

Stress cardiovascular MR, stress SPECT and stress echocardiography are non- inferior to upfront invasive coronary angiography as gate-keepers in the investigation and management of patients with stable chest pain: mid term outcomes from the CECaT* Trial (a randomised controlled trial)

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003419
Article Type:	Research
Date Submitted by the Author:	14-Jun-2013
Complete List of Authors:	Thom, Howard; Institute of Public Health, Biostatistics West, Nicholas; Papworth Hospital, Cardiology Hughes, Vikki; Papworth Hospital, Research & Development Dyer, Matthew; Brunel University, Health Economics Research Group Buxton, Martin; Brunel University, Health Economics Research Group Sharples, Linda; Institute of Public Health, Biostatistics Jackson, Christopher; Institute of Public Health, Biostatistics Crean, Andrew; Toronto General Hospital, Cardiology
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Health economics, Health policy, Health services research, Medical management, Radiology and imaging
Keywords:	Adult cardiology < CARDIOLOGY, Ischaemic heart disease < CARDIOLOGY, Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Cardiology < INTERNAL MEDICINE, Cardiovascular imaging < RADIOLOGY & IMAGING

SCHOLARONE[™] Manuscripts

Title: Stress cardiovascular MR, stress SPECT and stress echocardiography are non- inferior to upfront invasive coronary angiography as gate-keepers in the investigation and management of patients with stable chest pain: mid term outcomes from the CECaT* Trial (a randomised controlled trial)

*Cost Effectiveness of non-invasive Cardiac Testing

Howard Thom MSc, Nicholas West MD, FRCP, Vikki Hughes PhD, Matthew Dyer MSc, Martin Buxton MSc, Linda D Sharples PhD, Christopher H Jackson PhD, Andrew M Crean MRCP, FRCR

Affiliations:

MRC Biostatistics Unit, Institute of Public Health, Cambridge CB2 0SR, UK, Howard Thom, biostatistician; Department of Cardiology, Papworth Hospital, Cambridge, CB23 3RE, UK Nicholas West, consultant cardiologist; Research and Development Office, Papworth Hospital, Cambridge, CB23 3RE, UK, Vikki Hughes senior research analyst; Health Economics Research Group, Brunel University, Uxbridge, Middlesex UB8 3PH, UK, Matthew Dyer, research fellow; Health Economics Research Group, Brunel University, Uxbridge, Middlesex UB8 3PH, UK, Martin Buxton, professor; MRC Biostatistics Unit, Institute of Public Health, Cambridge CB2 0SR, UK, Linda D Sharples, senior biostatistician; MRC Biostatistics Unit, Institute of Public Health, Cambridge CB2 0SR, UK, Christopher H Jackson, senior statistician; Division of Cardiology, Toronto General Hospital, Toronto, M5G 2C4, Canada, Andrew M Crean, assistant professor of medicine & radiology.

Corresponding

author: Dr Andrew Crean MRCP FRCR, Division of Cardiology, Toronto General Hospital, 585 University Avenue, Toronto, ON, Canada M5G 2C4
 Tel: 1 416 340 4800 Fax: 1 888 502 6601 Email: andrew.crean@uhn.ca

Clinical Trial registration: ISRCTN 47108462, UKCRN 3696

The CECaT study group were:

Johanna Armstrong, Martin Buxton, Noreen Caine, Richard Coulden, Andrew Crean, Matthew Dyer, Margaret Gillham, Hester Goddard, Kim Goldsmith, Vikki Hughes, Christopher Jackson, Evelyn Lee, Roger Patel, Peter Schofield, Linda Sharples, Emer Sonnex, David Stone, Carmen Treacy

 Idea, Noreen Ca.

 Under, Reger Patel, Redet.

 Jone Carmen Treacy

BMJ Open

Contributorship statement:

HT, MD, MB, LDS, CHJ were involved in economic and statistical analysis. LDS was the senior project statistician, was involved in original study design and takes overall responsibility for statistical portion of the manuscript. All of these individuals contributed to drafting and revision of the manuscript.

VH was involved in study design, patient recruitment, data collection and project management form the projects inception to its conclusion. She also contributed to drafting and revision of the manuscript

NW was responsible for blinded review of clinical data and contributed to drafting and revision of the manuscript.

AC was involved in the original study design, was responsible for the day-to-day clinical aspects of running the trial and was involved in the recruitment and follow up of patients as well as analysis of the cardiac MR studies. He wrote the final manuscript and contributed to its revision. He takes overall responsibility for the integrity of the clinical data. Article summary:

Article focus:

- 1. Is non-invasive imaging a safe and appropriate gate-keeper to coronary angiography in patients with stable chest pain ?
- 2. Is there any difference in cost-effectiveness and cost-utility between the different non-invasive approaches and conventional coronary angiography
- 3. Are patients disadvantaged in any meaningful way by having a non-invasive test to decide whether they should go forward for coronary angiography ?
- 4. How does stress perfusion CMR compare to the more established tests of SPECT-MIBI and stress echocardiography as a gate-keeper to coronary angiography ?

Key messages:

- Non-invasive testing may be used safely as a gate-keeper to coronary angiography in patients with stable chest pain without any material disadvantage to them in terms of survival and quality of life up to 6 years after initial randomisation.
- 2. SPECT-MIBI appears marginally superior statistically to the other non-invasive methods although clinically meaningful differences are small between all strategies.
- 3. Stress perfusion CMR appears to be an effective technique in a stable outpatient population with undiagnosed chest pain.

Strengths and limitations:

- 1. This is the only large randomised prospective trial of a strategy of non-invasive gate-keeper cardiac imaging versus upfront angiography in the literature.
- 2. The cost-utility data are derived from NHS tariffs and our results are not necessarily directly transferrable to other healthcare systems

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	Data abaying statements
3	Data sharing statement:
5	There are no additional data available
6	
7	
8	
9	
10	
11 12	
12	
14	
15	
16	
17	
18 10	
20	
21	
22	
23	
24	
25 26	
27	
28	
29	
30	
32	
33	
34	
35	
36	
38	
39	
40	
41	
42	
43	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
04 55	
56	
57	
58	
59	
00	5
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract

Background

A significant minority of patients with chest pain due to coronary artery disease (CAD) do not experience resolution of symptoms with revascularization. Coronary angiography is the standard for diagnosis, but early results from the CECaT trial showed that functional imaging tests can be used as a gateway for angiography. Cost-effectiveness is assessed in this paper up to 6 years after randomization.

Methods

Patients were randomized to an initial test: angiography (control); Single Photon Emission Computed Tomography; stress cardiac magnetic resonance imaging (CMR); or stress echocardiography. It was recommended that follow-up angiography be performed only after a positive functional test. Clinical outcomes, quality of life and resource use up to 2 years post-treatment were used to estimate cost-effectiveness of each strategy compared to angiography. Incremental cost-effectiveness was assessed from an NHS perspective.

<u>Results</u>

898 patients were randomized. Compared to angiography, mortality was marginally higher in the group randomized to CMR (hazard ratio 2.6, 95%CI 1.1, 6.2). There were no other significant differences between the groups in mortality, quality adjusted survival or costs.

Conclusions

Non-invasive cardiac imaging can be used as the initial diagnostic test to diagnose CAD without adverse effects on patient outcomes or increased costs, relative to angiography.

Key words: MRI, cardiovascular magnetic resonance, comparative effectiveness, SPECT, stress echo, coronary angiography

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Introduction

CAD is common and its management is costly ⁽¹⁾. Revascularisation using bypass surgery (CABG) or percutaneous coronary intervention (PCI) is effective for patients with severe disease ⁽²⁾ but a significant minority of patients do not gain symptomatic relief ⁽³⁾. Data from the COURAGE trial have demonstrated the lack of prognostic benefit from revascularization in the absence of reversible ischemia ⁽⁴⁾. The yield of coronary angiography is variable with one recent large study of nearly 400, 000 patients demonstrating a normalcy rate approaching 40% ⁽⁵⁾. Therefore non-invasive testing to identify those with a low likelihood of obstructive CAD may be safer, cheaper and more appropriate than upfront angiography. This approach is codified in multiple AHA/ACC guidelines on the investigation of stable or suspected angina pectoris in which initial non-invasive imaging is rated as highly appropriate ⁽⁶⁾ (7) (8) (9)

The '**C**ost-Effectiveness of non-invasive **Ca**rdiac **T**esting' (**CECaT**) trial was designed to assess three functional tests - stress echocardiography, single photon emission computed tomography (SPECT) and stress cardiac magnetic resonance imaging (CMR) - as a gatekeeper to coronary angiography (CA) in patients referred for CA with suspected coronary artery disease (CAD). Early clinical and cost-effectiveness estimates have been published and showed that the CMR group had slightly lower mean exercise treadmill time according to the Bruce protocol but otherwise the tests could be considered equally effective ⁽¹⁰⁾. This report provides the main cost-effectiveness and mortality outcomes up to 6 years after randomisation.

Methods

Study design

The design of the study has been described elsewhere ⁽¹⁰⁾ and is reviewed briefly here. All patients referred to Papworth Hospital, UK for non-urgent angiography were eligible for the

study. Inclusion criteria were: established or suspected chronic stable angina and a positive ETT result with subsequent referral for angiography. Exclusion criteria were: recent MI (<3 months), revascularisation (<6 months); urgent need for revascularisation; contra-indication to adenosine or CMR; inability to exercise.

Trial design was of four parallel arms with a 1:1:1:1 randomisation ratio. Randomisation was computer generated and stratified according to Pryor risk assessment ⁽¹¹⁾. Within each Pryor risk group, randomisation was in blocks of length 6 or 8. Sequentially numbered group designation was held in the Research & Development (R&D) Office and was not available to trial personnel. Patients were randomised to their initial diagnostic test - stress SPECT, stress CMR, stress echocardiography, or angiography - by R&D within 4 weeks of recruitment and only after they had given consent and been registered.

Non invasive imaging results were returned with a recommendation to proceed with angiography only when reported as 'positive' for inducible ischemia. Protocol adherence to this recommendation was not mandated by trial design and patients proceeded to angiography if considered clinically indicated. Treatment with PCI or CABG (performed within six months of angiography) or to medical therapy was according to standard practice.

Coronary angiography.

Standard diagnostic angiography was performed from the right femoral artery approach ⁽¹²⁾. A minimum of 5 views of the left and 3 views of the right coronary system were taken ⁽¹³⁾. All examinations were reported by an experienced staff cardiologist and segmental location of disease (if any) recorded.

Stress echocardiography

Beta-blocker medications were stopped 2 days beforehand. Dobutamine was infused at rates of 10- 40 mcg/kg/min, increased at 3 minute intervals. If necessary, 300-600

For peer review only - http://bmjopen8.bmj.com/site/about/guidelines.xhtml

BMJ Open

micrograms of atropine were added at peak stress to achieve 90% of target heart rate. Images were acquired in standard planes in the final minute of each 3 minute stage. Intravenous microspheres were used to delineate the endocardial surface. All examinations were reported by one of two staff cardiologists experienced in stress echocardiography. Studies were positive for ischemia if stress-induced deterioration in contractility was observed.

SPECT

Rest/stress 99mTc sestamibi (99mTc MIBI) SPECT was performed (2 day protocol). A 6 minute adenosine infusion (140J g/kg/min) was employed. 400 MBq 99m-Tc MIBI was administered at 3 minutes after infusion of adenosine was started. Gated SPECT imaging occurred 60 minutes after injection. Tomographic images were assessed for fixed and reversible defects by a single observer (as per established criteria)⁽¹⁴⁾.

