]
Fα(t2− t1) with t1 < t2 and the remaining parameters are listed

in Section S4. Combining the bare spectrograms (S20) - (S21) with the detector spectrogram (S6) and using Eq. (9)
we finally obtain Eq. (1).
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S4. GATING AND SPECTRAL DIFFUSION PARAMETERS

In Eq. (1) - (3) the normalization functions for α = a, b and j = r, s:

Cjα0(t) =
D2(ωα)|µα|4|Ep|2

σ̃pασ̃α0(t)[σ̃−2
α0 (t) + σ−2

Dj ]
1/2

, Ijα0(t1, t2) =
D2(ωα)|µα|4|Ep|2

σjpα(t1, t2)σjα0(t1, t2)[(σjα0)−2(t1, t2) + σ−2
Dj ]

1/2
, (S24)

where µα ≡ µαg and ωα ≡ ωα − ωg = ω0
α + λα. Time dependent frequency shifts:

ω̃α(t) = ω0
α − λα +Mα(t)

[
2λα +

∆2
α(ωp − ω0

a − λa)

σ̃2
pα

]
, (S25)

ωrpα(t1, t2) = ω0
α + λα[1−Mα(t2) +Mα(t1)], ωspα(t1, t2) = ω0

α + λα[1 +Mα(t2)−Mα(t1)], (S26)

ωrα(t1, t2) =
1

2
(ωa + ωb)− λαMα(t2 − t1) +Mα(t1)

[
2λα +

∆2
α[ωp − ωrpα(t1, t2)]

σr2pα(t1, t2)

]
,

ωsα(t1, t2) =
1

2
(ωa + ωb) + λαMα(t2 − t1) +Mα(t2)

[
2λα +

∆2
α[ωp − ωspα(t1, t2)]

σs2pα(t1, t2)

]
, (S27)

ωjτα(t1, t2, ω) = ω +
σj2ω

σj2α (t1, t2)
[ωjα(t1, t2)− ω], (S28)

where Mα(t) = e−Λαt. Time dependent dispersions:

σ̃2
pα =

1

2
σ2
p + ∆2

α, σ̃j2α (t) = σ̃2
α0(t) + σ2

Dj , σ̃2
α0(t) = ∆2

α

[
1− ∆2

αM
2
α(t)

σ̃2
pα

]
, σ2

Dj =
1

2
σj2T + σj2ω , (S29)

σr2pα(t1, t2) =
1

2
σ2
p + ∆2

α[1 +Mα(t1)−Mα(t2)], σs2pα(t1, t2) =
1

2
σ2
p + ∆2

α[1 +Mα(t2)−Mα(t1)],

σj2α (t1, t2) = σ2
Dj + σj2a0(t1, t2),

σr2α0(t1, t2) = ∆2
α

[
Mα(t2 − t1)− ∆2

αMα(t1)

σr2pa(t1, t2)

]
, σs2α0(t1, t2) = ∆2

α

[
Mα(t2 − t1)− ∆2

αMα(t2)

σs2pα(t1, t2)

]
, (S30)

σj2τα(t1, t2) = σj2ω

[
1− σj2ω

σj2α (t1, t2)

]
. (S31)

In the absence of fluctuations Λα = 0 α = a, b for the identical detector σrω = σsω = σω and σrT = σsT = σT such that
σ2
D = 1

2σ
2
T + σ2

ω the coincidence counting signal (1) becomes (4) where

Ωτ = ω̄r − ω̄s +
σ2
ω

σ2
a

[ω̄a − ω̄r]−
σ2
ω

σ2
b

[ω̄b − ω̄s], σ2
τ = σ2

ω

[
2− σ2

ω

σ2
a

− σ2
ω

σ2
b

]
, (S32)

η =
Ĩra Ĩ

s
b + Ĩsa Ĩ

r
b

C̃raC̃
s
b + C̃saC̃

r
b

, C̃jα = e
−

(ω̄j−ω̃α)2

2σ2
α , Ĩjα = e

−
(ω̄j−ω̄α)2

2σ2
α

− ω2
ab

4σ2
T , j = r, s. (S33)

Here

ω̄α = ω̃α +
1

2
(ωᾱ − ωα), ω̃α = ωα +

∆2
α(ωp − ωα)

σ̃2
pα

, (S34)
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where ᾱ = a if α = b and ᾱ = b if α = a,

σ2
α = σ2

D + ∆2
α

[
1− ∆2

α

σ̃2
pα

]
. (S35)
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