CMR

Stress CMR imaging was performed as currently recommended by the Society of Cardiovascular Magnetic Resonance ⁽¹⁵⁾. A 1.5T mobile CMR system and 4-channel phased array surface coil were used (Signa CV/i, GE Medical Systems). Stress/rest dynamic first-pass perfusion imaging was performed. A hybrid fast gradient echo/echoplanar sequence was employed ⁽¹⁶⁾. Adenosine was infused at 140 mcg/kg/min for 4 minutes. After 3 minutes, a bolus of Gadolinium-DTPA (0.1mmol/kg) was delivered at 5mls/sec, followed by a 25ml saline flush. First-pass imaging of the heart occurred over 80 heart beats. A volumetric notched-saturation pre-pulse preserved a constant saturation-recovery time during slice acquisition ⁽¹⁷⁾. 6-8 short axis slices were obtained every 2 heart beats. Rest imaging was repeated after a minimum interval of 15 minutes. Studies were reported as positive if there was an inducible perfusion defect visible for at least 5 frames either: a) in a region of normal wall thickness; or b) in a region of myocardial thinning in the absence of a history of prior myocardial infarction.

Outcomes

The primary outcomes of this follow up study were survival up to a minimum of 2 years posttreatment, quality-adjusted survival and cost-utility of each strategy. Survival status was determined from the Office for National Statistics database, UK (http://www.ons.gov.uk/).

Sample size calculations

The sample size was based on exercise performance and was calculated according to the methodology published in the initial report of the CECaT study ⁽¹⁰⁾.

Statistical and economic analysis

For this study, survival was summarised using Kaplan-Meier estimates and the groups were compared using Cox proportional hazards regression. In sensitivity analysis CABG and PCI were included in the regression analyses as time-dependent covariates to ensure that any differences between the groups was not due to differences in treatment. Inclusion of treatment did not affect comparison of treatment strategies and results of these analyses are not included here.

Patient-specific hospital resource use was collected for 2 years post-*treatment* with revascularisation or medical management. Costs were based on National Health Service 2008/09 prices. Costs available from previous years were inflated using the Hospital and Community Health Services Pay and Prices Index ⁽¹⁸⁾. An annual discount rate of 3.5% was applied to all costs and quality-adjusted life-years (QALYs) after 12 months post-randomisation. Resources costed were: imaging tests; revascularisation; inpatient/outpatient episodes; adverse events; cardiac-related medications. Patient-reported admissions for MI were verified with the admitting hospital and adjudicated.

BMJ Open

Patients completed the EuroQoL EQ-5D questionnaire ⁽¹⁹⁾ at baseline randomisation, 6 months post-treatment, 18 months post-randomization, 18 months post-treatment and 24 months post-treatment. The social tariff for the EQ-5D was applied in order to calculate utility values ⁽²⁰⁾. For exploratory purposes daily utilities were estimated using linear interpolation.

Quality adjusted survival and cost estimates were censored at the last follow up so that mean values over a range of time horizons were estimated using inverse weighting methods ⁽²¹⁾. In the base case we used a time horizon of 3 years since it was the longest period over which results were stable, with acceptable precision. Confidence intervals for costs and QALYs were estimated using bootstrapping with 5000 samples ⁽²²⁾.

Sensitivity analysis

Sensitivity of cost-utility results for different time horizons was assessed by re-estimating results up to 12, 18, 24, 36 and 48 months after randomization. In addition, cardiologists were divided into interventional and non-invasive according to their usual practice, and results were recalculated for each subgroup. With the exception of this *post-hoc* data interrogation, all other results presented derive from intention-to-treat analysis.

The study had IRB approval and full written informed consent was obtained from all participants. All authors had full access to the data and take responsibility for the manuscript as written.

Results

Recruitment and compliance

Between September 2001 and September 2004, 3,201 patients were assessed, 1,981 were excluded and 322 refused entry to the trial. Refusals were more likely to come from women

(46% compared with 31% enrolled into the study, p<0.001) and were significantly older (mean age 64.6, (SD 10.1) compared with study group mean age 61.8, (9.4), p<0.001).

898 patients were randomised. Groups were well matched at baseline (table 1). In each group 69% of patients were high risk for CAD (Pryor score > 0.8). The trial was closed to recruitment in September 2004 after enrolling the pre-specified number of subjects.

One-hundred-seventy-five (78%) SPECT patients, 180 (80%) CMR patients and 169 (75%) stress echo patients were referred on for angiography (**Figure 1**). Between 20% and 25% of patients undergoing non-invasive tests did not require further investigation. Four patients died and four withdrew from the trial early on. Of the remaining patients, revascularization was required in 34% (301/890). There was no significant difference between the groups in patient management (**Figure 1**).

Survival

During the study there were 43 deaths (4.8%). Kaplan-Meier survival curves for the 4 groups are plotted in **Figure 2**. SPECT and stress echo groups were not significantly different from angiography. The CMR group had higher mortality than the angiography group, the hazard ratio was 2.6 (95%Cl 1.1 to 6.2), p=0.032 (**Table 2**). The significant effect of CMR on survival remained when CABG or PCI were included in the models. However, mortality was low in all groups and the absolute mean difference in survival was less than 1 month over 3 years (**Table 2**). Mean survival estimates over 3 years with 95% confidence intervals are shown in **Table 2**.

There were 178 non-fatal adverse events in 116 patients, mostly hospital admissions for chest pain.

Cost-utility

BMJ Open

Table 3 shows some of the highest incurred follow up costs for the 4 groups and shows that patient management varied substantially between individuals. Although angiography was the most expensive of the four initial diagnostic tests, the strategy of initial angiography had lower mean overall cost than stress echo, and was similar to CMR up to 3 years (**Table 2**). Extra costs for patients in the three non-invasive groups was largely due to patients undergoing follow-on angiography. There were no significant differences in overall costs between the groups.

During the study there were no significant differences in EQ-5D between the groups. **Figure 3** shows daily mean EQ-5D utility over time based on interpolation between measurements for survivors who completed the EQ-5D. Using inverse-weighting we calculated QALYs over different time horizons and these are presented up to 3 years in Table 2. Mean QALYs over 3 years in the angiography group was 2.24, which was not significantly different from the other groups. The mean differences between groups are so close to zero in all 3 cases that the cost per QALY estimates are unstable and a cost-minimization approach may be more appropriate. This would favour SPECT.

Sensitivity analysis

The comparisons between the diagnostic strategy groups did not change substantially when we varied the time horizon; the main effect of this was that the variation surrounding estimates increased as the time horizon lengthened due to the heavy censoring (results not shown). **Tables 2a and 2b** show results for interventional and non-invasive cardiologists respectively. Patients who were managed by interventional cardiologists incurred higher costs due to the greater number of tests and revascularization procedures performed, with minimal incremental benefit in QALY.

Discussion

CECaT is the first completed prospective randomized trial to look at the clinical and costeffectiveness of non-invasive imaging in the diagnosis and management of angina. To the best of the authors' knowledge there has been no comparable outcomes trial published on this scale evaluating three independent non-invasive 'gatekeeper' modalities versus initial angiography in stable chest pain. The trial is also unusual in the length of prospective follow up extending to 6 years for mortality outcomes.

We have demonstrated that use of any one of stress CMR, stress echo or stress SPECT as the initial test for a stable chest pain patient leads to non-inferior outcomes in quality of life and cost utility compared to patients randomised to upfront invasive coronary angiography. Typically, non invasive tests perform well in low risk populations because of a negative predictive value which is usually better than the positive predictive value. However, the patient risk profile was relatively high in our study, and despite this there was no significant difference between an initial functional or anatomic approach.

There are several reasons why initial angiography may not have led to clear benefit in our study. Firstly, although angiography has stood at the heart of the diagnostic chest pain pathway, the traditional binary cut-off values of 50% or 70% percentage stenosis by visual estimation were shown in the FAME study to bear little relation to the true physiologic significance of luminal narrowing ⁽²³⁾.

Secondly, data from various countries suggest that not only is coronary angiography often inappropriate when formally rated by expert observers ^{(24) (25)} but that disparate national or regional rates of angiography do not translate into clear mortality benefits between countries ^{(26) (27) (28) (29)} and on occasion may even demonstrate an inverse relationship ⁽³⁰⁾. Contemporary US data from approximately 500,000 PCI procedures collected prospectively in the National Cardiovascular Data Registry demonstrated that, of 145,000 elective PCI cases, roughly 12% were judged inappropriate. Furthermore, the rate of inappropriate

BMJ Open

elective PCI between hospital sites ranged from 0-55% suggesting significant variability in practice ⁽³¹⁾. The data suggest a better way of selecting patients for invasive investigation is needed.

Ischemia-driven revascularisation has been shown to be of benefit in a number of trials, most recently in the FAME study in which an invasive method of measuring the flow reserve of the microcirculation (Fractional Flow Reserve, FFR) was used to allocate patients to intervention or observation vs a clinical decision on intervention based on angiography alone ⁽³²⁾. At 2 years follow up there were clear survival and MACE benefits to the FFR-based approach.

The ACRE study reported that, up to 6 years after diagnosis, medical management was a more cost-effective strategy for angina compared with PCI ⁽³³⁾. The lack of evidence for survival from revascularisation - except for selected patients with evidence of ischemia - was also seen in the COURAGE trial ⁽⁴⁾. Critics have suggested this may be because randomization to PCI versus OMT was made *after* coronary angiography had been performed, potentially leading to a recruitment bias of patients with less severe disease. In the CECaT trial this bias was avoided by randomization to a management strategy defined by the non-invasive test result for each of the 3 functional arms of the trial. In a relatively high risk population, we demonstrated no clinically significant survival or economic detriment from using non-invasive imaging as a gate-keeper to catheterization. Similarly, quality of life was not significantly different across all four groups and these differences extended to a warranty period of at least 3 years.

We did observe a marginal decrease in survival in the CMR arm. The reasons for the difference are unclear but do not relate to patient characteristics or management with CABG or PCI. Although statistically significant, the mean survival difference from the other groups was only 4 weeks over 3 years and is unlikely to be clinically meaningful. Since recent work

has established a strong correspondence between FFR measurements and stress CMR perfusion indices it would be surprising if CMR were genuinely inferior to other modalities for risk stratification ⁽³⁴⁾. Indeed several recent publications have highlighted the incremental prognostic data (above that obtained from clinical variables) derived from several thousand perfusion CMR studies ^{(35) (36)}.

Given the recent publication of the CEMARC trial ⁽³⁷⁾ in which a clear diagnostic superiority was demonstrated for stress CMR over SPECT, it is interesting that our data nonetheless show an equivalence in functional health status between those randomized to SPECT versus CMR in the CECaT trial. The implication may be that although CMR detects the presence of *any* ischemia with a greater sensitivity it is the *overall burden* of ischemia that alters a patient's prognosis. As such, it has not yet been demonstrated that the higher diagnostic accuracy of CMR translates into better long-term patient outcomes – a fact acknowledged by Greenwood et al subsequent to CEMARC's publication ⁽³⁸⁾. In this context the CECaT nuclear results are congruent with numerous past publications and reconfirm the reassuring warranty period of a normal SPECT study.

Cost effectiveness

There was no significant difference in cost-effectiveness between the angiography -asdefault group and the non-invasive test groups up to 3 years, perhaps relating to the higherthan-anticipated rate of referral for angiography after negative functional tests. Protocol deviation of this kind is not infrequent in trials of non-invasive technology. In the recent PARR-2 study of patients undergoing fluorodeoxyglucose positron emission tomography for the assessment of viability, roughly 25 % of the study population did not adhere to protocol ⁽³⁹⁾. The willingness of a cardiologist to defer referral for coronary angiography in the face of a normal non-invasive study may in part reflect individual prejudices and job description (interventional versus non-invasive) as demonstrated in a recent survey of cardiology attitudes ⁽⁴⁰⁾ and was also reflected in our own data.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

In CECaT, 20-25% of patients receiving a non-invasive test did not go on to have angiography. A proportion of the additional cost in the non-invasive arms related to angiography and PCI in the patients with a *negative* test, although only very few subsequently required CABG - a robust marker of significant disease - during follow-up. This readiness to employ PCI in a group in whom the indication/benefit is debatable was also seen in the ACRE trial ⁽³³⁾ and reflects understandable clinical response to uncertainty but also the easy access to PCI in healthcare systems without barriers to self-referral ⁽⁴¹⁾. Similarly, studies from the US have demonstrated a greater willingness to use coronary angiography when available 'on site' as is increasingly seen even in small-to-medium sized hospitals ^{(42) (43) (44)}.

Cost effectiveness of each non-invasive technique

Nuclear myocardial perfusion imaging

The END study used propensity matching to compare a large cohort of patients referred for either gate-keeper myocardial perfusion imaging or upfront angiography – this non randomised study demonstrated a significant cost reduction in the (45) nuclear arm. In contrast to this and other work^{(46) (47) (48)} we were unable to show a significant difference in cost effectiveness in our own study. To some extent this reflected the participating physician bias towards angiography during the period of trial recruitment (2001-2006) with many patients referred for angiography despite normal perfusion studies. This continues in the contemporary era with Chan et al demonstrating that almost 80% of Delphi-adjudicated inappropriate elective PCIs were performed following either low risk ischemia imaging in mildly symptomatic patients or intermediate risk imaging in entirely asymptomatic patients ⁽³¹⁾.

In the CECaT study, when PCI was performed despite a negative initial non-invasive test, this occurred because subsequent angiography indicated 'significant' stenosis. This was a clinical judgment based on 'eyeball assessment' of lesion severity as has been reported in clinical trials with angiographic end points ⁽⁴⁹⁾. However, the severity and functional significance of many stenoses may be over-called, even by quantitative assessment, when compared with physiological assessment of fractional flow reserve across the lesion ^{(50) (51)}. Further improvement in cost-effectiveness could likely have been achieved in the nuclear arm of the trial. Our post-trial practice is to perform the stress SPECT first - and if this is negative - cancel the rest test, likely augmenting the relative cost-effectiveness of SPECT ⁽⁵²⁾.

CMR

There are no other real-world data in the literature of which the authors are aware regarding the cost effectiveness of CMR .

Stress echo

Stress echocardiography may be a more cost-effective strategy than angiography for men aged 50-60 with CAD prevalence of 50%^{(53), 47}. There is also some evidence that stress echo is more cost-effective than SPECT as an initial test ^{(54) (55)}, especially in women with suspected CAD ⁽⁵⁶⁾. A similar benefit was not seen in our study probably because of the high disease prevalence in our population. The lack of superiority of either stress echo compared to upfront catheterisation was also evident in a recent Polish study of 600 patients with a similar age, gender and disease prevalence to our own study population ⁽⁵⁷⁾.

Taken overall, our data clearly demonstrate a limited future role for cost-effective noninvasive imaging if referring physicians are not willing to accept a negative result as ground truth. This might be interpreted as reflecting a need for greater physician education since we

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

showed a clear difference in onward referral rates for angiography after a negative test between interventional and non-invasive cardiologists.

Clinical effectiveness

We demonstrated that SPECT can obviate the need for coronary angiography for a significant number of patients without any clinical detriment. In the stress echo group clinical outcomes were also comparable to the angiography subgroup at 18 months. The CMR group had statistically marginally poorer survival and this follows our earlier finding that CMR patients had significantly worse exercise tolerance at 18 months after randomisation ⁽¹⁰⁾. This is difficult to explain on the basis of Pryor risk score or other baseline clinical variables. However, the mean difference in survival between the CMR arm and the other groups was only 4 weeks and thus of marginal clinical significance. More importantly, the CMR group were not otherwise disadvantaged – compared to the angiographic control group - with respect to major adverse events, other resource use, or quality of life.

Limitations

This study was carried out in a single specialist cardiothoracic centre with a significant proportion of high risk, predominantly white European, male patients. Those eligible who refused the trial were older and were more likely to be women.

We used the technology that was available to us at the onset of the trial. At that time, we were not able to use attenuation correction for SPECT imaging; however this was also not used in the much more recent CEMARC trial⁽³⁷⁾. Similarly, we performed our CMR exams in a mobile facility on a 1.5T scanner with only modest coil technology and limited temporal and anatomic coverage that would compare unfavourably with the 3T whole heart high resolution perfusion studies available today.

The trial aimed to reflect the strategy of using non-invasive imaging as a gateway to angiography in *contemporary clinical practice*. The test results were considered in conjunction with other information available at the time. Thus it was not the aim to formally assess diagnostic accuracy of the non-invasive tests in this context. This trial-based study was limited to 3 year cost-effectiveness follow up - longer-term economic models would provide lifetime estimates of the cost-effectiveness of the non-invasive strategies.

Conclusions

We have demonstrated in the CECaT trial that stress echo, stress CMR and stress SPECT may each be used to defer invasive coronary angiography without clinical detriment or significant excess costs in an outpatient population with stable chest pain.

Acknowledgements

The original CECaT study was funded by a grant from the UK National Health Service R&D Health Technology Assessment Program (project no. 99/26/04). HT, CJ and LDS were supported by the Medical Research Council [Programme number U015232027].

Competing interests

All authors have completed the ICMJE uniform disclosure form at http://www.icmje.org/coi_disclosure.pdf and declare: support from the UK National Health Service R&D Health Technology Assessment Program (project no. 99/26/04) and the UK Medical Research Council [Programme number U015232027] for the submitted work ; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work

Exclusive licence statement

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in BMJ editions and any other BMJPGL products and sublicences to exploit all subsidiary rights, as set out in our licence

(http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication).

Contributorship statement

HT performed literature review, data analysis and interpretation; NW was involved in image analysis, drafting the manuscript and critical revision; VH was involved in recruiting the patients, data management, administering health questionnaires, data analysis and drafting the manuscript; MD and MB were responsible for data analysis, health economic assessment, drafting the manuscript and critical revision; LDS was responsible for study design, trial management, statistical analysis, drafting the manuscript and critical revision; CJ performed statistical and health economic analysis, drafting the manuscript and critical revision; AMC was involved in study design, patient recruitment, image interpretation, trial management, drafting the manuscript and critical revision and is the overall guarantor of manuscript integrity.

All authors have read the manuscript in its submitted form and have provided final approval for publication.

Table 1 Baseline characteristics*

	Angiography	SPECT	Cardiac MRI	Stress Echo
Demographics	(n=222)	(n=224)	(n=226)	(n=226)
Mean (SD) age (years)	60.7 (9.1)	62.1 (9.5)	62.2 (9.0)	61.9 (9.9)
Males (%)	149 (67%)	157 (70%)	153 (68%)	160 (71%)
Mean (SD) BMI (kg/m²)	27.6 (4.2)	27.3 (4.3)	28.0 (4.4)	27.9 (4.2)
History/risk factors				
Previous MI (%)	63 (28%)	52 (23%)	69 (31%)	59 (26%)
Previous CVA (%)	10 (5%)	13 (6%)	8 (4%)	12 (5%)
Peripheral VD (%)	20 (9%)	21 (9%)	17 (8%)	18 (8%)
Diabetes(%)				
IDDM	12 (5%)	8 (4%)	11 (5%)	5 (2%)
NIDDM	16 (7%)	18 (8%)	21 (9%)	22 (10%)
Family history CAD	60 (27%)	55 (25%)	63 (28%)	59 (26%)
Smoking history (%)				
<25 pack years	149 (67%)	162 (72%)	148 (65%)	155 (69%)
>=25 pack years	73 (33%)	62 (28%)	78 (35%)	71 (31%)
Treated hyperlipidaemia	164 (74%)	171 (76%)	179 (79%)	179 (79%)
(%)				
Treated hypertension (%)	117 (53%)	132 (59%)	115 (51%)	129 (57%)
Exercise tolerance ^a				
Mean (SD) total exercise	11.29 (4.56)	10.46 (4.41)	10.43 (4.43)	10.89 (4.36)
time (mins)				
Angina during EET	108 (49%)	96 (43%)	111 (49%)	117 (52%)
ECG changes on exercise te	est			
1-2 mm ST depression	53 (24%)	43 (19%)	54 (24%)	57 (25%)
with symptoms				

BMJ Open

>= 2mm ST depression	16 (7%)	24 (11%)	20 (9%)	24 (11%)
without symtoms				
ST elevation/ no change	153 (69%)	157 (70%)	152 (67%)	145 (64%)
CCS class				
0-1	60 (27%)	54 (24%)	78 (35%)	58 (26%)
II	138 (62%)	144 (64%)	122 (54%)	132 (58%)
III-IV	24 (11%)	26 (12%)	26 (11%)	36 (16%)

* There were no significant differences between the groups in any variable

	Angiography	SPECT	Cardiac MRI	Stress Echo
	(n=222)	(n=224)	(n=226)	(n=226)
Hazard ratio for death	Baseline	0.99	2.60	1.42
(95%CI)		(0.35,2.85)	(1.09,6.22)	(0.54,3.74)
Mean survival (years)	2.96	2.95	2.90	2.94
(95%CI)	(2.92, 2.99)	(2.90, 2.99)	(2.83, 2.95)	(2.89, 2.97)
Mean difference vs. CA	-	-0.01	-0.06	-0.02
(95%CI)	5 -	(-0.07,0.05)	(-0.14, 0.01)	(-0.08, 0.04)
Mean QALYs	2.24	2.27	2.18	2.27
(95%CI)	(2.16,2.30)	(2.20,2.33)	(2.11,2.25)	(2.20,2.33)
Mean difference vs. CA	_	0.03	-0.05	0.03
(95%CI)	_	(-5.30,1.20)	(-4.50,2.01)	(-3.08,3.95)
Mean discounted costs (£)	5189	4549	4839	5421
(95%CI)	(4235, 6410)	(4095, 5030)	(4363, 5329)	(4753, 6148)
Mean difference vs. CA	-	-640	-349	232
(95%CI)		(-1933, 436)	(-1642, 735)	(-1123, 1441)

Table 2 Cost-effectiveness summaries to 3 years post randomization

BMJ Open

Table 2a Cost-effectiveness summaries for patients managed by interventionalcardiologists to 3 years post randomization

	Angiography	SPECT	Cardiac MRI	Stress Echo
	(n=222)	(n=224)	(n=226)	(n=226)
Mean survival (years)	2.96	2.97	2.89	2.96
(95%CI)	(2.91, 2.98)	(2.93, 3.00)	(2.80, 2.97)	(2.90, 2.98)
Mean difference vs. CA	-	0.01	-0.07	0
(95%CI)	-	(-0.05,0.07)	(-0.17, 0.02)	(-0.07,0.05)
Mean QALYs	2.25	2.29	2.21	2.2
(95%CI)	(2.14,2.36)	(2.19,2.38)	(2.10,2.32)	(2.09,2.29)
Mean difference vs. CA		0.03	-0.04	-0.06
(95%CI)	_	(-5.48,2.06)	(-5.22,2.21)	(-3.11,6.17)
Mean discounted costs (£)	5664	5095	5176	6198
(95%CI)	(4591, 6862)	(4361, 5882)	(4476, 5887)	(5028, 7521)
Mean difference vs. CA	-	-569	-487	534
(95%CI)		(-2001, 751)	(-1906, 806)	(-1136, 2251)

Table 2b Cost-effectiveness summaries for patients managed by non-interventionalcardiologists to 3 years post randomization

	Angiography	SPECT	Cardiac MRI	Stress Echo
	(n=222)	(n=224)	(n=226)	(n=226)
Mean survival (years)	2.95	2.93	2.9	2.92
(95%CI)	(2.89, 2.99)	(2.85, 2.98)	(2.81, 2.97)	(2.85, 2.98)
Mean difference vs. CA	-	-0.02	-0.05	-0.03
(95%CI)	-	(-0.11,0.06)	(-0.15, 0.04)	(-0.11, 0.05)
Mean QALYs	2.23	2.25	2.17	2.32
(95%CI)	(2.14,2.31)	(2.16,2.33)	(2.07,2.26)	(2.23,2.41)
Mean difference vs. CA		0.02	-0.06	0.09
(95%CI)	-	(-7.32,1.90)	(-5.98,3.37)	(-5.84,3.39)
Mean discounted costs (£)	4924	4151	4637	4693
(95%CI)	(3639, 6731)	(3583, 4748)	(3994, 5307)	(4054, 5365)
Mean difference vs. CA	-	-774	-287	-231
(95%CI)		(-2672, 692)	(-2183,1229)	(-2133, 1238)

BMJ Open

Table 3 Summary of the frequency of use of the main resource use elements duringfollow up (excluding initial diagnostic test)

	Angiography	SPECT	Cardiac MRI	Stress Echo
Resource use (unit cost)	(n=222)	(n=224)	(n=226)	(n=226)
CABG (£7195)	28	33	28	34
PCI (£3660)	57	46	60	62
Other hospital admission	36	29	28	53
(£467 per day)				
Angiography (£951)	12	183	175	181
SPECT (£902)	16	3	3	6
Cardiac MRI (£307)	5	5	12	5
Echocardiography (£59)	30	17	24	18
PET scan (£842)	0	3	0	1
Preadmission clinic (£85)	22	21	27	24
Follow up clinic (£85)	19	22	31	21
Outpatient visits (£143)	247	270	300	284
Myocardial Infarctions	3	4	5	10

Figure Legends

Figure 2 Kaplan-Meier survival estimates according to initial modality of diagnosis

BMJ Open

Figure 3 Quality of life assessed by EQ5D over time

References

 NICE. Myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction: National Institute for Clinical Excellence 2003; Technology Appraisal Guidance 73.

2. Boden WE. Surgery, angioplasty, or medical therapy for symptomatic multivessel coronary artery disease: is there an indisputable "winning strategy" from evidence-based clinical trials? Journal of the American College of Cardiology. 2004;43(10):1752-4. Epub 2004/05/18.

 Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass surgery. Quality of life in patients randomly assigned to treatment groups. Circulation. 1983;68(5):951-60. Epub 1983/11/01.

4. Boden WE, O'Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. The New England journal of medicine. 2007;356(15):1503-16. Epub 2007/03/28.

 Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. The New England journal of medicine.
 2010;362(10):886-95. Epub 2010/03/12.

6. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al. ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Journal of the American College of Cardiology. 2002;40(8):1531-40. Epub 2002/10/24.

7. Douglas PS, Khandheria B, Stainback RF, Weissman NJ, Peterson ED, Hendel RC, et al. ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 appropriateness criteria for stress echocardiography: a report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, American Society of Echocardiography, American College of Emergency Physicians, American Heart Association, American Society of Nuclear

Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance endorsed by the Heart Rhythm Society and the Society of Critical Care Medicine. Journal of the American College of Cardiology. 2008;51(11):1127-47. Epub 2008/03/18.

8. Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging: A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Journal of the American College of Cardiology. 2009;53(23):2201-29. Epub 2009/06/06.

9. Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation. 2010;121(22):2462-508. Epub 2010/05/19.

10. Sharples L, Hughes V, Crean A, Dyer M, Buxton M, Goldsmith K, et al. Costeffectiveness of functional cardiac testing in the diagnosis and management of coronary artery disease: a randomised controlled trial. The CECaT trial. Health Technol Assess. 2007;11(49):iii-iv, ix-115. Epub 2007/11/21.

11. Pryor DB, Shaw L, McCants CB, Lee KL, Mark DB, Harrell FE, Jr., et al. Value of the history and physical in identifying patients at increased risk for coronary artery disease. Annals of internal medicine. 1993;118(2):81-90. Epub 1993/01/15.

12. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta radiologica. 1953;39(5):368-76. Epub 1953/05/01.

13. Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer GJ, Eagle KA, et al. ACC/AHA guidelines for coronary angiography. A report of the American College of

BMJ Open

2
3
4
5
6
7
8
ă
10
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
24
25
26
27
28
29
30
31
20
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
40 17
4/
48 46
49
50
51
52
53
54
55
55
56
57
58
59
60
~ ~

Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. Journal of the American College of Cardiology. 1999;33(6):1756-824. Epub 1999/05/20.

14. Wackers FJ. Exercise myocardial perfusion imaging. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 1994;35(4):726-9. Epub 1994/04/01.

15. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2004;6(4):727-65. Epub 2005/01/14.

16. Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Multi-echo segmented k-space imaging: an optimized hybrid sequence for ultrafast cardiac imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 1999;41(2):375-85. Epub 1999/03/18.

17. Canet EP, Janier MF, Revel D. Magnetic resonance perfusion imaging in ischemic heart disease. Journal of magnetic resonance imaging : JMRI. 1999;10(3):423-33. Epub 1999/10/03.

 Netten A CL. Unit costs of health and social care 2005. University of Kent: Public Social Services Research Unit (PSSRU), 2005.

19. Kind P. The EuroQol instrument: an index of health-related quality of life. In: SpikerB, editor. Quality of life and pharmacoeconomics in clinical trials. Philadelphia, PA:Lippincott-Raven; 1996.

20. Dolan P GC, Kind P. A social tariff for EuroQol: results from a UK general population survery 1995.

21. Willan AR, Lin DY, Cook RJ, Chen EB. Using inverse-weighting in cost-effectiveness analysis with censored data. Statistical methods in medical research. 2002;11(6):539-51. Epub 2003/01/09.

22. Efron B TR. An introduction to the bootstrap. San Francisco: Chapman and Hall;1993.

23. Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. Journal of the American College of Cardiology. 2010;55(25):2816-21. Epub 2010/06/29.

24. Mozes B, Shabtai E. The appropriateness of performing coronary angiography in two major teaching hospitals in Israel. International journal for quality in health care : journal of the International Society for Quality in Health Care / ISQua. 1994;6(3):245-9. Epub 1994/09/01.

25. Gray D, Hampton JR. Methods of establishing criteria for purchasing coronary angiography in the investigation of chest pain. Journal of public health medicine. 1994;16(4):399-405. Epub 1994/12/01.

26. Guadagnoli E, Hauptman PJ, Ayanian JZ, Pashos CL, McNeil BJ, Cleary PD. Variation in the use of cardiac procedures after acute myocardial infarction. The New England journal of medicine. 1995;333(9):573-8. Epub 1995/08/31.

27. Mark DB, Naylor CD, Hlatky MA, Califf RM, Topol EJ, Granger CB, et al. Use of medical resources and quality of life after acute myocardial infarction in Canada and the United States. The New England journal of medicine. 1994;331(17):1130-5. Epub 1994/10/27.

28. Rouleau JL, Moye LA, Pfeffer MA, Arnold JM, Bernstein V, Cuddy TE, et al. A comparison of management patterns after acute myocardial infarction in Canada and the United States. The SAVE investigators. The New England journal of medicine. 1993;328(11):779-84. Epub 1993/03/18.

29. Tu JV, Pashos CL, Naylor CD, Chen E, Normand SL, Newhouse JP, et al. Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada. The New England journal of medicine. 1997;336(21):1500-5. Epub 1997/05/22.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3	
4	
5	
6	
7	
6	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
~~	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
37	
38	
39	
40	
41	
42	
12	
43	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
50	
50	
59	
60	

30. Selby JV, Fireman BH, Lundstrom RJ, Swain BE, Truman AF, Wong CC, et al. Variation among hospitals in coronary-angiography practices and outcomes after myocardial infarction in a large health maintenance organization. The New England journal of medicine. 1996;335(25):1888-96. Epub 1996/12/19.

Chan PS, Patel MR, Klein LW, Krone RJ, Dehmer GJ, Kennedy K, et al.
 Appropriateness of percutaneous coronary intervention. JAMA : the journal of the American Medical Association. 2011;306(1):53-61. Epub 2011/07/07.

32. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. Journal of the American College of Cardiology. 2010;56(3):177-84. Epub 2010/06/12.

33. Griffin SC, Barber JA, Manca A, Sculpher MJ, Thompson SG, Buxton MJ, et al. Cost effectiveness of clinically appropriate decisions on alternative treatments for angina pectoris: prospective observational study. BMJ. 2007;334(7594):624. Epub 2007/03/07.

Watkins S, McGeoch R, Lyne J, Steedman T, Good R, McLaughlin MJ, et al.
Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation. 2009;120(22):2207-13.
Epub 2009/11/18.

35. Krittayaphong R, Chaithiraphan V, Maneesai A, Udompanturak S. Prognostic value of combined magnetic resonance myocardial perfusion imaging and late gadolinium enhancement. The international journal of cardiovascular imaging. 2011;27(5):705-14. Epub 2011/04/12.

36. Bingham SE, Hachamovitch R. Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events. Circulation. 2011;123(14):1509-18. Epub 2011/03/30.

37. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al.
Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet.
2012;379(9814):453-60. Epub 2011/12/27.

Greenwood JP. CMR versus SPECT for diagnosis of coronary heart disease –
 Authors' reply The Lancet. 2012;379(9832):2147 - 8.

39. Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. F-18fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). Journal of the American College of Cardiology. 2007;50(20):2002-12. Epub 2007/11/13.

40. Maron DJ, Stone GW, Berman DS, Mancini GB, Scott TA, Byrne DW, et al. Is cardiac catheterization necessary before initial management of patients with stable ischemic heart disease? Results from a Web-based survey of cardiologists. American heart journal. 2011;162(6):1034-43 e13. Epub 2011/12/06.

41. Nallamothu BK, Rogers MA, Chernew ME, Krumholz HM, Eagle KA, Birkmeyer JD. Opening of specialty cardiac hospitals and use of coronary revascularization in medicare beneficiaries. JAMA : the journal of the American Medical Association. 2007;297(9):962-8. Epub 2007/03/08.

42. Feit F, Mueller HS, Braunwald E, Ross R, Hodges M, Herman MV, et al.
Thrombolysis in Myocardial Infarction (TIMI) phase II trial: outcome comparison of a
"conservative strategy" in community versus tertiary hospitals. The TIMI Research Group.
Journal of the American College of Cardiology. 1990;16(7):1529-34. Epub 1990/12/01.

43. Blustein J. High-technology cardiac procedures. The impact of service availability on service use in New York State. JAMA : the journal of the American Medical Association. 1993;270(3):344-9. Epub 1993/07/21.

44. Every NR, Larson EB, Litwin PE, Maynard C, Fihn SD, Eisenberg MS, et al. The association between on-site cardiac catheterization facilities and the use of coronary

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

angiography after acute myocardial infarction. Myocardial Infarction Triage and Intervention Project Investigators. The New England journal of medicine. 1993;329(8):546-51. Epub 1993/08/19.

 Shaw LJ, Hachamovitch R, Berman DS, Marwick TH, Lauer MS, Heller GV, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. Journal of the American College of Cardiology. 1999;33(3):661-9. Epub 1999/03/18.
 Mowatt G, Vale L, Brazzelli M, Hernandez R, Murray A, Scott N, et al. Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction. Health Technol Assess. 2004;8(30):iii-iv, 1-207. Epub 2004/07/14.

47. Underwood SR, Godman B, Salyani S, Ogle JR, Ell PJ. Economics of myocardial perfusion imaging in Europe--the EMPIRE Study. European heart journal. 1999;20(2):157-66. Epub 1999/04/01.

48. Underwood SR, Shaw LJ, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint J, et al. Myocardial perfusion scintigraphy and cost effectiveness of diagnosis and management of coronary heart disease. Heart. 2004;90 Suppl 5:v34-6. Epub 2004/07/16.

49. Uchida T, Popma J, Stone GW, Ellis SG, Turco MA, Ormiston JA, et al. The clinical impact of routine angiographic follow-up in randomized trials of drug-eluting stents: a critical assessment of "oculostenotic" reintervention in patients with intermediate lesions. JACC Cardiovascular interventions. 2010;3(4):403-11. Epub 2010/04/20.

50. Christou MA, Siontis GC, Katritsis DG, Ioannidis JP. Meta-analysis of fractional flow reserve versus quantitative coronary angiography and noninvasive imaging for evaluation of myocardial ischemia. The American journal of cardiology. 2007;99(4):450-6. Epub 2007/02/13.

51. Gould KL. Does coronary flow trump coronary anatomy? JACC Cardiovascular imaging. 2009;2(8):1009-23. Epub 2009/08/15.
52. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. Journal of the American College of Cardiology. 2010;55(3):221-30. Epub 2009/11/17.

53. Kuntz KM, Fleischmann KE, Hunink MG, Douglas PS. Cost-effectiveness of diagnostic strategies for patients with chest pain. Annals of internal medicine.
1999;130(9):709-18. Epub 1999/06/05.

54. Hayashino Y, Nagata-Kobayashi S, Morimoto T, Maeda K, Shimbo T, Fukui T. Costeffectiveness of screening for coronary artery disease in asymptomatic patients with Type 2 diabetes and additional atherogenic risk factors. Journal of general internal medicine. 2004;19(12):1181-91. Epub 2004/12/22.

55. Tan SS, Oppe M, Zoet-Nugteren SK, Niezen RA, Kofflard MJ, Ten Cate FJ, et al. A microcosting study of diagnostic tests for the detection of coronary artery disease in The Netherlands. European journal of radiology. 2009;72(1):98-103. Epub 2008/08/16.

56. Kim C, Kwok YS, Saha S, Redberg RF. Diagnosis of suspected coronary artery disease in women: a cost-effectiveness analysis. American heart journal. 1999;137(6):1019-27. Epub 1999/05/29.

57. Lewandowski M, Szwed H, Kowalik I. Searching for the optimal strategy for the diagnosis of stable coronary artery disease. Cost-effectiveness of the new algorithm. Cardiology journal. 2007;14(6):544-51. Epub 2008/07/25.

Page 37 of 39

Initial test randomised to

CONSORT diagram describing trial recruitment and randomisation 190x254mm (96 x 96 DPI)

Kaplan-Meier survival estimates according to initial modality of diagnosis 254x190mm (96 x 96 DPI)

169x169mm (72 x 72 DPI)

Cost effectiveness of initial stress cardiovascular MR, stress SPECT or stress echocardiography as a gatekeeper test, compared to upfront invasive coronary angiography in the investigation and management of patients with stable chest pain: mid term outcomes from the CECaT* randomised controlled trial

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003419.R1
Article Type:	Research
Date Submitted by the Author:	20-Oct-2013
Complete List of Authors:	Thom, Howard; Institute of Public Health, Biostatistics West, Nicholas; Papworth Hospital, Cardiology Hughes, Vikki; Papworth Hospital, Research & Development Dyer, Matthew; Brunel University, Health Economics Research Group Buxton, Martin; Brunel University, Health Economics Research Group Sharples, Linda; Institute of Public Health, Biostatistics Jackson, Christopher; Institute of Public Health, Biostatistics Crean, Andrew; Toronto General Hospital, Cardiology
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Health economics, Health policy, Health services research, Medical management, Radiology and imaging
Keywords:	Adult cardiology < CARDIOLOGY, Ischaemic heart disease < CARDIOLOGY, Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Cardiology < INTERNAL MEDICINE, Cardiovascular imaging < RADIOLOGY & IMAGING

SCHOLARONE[™] Manuscripts

Page 1 of 41		BMJ Open	
1			
2 3			
4 5	1	Title: Cost effectiveness of initial stress cardiovascular MR, stress SPECT or stress	
6 7	2	echocardiography as a gatekeeper test, compared to upfront invasive coronary	
8	3	angiography in the investigation and management of patients with stable chest	
9 10 11	4	pain: mid term outcomes from the CECaT* randomised controlled trial	
12	5		
13 14	67	*Cost Effectiveness of non-invasive Cardiac Testing	
15	8		
16 17	9	Howard Thom MSc, Nicholas West MD, FRCP, Vikki Hughes PhD, Matthew Dyer	
18 19	10	MSc, Martin Buxton MSc, Linda D Sharples PhD, Christopher H Jackson PhD,	
20 21	11	Andrew M Crean MRCP, FRCR	
22	12		
23 24	13	Affiliations:	
25 26 27	14	MRC Biostatistics Unit, Institute of Public Health, Cambridge CB2 0SR, UK, Howard Thom,	
28 29	15	biostatistician; Department of Cardiology, Papworth Hospital, Cambridge, CB23 3RE, UK	
30 31	16	Nicholas West, consultant cardiologist; Research and Development Office, Papworth	
32 33	17	Hospital, Cambridge, CB23 3RE , UK ,Vikki Hughes senior research analyst; Health	
34 35	18	Economics Research Group, Brunel University, Uxbridge, Middlesex UB8 3PH, UK, Matthew	
36 37	19	Dyer, research fellow; Health Economics Research Group, Brunel University, Uxbridge,	
38 39	20	Middlesex UB8 3PH, UK, Martin Buxton, professor; MRC Biostatistics Unit, Institute of Public	
40 41	21	Health, Cambridge CB2 0SR, UK, Linda D Sharples, statistician; MRC Biostatistics Unit,	
42 43	22	Institute of Public Health, Cambridge CB2 0SR, UK, Christopher H Jackson, senior	
44 45	23	statistician; Division of Cardiology, Toronto General Hospital, Toronto, M5G 2C4, Canada,	
46 47	24	Andrew M Crean, assistant professor of medicine & radiology.	
48 49	25		
49 50 51	26	Corresponding author: Dr Andrew Crean MRCP FRCR, Division of Cardiology, Toronto	
52 53	27	General Hospital, 585 University Avenue, Toronto, ON, Canada M5G 2C4	
54 55	28	Tel: 1 416 340 4800 Fax: 1 888 502 6601 Email: andrew.crean@uhn.ca	
56 57	29	Clinical Trial registration: ISRCTN 47108462, UKCRN 3696	
58 59 60		1	

1		
3	30	The CECaT study group were:
4 5	31	Johanna Armstrong, Martin Buxton, Noreen Caine, Richard Coulden, Andrew Crean,
6 7	32	Matthew Dyer, Margaret Gillham, Hester Goddard, Kim Goldsmith, Vikki Hughes, Evelyn
8 9	33	Lee, Roger Patel, Peter Schofield, Linda Sharples, Emer Sonnex, David Stone, Carmen
10	34	Treacy
12 13 14	35	Key words: MRI, cardiovascular magnetic resonance, comparative effectiveness, SPECT,
14 15 16	36	stress echo, coronary angiography
17 18	37	Trial registration: ISRCTN 47108462, UKCRN 3696
19 20	38	
21 22	39	
23 24	40	
25 26	41	
27 28	42	
29 30	43	
31 32	44	
33 34	45	
35 36	46	
37 38	47	
39 40	48	
41 42	49	
43 44	50	
45 46	51	
47 48	52	
49 50	53	
51 52	54	
53 54	55	
ວວ 56 57	56	
57 58 59	57	
60		

BMJ Open

2 3	58	Abstract
4 5	59	Objectives: to compare outcomes and cost effectives of various initial imaging strategies on
6 7	60	the management of stable chest pain in a long term prospective randomized trial.
8 9 10	61	Setting: regional cardiothoracic referral center in the east of England
10 11 12	62	Participants: 898 patients (69% male) entered the study with 869 alive at 2yr follow up.
13 14	63	Patients were included if they presented for assessment of stable chest pain with a positive
15 16	64	exercise test and no prior history of ischemic heart disease. Exclusion criteria were recent
17 18	65	infarction, unstable symptoms or any contra-indication to stress MRI.
19 20	66	Primary outcome measures: The primary outcomes of this follow up study were survival up
21 22	67	to a minimum of 2 years post-treatment, quality-adjusted survival and cost-utility of each
23 24	68	strategy
25 26	69	Results: 898 patients were randomized. Compared to angiography, mortality was
27 28	70	marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1, 6.2), but
29 30	71	similar in the SPECT-MIBI (hazard ratio 1.0, 95%CI 0.4, 2.9) and ECHO groups (hazard ratio
31 32	72	1.6, 95%CI 0.6, 4.0). Although SPECT-MIBI was marginally superior to other non-invasive
33 34	73	tests there were no other significant differences between the groups in mortality, quality
35 36	74	adjusted survival or costs.
37 38	75	Conclusions: Non-invasive cardiac imaging can be used safely as the initial diagnostic test
39 40	76	to diagnose CAD without adverse effects on patient outcomes or increased costs, relative to
41 42	77	angiography. These results should be interpreted in the context of recent advances in
43 44	78	imaging technology.
45 46	79	
47 48	80	
49 50	81	
51 52	82	
53 54	83	
55 56	84	
57 58	85	
60		3

4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
1/	
14	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
20	
27	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

1 2 3

86	Article	e summary:
87	Article	e focus:
88	1.	Is non-invasive imaging a safe and appropriate gate-keeper to coronary
89		angiography in patients with stable chest pain ?
90	2.	Is there any difference in cost-effectiveness and cost-utility between the
91		different non-invasive approaches and conventional coronary angiography
92	3.	Are patients disadvantaged in any meaningful way by having a non-invasive
93		test to decide whether they should go forward for coronary angiography ?
94	4.	How does stress perfusion CMR compare to the more established tests of
95		SPECT-MIBI and stress echocardiography as a gate-keeper to coronary
96		angiography ?
97		
98	Key m	nessages:
99	1.	Non-invasive testing may be used safely as a gate-keeper to coronary
100		angiography in patients with stable chest pain without any material
101		disadvantage to them in terms of survival and quality of life up to 6 years after
102		initial randomisation.
103	2.	SPECT-MIBI appears marginally superior statistically to the other non-invasive
104		methods although clinically meaningful differences are small between all
105		strategies.
106	3.	Stress perfusion CMR appears to be an effective technique in a stable out-
107		patient population with undiagnosed chest pain.
108		
109	St	rengths and limitations:
110	1.	This is the only large randomised prospective trial of a strategy of non-invasive
111		gate-keeper cardiac imaging versus upfront angiography in the literature.

- 112 **2.** The cost-utility data are derived from NHS tariffs and our results are not
- 113 necessarily directly transferrable to other healthcare systems

Introduction

 BMJ Open

115	
116	CAD is common and its management is costly ⁽¹⁾ . Revascularisation using bypass surgery
117	(CABG) or percutaneous coronary intervention (PCI) is effective for patients with severe
118	disease ⁽²⁾ but a significant minority of patients do not gain symptomatic relief ⁽³⁾ . Data from
119	the COURAGE trial did not show prognostic benefit from revascularization in any patient
120	subgroup ⁽⁴⁾ . The yield of coronary angiography is variable with one recent large study of
121	nearly 400, 000 patients demonstrating a normalcy rate approaching 40% ⁽⁵⁾ . Therefore
122	non-invasive testing to identify those with a low likelihood of obstructive CAD may be safer,
123	cheaper and more appropriate than upfront angiography. This approach is codified in
124	multiple AHA/ACC guidelines on the investigation of stable or suspected angina pectoris in
125	which initial non-invasive imaging is rated as highly appropriate ^{(6) (7) (8) (9)} .
126	
127	The 'Cost-Effectiveness of non-invasive Cardiac Testing' (CECaT) trial was an unblinded
128	non-inferiority trial designed to assess three functional tests - stress echocardiography,
129	single photon emission computed tomography (SPECT) and stress cardiac magnetic
130	resonance imaging (CMR) - as a gatekeeper to coronary angiography (CA) in patients
131	referred for CA with suspected coronary artery disease (CAD). Early clinical and cost-
132	effectiveness estimates have been published and showed that the CMR group had slightly
133	lower mean exercise treadmill time according to the Bruce protocol but otherwise the tests
134	could be considered equally effective ⁽¹⁰⁾ . This report provides the main cost-effectiveness
135	and mortality outcomes up to 6 years after randomisation.
136	
137	Methods
138	Study design
139	The design of the study has been described elsewhere $^{(10)}$ and is reviewed briefly here. All
140	patients referred to Papworth Hospital, UK for non-urgent angiography were eligible for the

141 study. Inclusion criteria were: established or suspected chronic stable angina and a positive

142	exercise tolerance test result with subsequent referral for angiography. Exclusion criteria
143	were: recent MI (<3 months), revascularisation (<6 months); urgent need for
144	revascularisation; contra-indication to adenosine or CMR; inability to exercise.
145	
146	Trial design was of four parallel arms with a 1:1:1:1 randomisation ratio. Randomisation was
147	computer generated and stratified according to Pryor risk assessment ⁽¹¹⁾ . Within each Pryor
148	risk group, randomisation was in blocks of length 6 or 8. Sequentially numbered group
149	designation was held in the Research & Development (R&D) Office and was not available to
150	trial personnel. Patients were randomised to their initial diagnostic test - stress SPECT,
151	stress CMR, stress echocardiography, or angiography - by R&D within 4 weeks of
152	recruitment and only after they had given consent and been registered.
153	
154	Non invasive imaging results were returned with a recommendation to proceed with
155	angiography only when reported as 'positive' for inducible ischemia. Protocol adherence to
156	this recommendation was not mandated by trial design and patients proceeded to
157	angiography if considered clinically indicated. Treatment with PCI or CABG (performed
158	within six months of angiography) or to medical therapy was according to standard practice.
159	
160	Coronary angiography.
161	Standard diagnostic angiography was performed from the right femoral artery approach ⁽¹²⁾ .
162	A minimum of 5 views of the left and 3 views of the right coronary system were taken ⁽¹³⁾ . All
163	examinations were reported by an experienced staff cardiologist and segmental location of
164	disease (if any) recorded.
165	
166	Stress echocardiography
167	Beta-blocker medications were stopped 2 days beforehand. Dobutamine was infused at
168	rates of 10- 40 mcg/kg/min, increased at 3 minute intervals. If necessary, 300-600
169	micrograms of atropine were added at peak stress to achieve 90% of target heart

BMJ Open

rate. Images were acquired in standard planes in the final minute of each 3 minute stage. Intravenous microspheres were used to delineate the endocardial surface. All examinations were reported by one of two staff cardiologists experienced in stress echocardiography. Studies were positive for ischemia if stress-induced deterioration in contractility was observed. SPECT Rest/stress 99mTc sestamibi (99mTc MIBI) SPECT was performed (2 day protocol). A 6 minute adenosine infusion (140Kg/kg/min) was employed. 400 MBg 99m-Tc MIBI was administered at 3 minutes after infusion of adenosine was started. Gated SPECT imaging occurred 60 minutes after injection. Tomographic images were assessed for fixed and reversible defects by a single observer (as per established criteria)⁽¹⁴⁾. CMR Stress CMR imaging was performed at a standard similar to that which was subsequently recommended by the Society of Cardiovascular Magnetic Resonance ⁽¹⁵⁾. A 1.5T mobile CMR system and 4-channel phased array surface coil were used (Signa CV/i, GE Medical Systems). Stress/rest dynamic first-pass perfusion imaging was performed. A hybrid fast aradient echo/echoplanar sequence was employed ⁽¹⁶⁾. Adenosine was infused at 140 mcg/kg/min for 4 minutes. After 3 minutes, a bolus of Gadolinium-DTPA (0.1mmol/kg) was delivered at 5mls/sec, followed by a 25ml saline flush. First-pass imaging of the heart occurred over 80 heart beats. A volumetric notched-saturation pre-pulse preserved a constant saturation-recovery time during slice acquisition ⁽¹⁷⁾. 6-8 short axis slices were obtained every 2 heart beats. Rest imaging was repeated after a minimum interval of 15 minutes. Cine steady state free precession images and late gadolinium enhancement images were also acquired as described in the original CECaT protocol ⁽¹⁰⁾ Studies were reported as positive if there was an inducible perfusion defect visible for at least 5 frames

197	either: a) in a region of normal wall thickness; or b) in a region of myocardial thinning in the
198	absence of a history of prior myocardial infarction.
199	
200	Outcomes
201	The primary outcome in the original CECaT trial was exercise treadmill time at 18 months
202	post-randomisation using the modified Bruce protocol, in which exercise intensity was
203	increased every 3 minutes. There was a range of secondary outcomes including diagnostic
204	accuracy, clinical events, health-related quality and cost-effectiveness of life up to 18 months
205	after randomisation ⁽¹⁰⁾ .
206	The primary outcomes of this follow up study were survival up to a minimum of 2 years post-
207	treatment, quality-adjusted survival and cost-utility of each strategy. Survival status at the
208	end of follow up was determined from the Office for National Statistics database, UK
209	(<u>http://www.ons.gov.uk/</u>).
210	Quality of life was measured using the EuroQoL EQ-5D questionnaire ⁽¹⁸⁾ which was
211	completed at baseline, 6 and 18 months post-randomisation, and at 6, 18 and 24 months
212	post-treatment. The social tariff for the EQ-5D was applied in order to calculate utility values
213	⁽¹⁹⁾ . Because post- treatment measurements were at variable times post- randomisation
214	(randomisation date is time zero for a randomised trial) daily utilities were estimated using
215	linear interpolation.
216	
217	Sample size calculations
218	The sample size of 898 patients was based on exercise performance and was calculated
219	according to the methodology published in the initial report of the CECaT study $^{(10)}$.
220	
221	Statistical and economic analysis
222	For this study, survival was summarised using Kaplan-Meier estimates and the groups were
223	compared using Cox proportional hazards regression. This assumes that the instantaneous
224	risk of death (hazard) for a reference value of a covariate will vary through time, but that the

BMJ Open

hazards for other values of the covariate will be a constant multiple of this baseline hazard, and this multiple will not vary through time. This assumption was tested using Schoenfeld residuals and there was little evidence against it. The diagnostic test was entered into the Cox regression as a 4-level fixed covariate, with angiography as the reference category. In sensitivity analysis CABG and PCI were included in the regression analyses as time-varying covariates, taking a value 0 up to the time of intervention and 1 thereafter, to ensure that any differences between the groups was not due to differences in treatment. Inclusion of treatment (CABG/PCI) did not affect comparison of diagnostic strategies and results of these analyses are not included here.

Patient-specific hospital resource use was collected for 2 years post-*treatment* with revascularisation or medical management. Costs were based on National Health Service reference costs 2005/06 prices. An annual discount rate of 3.5% was applied to all costs and quality-adjusted life-years (QALYs) after 12 months post-randomisation. Resources costed were: imaging tests; revascularisation; inpatient/outpatient episodes; adverse events; cardiac-related medications. Patient-reported admissions for MI were verified with the admitting hospital and adjudicated.

Quality adjusted survival and cost estimates were censored at the last follow up at 2 years after treatment, resulting in varying duration of follow-up from the time of randomisation to the different diagnostic strategies, so that mean values over a range of time horizons were estimated using inverse weighting methods ⁽²⁰⁾. This method allows for differing follow up times between patients by splitting follow up time into intervals, and up-weighting the observed quality adjusted survival and costs in an interval in proportion to the inverse of the Kaplan-Meier estimate of the proportion observed during the interval. In the base case we used a time horizon of 3 years since it was the longest period over which results were stable, with acceptable precision. Confidence intervals for costs and QALYs were estimated using bootstrapping with 5000 samples ⁽²¹⁾.

253	Sensitivity analysis
254	Sensitivity of cost-utility results for different time horizons was assessed by re-estimating
255	results up to 12, 18, 24, 36 and 48 months after randomization. In addition, cardiologists
256	were divided into those who did and did not perform percutaneous coronary intervention as
257	part of their routine clinical practice, and results were recalculated for each subgroup. With
258	the exception of this <i>post-hoc</i> data interrogation, all other results presented derive from
259	intention-to-treat analysis.
260	
261	The study had IRB approval and full written informed consent was obtained from all
262	participants. All authors had full access to the data and take responsibility for the manuscript
263	as written.
264	
265	Results
266	Recruitment and compliance
267	Between September 2001 and September 2004, 3,201 patients were assessed, 1,981 were
268	excluded and 322 refused entry to the trial. Refusals were more likely to come from women
269	(46% compared with 31% enrolled into the study, p<0.001) and were significantly older
270	(mean age 64.6, (SD 10.1) compared with study group mean age 61.8, (9.4), p<0.001).
271	
272	898 patients were randomised. Groups were well matched at baseline (table 1). In each
273	group 69% of patients were high risk for CAD (Pryor score > 0.8). The trial was closed to
274	recruitment in September 2004 after enrolling the pre-specified number of subjects.
275	
276	One-hundred-seventy-five (78%) SPECT patients, 180 (80%) CMR patients and 169 (75%)
277	stress echo patients were referred on for angiography (Figure 1). Between 20% and 25% of
278	patients undergoing non-invasive tests did not require further investigation. Twenty-one
279	percent of patients who had negative tests were referred for angiography and the proportion
280	was similar in each group (SPECT n=45, CMR n=50, ECHO n=48, p=0.858). Of these 14

For peer review only – http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

~	
3	
4	
5	
č	
ю	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
10	
10	
17	
18	
10	
13	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
20	
30	
31	
32	
33	
00	
34	
35	
36	
27	
31	
38	
39	
10	
44	
41	
42	
43	
44	
45	
45	
46	
47	
10	
40	
49	
50	
51	
50	
JZ	
53	
54	
55	
55	
56	
57	
58	
50	
09	
60	

281 (31%) SPECT, 26 (52%) CMR and 23 (48%) ECHO resulted in a positive angiogram 282 (p=0.130). Four patients died and four withdrew from the trial early on. Of the remaining 283 patients, revascularization was required in 34% (301/890 - see Figure 1 for numbers in 284 each arm). There was no significant difference between the groups in initial patient 285 management (Figure 1, p=0.527). Beyond the initial management strategy 42 subsequent 286 revascularisation procedures were required in the angiography arm compared with 30 in the 287 SPECT, 44 in the CMR and 41 in the ECHO arms. The median times between 288 randomisation and initial revascularisation were 122 days in the angiography group, 192 289 days for SPECT, 184 days for CMR and 177.5 days for ECHO, resulting in a delay due to 290 functional testing of approximately 2 months.

292 Survival

291

293 During the study there were 7 (3%), 7 (3%), 18 (8%) and 11 (5%) deaths in the angiography 294 , SPECT, CMR and ECHO groups respectively. Kaplan-Meier survival curves for the 4 295 groups are plotted in Figure 2. Survival in the SPECT (hazard ratio 1.0, 95%CI 0.4, 2.9) and 296 stress echo (hazard ratio 1.6, 95%Cl 0.6, 4.0) groups were not significantly different from 297 angiography but the CMR group had higher mortality, with hazard ratio 2.6 (95%CI 1.1 to 298 6.2), p=0.032 (Table 2). The significant effect of CMR on survival remained when CABG or 299 PCI were included in the models. However, mortality was low in all groups and the absolute 300 mean difference in survival was less than 1 month over 3 years (Table 2). Mean survival 301 estimates over 3 years with 95% confidence intervals are shown in Table 2. 302 All patients had complete adverse event data up to 18 months post-randomisation during 303 which there were 178 non-fatal adverse events in 114 patients, mostly hospital admissions 304 for chest pain (**Table 3**). Beyond this time only adverse events that resulted in admissions 305 were recorded as they were relevant for the economic analysis. No patient suffered any 306 adverse event at the time of the initial randomised imaging test. 307

308 Cost-utility

Table 4 shows some of the highest incurred follow up costs for the 4 groups and shows that patient management varied substantially between individuals. Although angiography was the most expensive of the four initial diagnostic tests, the strategy of initial angiography had lower mean overall cost than stress echo, and was similar to CMR up to 3 years (Table 2). Extra costs for patients in the three non-invasive groups was largely due to patients undergoing follow-on angiography. There were no significant differences in overall costs between the groups.

During the study there were no significant differences in EQ-5D between the groups. Figure **3** shows daily mean EQ-5D utility over time based on interpolation between measurements for survivors who completed the EQ-5D. Using inverse-weighting we calculated QALYs over different time horizons and these are presented up to 3 years in Table 2. Mean QALYs over 3 years in the angiography group was 2.24, which was not significantly different from the other groups. Figure 4 shows the joint distribution of the difference in mean cost against the difference in mean QALY for each diagnostic strategy group and angiography alone, and shows the uncertainty in these estimates. **Figure 5** shows the Cost-Effectiveness Acceptability Curve and demonstrated that SPECT has a high chance (>70%) of being cost-effective whatever the willingness-to-pay threshold is but for CMR and ECHO there is much less certainty about this decision. The mean differences between groups were close to zero in all 3 cases so that the cost-per-QALY estimates are unstable and a cost-minimization approach may be more appropriate. This would favour SPECT, which was both cheaper and more effective on average than angiography, and had the lowest overall cost (Table 2).

332 Sensitivity analysis

The comparisons between the diagnostic strategy groups did not change substantially when we varied the time horizon; the main effect of this was that the variation surrounding estimates increased as the time horizon lengthened due to the heavy censoring (results not shown). **Tables 2a and 2b** show results for interventional and non-invasive cardiologists

BMJ Open

2 3	337	respectively. Patients who were managed by interventional cardiologists incurred higher
4 5 6	338	costs due to the greater number of tests and revascularization procedures performed, with
7	339	minimal incremental benefit in QALY.
o 9 10	340	
10 11 12	341	Discussion
13 14	342	CECaT is the first completed prospective randomized trial to look at the clinical and cost-
15 16	343	effectiveness of non-invasive imaging in the diagnosis and management of angina. To the
17 18	344	best of the authors' knowledge there has been no comparable outcomes trial published on
19 20	345	this scale evaluating three independent non-invasive 'gatekeeper' modalities versus initial
21 22	346	angiography in stable chest pain. The trial is also unusual in the length of prospective follow
23 24	347	up extending to 6 years for mortality outcomes.
25 26	348	
27 28	349	We have demonstrated that use of any one of stress CMR, stress echo or stress SPECT as
29 30	350	the initial test for a stable chest pain patient leads to non-inferior outcomes in quality of life
31 32	351	and cost utility compared to patients randomised to upfront invasive coronary angiography.
33 34	352	Typically, non invasive tests perform well in low risk populations because of a negative
35 36	353	predictive value which is usually better than the positive predictive value. However, the
37 38	354	patient risk profile was relatively high in our study, and despite this there was no significant
39 40	355	difference between an initial functional or anatomic approach.
41 42	356	
43 44	357	There are several reasons why initial angiography may not have led to clear benefit in our
45 46	358	study. Firstly, although angiography has stood at the heart of the diagnostic chest pain
47 48	359	pathway, the traditional binary cut-off values of 50% or 70% percentage stenosis by visual
49 50	360	estimation were shown in the FAME study to bear little relation to the true physiologic
51 52	361	significance of luminal narrowing (22).
53 54	362	
55 56	363	Secondly, data from various countries suggest that not only is coronary angiography often
57 58 59	364	inappropriate when formally rated by expert observers (23) (24) but that disparate national or

Page 14 of 41

BMJ Open

regional rates of angiography do not translate into clear mortality benefits between countries ⁽²⁵⁾ (26) (27) (28)</sup> and on occasion may even demonstrate an inverse relationship ⁽²⁹⁾. Contemporary US data from approximately 500,000 PCI procedures collected prospectively in the National Cardiovascular Data Registry demonstrated that, of 145,000 elective PCI cases, roughly 12% were judged inappropriate. Furthermore, the rate of inappropriate elective PCI between hospital sites ranged from 0-55% suggesting significant variability in practice ⁽³⁰⁾. The data suggest a better way of selecting patients for invasive investigation is needed.

374 Ischemia-driven revascularisation has been shown to be of benefit in a number of trials, 375 most recently in the FAME study in which an invasive method of measuring the flow reserve 376 of the microcirculation (Fractional Flow Reserve, FFR) was used to allocate patients to 377 intervention or observation vs a clinical decision on intervention based on angiography alone 378 ⁽³¹⁾. At 2 years follow up there were clear survival and MACE benefits to the FFR-based 379 approach.

The ACRE study reported that, up to 6 years after diagnosis, medical management was a more cost-effective strategy for angina compared with PCI ⁽³²⁾. The lack of evidence for survival from revascularisation was also seen in the COURAGE trial ⁽⁴⁾. Critics have suggested this may be because randomization to PCI versus optimal medical therapy was made after coronary angiography had been performed, potentially leading to a recruitment bias of patients with less severe disease. In the CECaT trial this bias was avoided by randomization to a management strategy defined by the non-invasive test result for each of the 3 functional arms of the trial. In a relatively high risk population, we demonstrated no clinically significant survival or economic detriment from using non-invasive imaging as a gate-keeper to catheterization. Similarly, quality of life was not significantly different across all four groups and these differences extended to a warranty period of at least 3 years.

BMJ Open

We did observe a marginal decrease in survival in the CMR arm. The reasons for the difference are unclear but do not relate to patient characteristics or management with CABG or PCI. Although statistically significant, the mean survival difference from the other groups was only 4 weeks over 3 years and is unlikely to be clinically meaningful. Since recent work has established a strong correspondence between FFR measurements and stress CMR perfusion indices it would be surprising if CMR were genuinely inferior to other modalities for risk stratification ⁽³³⁾. Indeed several recent publications have highlighted the incremental prognostic data (above that obtained from clinical variables) derived from several thousand perfusion CMR studies ^{(34) (35)}.

Given the recent publication of the CEMARC trial ⁽³⁶⁾ in which a clear diagnostic superiority was demonstrated for stress CMR over SPECT, it is interesting that our data nonetheless show an equivalence in functional health status between those randomized to SPECT versus CMR in the CECaT trial. The implication may be that although CMR detects the presence of any ischemia with a greater sensitivity it is the overall burden of ischemia that alters a patient's prognosis. As such, it has not yet been demonstrated that the higher diagnostic accuracy of CMR translates into better long-term patient outcomes - a fact acknowledged by Greenwood et al subsequent to CEMARC's publication ⁽³⁷⁾. In this context the CECaT nuclear results are congruent with numerous past publications and reconfirm the reassuring warranty period of a normal SPECT study.

414 Cost effectiveness

There was no significant difference in cost-effectiveness between the angiography -asdefault group and the non-invasive test groups up to 3 years, perhaps relating to the higherthan-anticipated rate of referral for angiography after negative functional tests. Protocol deviation of this kind is not infrequent in trials of non-invasive technology. In the recent PARR-2 study of patients undergoing fluorodeoxyglucose positron emission tomography for the assessment of viability, roughly 25 % of the study population did not adhere to protocol

421	⁽³⁸⁾ . The willingness of a cardiologist to defer referral for coronary angiography in the face of
422	a normal non-invasive study may in part reflect individual prejudices and job description
423	(interventional versus non-invasive) as demonstrated in a recent survey of cardiology
424	attitudes (39) and was also reflected in our own data.
425	
426	In CECaT, 20-25% of patients receiving a non-invasive test did not go on to have
427	angiography. A proportion of the additional cost in the non-invasive arms related to
428	angiography and PCI in the patients with a <i>negative</i> test, although only very few
429	subsequently required CABG - a robust marker of significant disease - during follow-up. This
430	readiness to employ PCI in a group in whom the indication/benefit is debatable was also
431	seen in the ACRE trial ⁽³²⁾ and reflects understandable clinical response to uncertainty but
432	also the easy access to PCI in healthcare systems without barriers to self-referral ⁽⁴⁰⁾ .
433	Similarly, studies from the US have demonstrated a greater willingness to use coronary
434	angiography when available 'on site' as is increasingly seen even in small-to-medium sized
435	hospitals ^{(41) (42) (43)} .
436	
437	Cost effectiveness of each non-invasive technique
438	
438 439	Nuclear myocardial perfusion imaging
438 439 440	Nuclear myocardial perfusion imaging
438439440441	Nuclear myocardial perfusion imaging The END study used propensity matching to compare a large cohort of patients referred for
 438 439 440 441 442 	Nuclear myocardial perfusion imaging The END study used propensity matching to compare a large cohort of patients referred for either gate-keeper myocardial perfusion imaging or upfront angiography – this non
 438 439 440 441 442 443 	Nuclear myocardial perfusion imaging The END study used propensity matching to compare a large cohort of patients referred for either gate-keeper myocardial perfusion imaging or upfront angiography – this non randomised study demonstrated a significant cost reduction in the (44) nuclear arm. In
 438 439 440 441 442 443 444 	Nuclear myocardial perfusion imaging The END study used propensity matching to compare a large cohort of patients referred for either gate-keeper myocardial perfusion imaging or upfront angiography – this non randomised study demonstrated a significant cost reduction in the (44) nuclear arm. In contrast to this and other work ^{(45) (46) (47)} we were unable to show a significant difference in
 438 439 440 441 442 443 444 445 	Nuclear myocardial perfusion imaging The END study used propensity matching to compare a large cohort of patients referred for either gate-keeper myocardial perfusion imaging or upfront angiography – this non randomised study demonstrated a significant cost reduction in the (44) nuclear arm. In contrast to this and other work ^{(45) (46) (47)} we were unable to show a significant difference in cost effectiveness in our own study. To some extent this reflected the participating physician
 438 439 440 441 442 443 444 445 446 	Nuclear myocardial perfusion imaging The END study used propensity matching to compare a large cohort of patients referred for either gate-keeper myocardial perfusion imaging or upfront angiography – this non randomised study demonstrated a significant cost reduction in the (44) nuclear arm. In contrast to this and other work ^{(45) (46) (47)} we were unable to show a significant difference in cost effectiveness in our own study. To some extent this reflected the participating physician bias towards angiography during the period of trial recruitment (2001-2006) with many
 438 439 440 441 442 443 444 445 446 447 	Nuclear myocardial perfusion imaging The END study used propensity matching to compare a large cohort of patients referred for either gate-keeper myocardial perfusion imaging or upfront angiography – this non randomised study demonstrated a significant cost reduction in the (44) nuclear arm. In contrast to this and other work ^{(45) (46) (47)} we were unable to show a significant difference in cost effectiveness in our own study. To some extent this reflected the participating physician bias towards angiography during the period of trial recruitment (2001-2006) with many patients referred for angiography despite normal perfusion studies. This continues in the
 438 439 440 441 442 443 444 445 446 447 448 	Nuclear myocardial perfusion imaging The END study used propensity matching to compare a large cohort of patients referred for either gate-keeper myocardial perfusion imaging or upfront angiography – this non randomised study demonstrated a significant cost reduction in the (44) nuclear arm. In contrast to this and other work ^{(45) (46) (47)} we were unable to show a significant difference in cost effectiveness in our own study. To some extent this reflected the participating physician bias towards angiography during the period of trial recruitment (2001-2006) with many patients referred for angiography despite normal perfusion studies. This continues in the contemporary era with Chan et al demonstrating that almost 80% of Delphi-adjudicated

1

BMJ Open

2	
3	
4 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30	
31	
32 22	
34	
35	
36	
37	
38	
39	
40	
41	
4∠ ⊿3	
44	
45	
46	
47	
48	
49	
50 54	
51 52	
52 53	
54	
55	
56	
57	
58	
59	
60	

inappropriate elective PCIs were performed following either low risk ischemia imaging in
 mildly symptomatic patients or intermediate risk imaging in entirely asymptomatic patients
 ⁽³⁰⁾.

453 In the CECaT study, when PCI was performed despite a negative initial non-invasive test, 454 this occurred because subsequent angiography indicated 'significant' stenosis. This was a 455 clinical judgment based on 'eyeball assessment' of lesion severity as has been reported in clinical trials with angiographic end points ⁽⁴⁸⁾. However, the severity and functional 456 457 significance of many stenoses may be over-called, even by quantitative assessment, when 458 compared with physiological assessment of fractional flow reserve across the lesion (49)(50). 459 Further improvement in cost-effectiveness could likely have been achieved in the nuclear 460 arm of the trial. Our post-trial practice is to perform the stress SPECT first - and if this is 461 negative - cancel the rest test, likely augmenting the relative cost-effectiveness of SPECT (51) 462

463

464 CMR

465 There are relatively few data available regarding the cost effectiveness of CMR. One recent 466 mathematical modelling study estimated that CMR likely has greater cost effectiveness/utility 467 compared to SPECT despite greater base case cost of the former ⁽⁵²⁾. The economic 468 superiority of CMR was also recently described by the CEMARC group, although 469 interestingly the base case costs employed for CMR and SPECT in their analysis differed by 470 only a few pounds. Their own sensitivity analysis in fact demonstrated that if the costs of the 471 two tests varied by more than 100 pounds (which was the case in our study) then in fact – as 472 we found - SPECT became the dominant strategy in a low-to-intermediate risk population. (53) 473 474

475 Stress echo

Stress echocardiography may be a more cost-effective strategy than angiography for men aged 50-60 with CAD prevalence of 50%^{(54), (47)}. There is also some evidence that stress echo is more cost-effective than SPECT as an initial test ^{(55) (56)}, especially in women with suspected CAD (57). A similar benefit was not seen in our study probably because of the high disease prevalence in our population. The lack of superiority of either stress echocardiography or a combined strategy of exercise testing and stress echo compared to upfront catheterisation was also evident in a recent Polish study of 600 patients with a similar age, gender and disease prevalence to our own study population ⁽⁵⁸⁾. Taken overall, our data clearly demonstrate a limited future role for cost-effective non-invasive imaging if referring physicians are not willing to accept a negative result as ground truth. This might be interpreted as reflecting a need for greater physician education since we showed a clear difference in onward referral rates for angiography after a negative test between interventional and non-invasive cardiologists. Clinical effectiveness We demonstrated that SPECT can obviate the need for coronary angiography for a significant number of patients without any clinical detriment. In the stress echo group clinical outcomes were also comparable to the angiography subgroup at 18 months. The CMR group had statistically marginally poorer survival and this follows our earlier finding that CMR patients had significantly worse exercise tolerance at 18 months after randomisation ⁽¹⁰⁾. This is difficult to explain on the basis of Pryor risk score or other baseline clinical variables. However, the mean difference in survival between the CMR arm and the other groups was only 4 weeks and thus of marginal clinical significance. More importantly, the CMR group were not otherwise disadvantaged - compared to the angiographic control group - with respect to major adverse events, other resource use, or quality of life.

For peer review only – http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

BMJ Open

2 3	504	Limitations
4 5	505	This study was carried out in a single specialist cardiothoracic centre with a significant
6 7	506	proportion of high risk, predominantly white European, male patients. Those eligible who
8 9	507	refused the trial were older and were more likely to be women.
10 11 12	508	
12 13 14	509	Survival data from the national registry did not include cause of death so that deaths due to
14 15 16	510	cardiovascular causes could not be reported separately.
17 18	511	
19 20	512	The trial completed recruitment in 2004 and we used the technology that was available to us
21 22	513	at the onset of the trial. At that time, we were not able to use attenuation correction for
23 24	514	SPECT imaging; however this was also not used in the much more recent CEMARC trial ⁽³⁶⁾ .
25 26	515	Similarly, we performed our CMR exams in a mobile facility on a 1.5T scanner with only
27 28	516	modest coil technology and limited temporal and anatomic coverage that would compare
29 30	517	unfavourably with the 3T whole heart high resolution perfusion studies available today.
31 32	518	
33 34	519	The trial aimed to reflect the strategy of using non-invasive imaging as a gateway to
35 36	520	angiography in contemporary clinical practice. The test results were considered in
37 38	521	conjunction with other information available at the time. Thus it was not the aim to formally
39 40	522	assess diagnostic accuracy of the non-invasive tests in this context. This trial-based study
41 42	523	was limited to 3 year cost-effectiveness follow up - longer-term economic models would
43 44	524	provide lifetime estimates of the cost-effectiveness of the non-invasive strategies and could
45 46	525	include advances in imaging technology.
47 48	526	
49 50	527	Conclusions
51 52	528	We have demonstrated in the CECaT trial that stress echo, stress CMR and stress SPECT
53 54	529	may each be used to defer invasive coronary angiography without clinical detriment or
56 57	530	significant excess costs in an outpatient population with stable chest pain.
58 59	531	

2	
~	
3	
4	
7	
5	
6	
7	
1	
8	
٥	
9	
10	
11	
40	
12	
13	
11	
14	
15	
16	
10	
17	
18	
10	
19	
20	
21	
21	
22	
23	
24	
25	
26	
20	
27	
28	
20	
29	
30	
21	
51	
32	
33	
24	
34	
35	
26	
36	
36 37	
36 37 38	
36 37 38	
36 37 38 39	
36 37 38 39 40	
36 37 38 39 40	
36 37 38 39 40 41	
36 37 38 39 40 41 42	
36 37 38 39 40 41 42 43	
36 37 38 39 40 41 42 43	
36 37 38 39 40 41 42 43 44	
36 37 38 39 40 41 42 43 44 45	
36 37 38 39 40 41 42 43 44 45 46	
36 37 38 39 40 41 42 43 44 45 46	
36 37 38 39 40 41 42 43 44 45 46 47	
36 37 38 39 40 41 42 43 44 45 46 47 48	
36 37 38 39 40 41 42 43 44 45 46 47 48	
36 37 38 39 40 41 42 43 44 45 46 47 48 49	
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50	
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51	
$\begin{array}{c} 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52 \end{array}$	
36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53	
36 37 38 39 40 41 42 43 44 45 46 47 48 49 51 52 53	
$\begin{array}{c} 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54 \end{array}$	
$\begin{array}{c} 36\\ 37\\ 38\\ 39\\ 40\\ 42\\ 43\\ 44\\ 5\\ 46\\ 47\\ 48\\ 9\\ 51\\ 52\\ 53\\ 55\\ 55\\ 55\\ \end{array}$	
$\begin{array}{c} 36\\ 37\\ 39\\ 40\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 49\\ 50\\ 52\\ 53\\ 55\\ 55\\ 55\\ 56\\ \end{array}$	
$\begin{array}{c} 36\\ 37\\ 38\\ 39\\ 40\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5$	
$\begin{array}{c} 36\\ 37\\ 38\\ 39\\ 40\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ \end{array}$	
$\begin{array}{c} 36\\ 37\\ 39\\ 40\\ 42\\ 43\\ 45\\ 46\\ 47\\ 49\\ 51\\ 52\\ 55\\ 55\\ 55\\ 57\\ 8\end{array}$	
$\begin{array}{c} 36\\ 37\\ 38\\ 39\\ 41\\ 42\\ 43\\ 445\\ 46\\ 47\\ 48\\ 49\\ 51\\ 52\\ 54\\ 55\\ 55\\ 57\\ 82\\ \end{array}$	
$\begin{array}{c} 36\\ 37\\ 38\\ 39\\ 40\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 95\\ 51\\ 52\\ 53\\ 55\\ 55\\ 57\\ 58\\ 59 \end{array}$	

532 Table 1 Baseline characteristics*

	Angiography	SPECT	Cardiac MRI	Stress Echo
Demographics	(n=222)	(n=224)	(n=226)	(n=226)
Mean (SD) age (years)	60.7 (9.1)	62.1 (9.5)	62.2 (9.0)	61.9 (9.9)
Males (%)	149 (67%)	157 (70%)	153 (68%)	160 (71%)
History/risk factors				
Previous MI (%)	63 (28%)	52 (23%)	69 (31%)	59 (26%)
Previous CVA (%)	10 (5%)	13 (6%)	8 (4%)	12 (5%)
Diabetes(%)				
IDDM	12 (5%)	8 (4%)	11 (5%)	5 (2%)
NIDDM	16 (7%)	18 (8%)	21 (9%)	22 (10%)
Family history CAD	60 (27%)	55 (25%)	63 (28%)	59 (26%)
Smoking history (%)				
<25 pack years	149 (67%)	162 (72%)	148 (65%)	155 (69%)
>=25 pack years	73 (33%)	62 (28%)	78 (35%)	71 (31%)
Treated hyperlipidaemia	164 (74%)	171 (76%)	179 (79%)	179 (79%)
(%)				
Treated hypertension (%)	117 (53%)	132 (59%)	115 (51%)	129 (57%)
Exercise tolerance using the	modified Bruce	protocol		
Mean (SD) total exercise	11.29 (4.56)	10.46 (4.41)	10.43 (4.43)	10.89 (4.36)
time (mins)				
ECG changes on exercise te	est			
1-2 mm ST depression	53 (24%)	43 (19%)	54 (24%)	57 (25%)
with symptoms				
>= 2mm ST depression	16 (7%)	24 (11%)	20 (9%)	24 (11%)
without symtoms				

BMJ Open

ST elevation**/ no change	ation**/ no change 153 (69%)		152 (67%)	145 (64%)	
CCS class					
0-1	60 (27%)	54 (24%)	78 (35%)	58 (26%)	
II	138 (62%)	144 (64%)	122 (54%)	132 (58%)	
III-IV	24 (11%)	26 (12%)	26 (11%)	36 (16%)	

* There were no significant differences between the groups in any variable

** ST elevation was observed in 3 angiography, 2 CMR and 1 ECHO patients.

535 Table 2 Cost-effectiveness summaries to 3 years post randomization

	Angiography	SPECT	Cardiac MRI	Stress Echo
	(n=222)	(n=224)	(n=226)	(n=226)
Hazard ratio for death	Baseline	0.99	2.60	1.42
(95%CI)		(0.35,2.85)	(1.09,6.22)	(0.54,3.74)
Mean survival (years)	2.96	2.95	2.90	2.94
(95%CI)	(2.92, 2.99)	(2.90, 2.99)	(2.83, 2.95)	(2.89, 2.97)
Mean difference vs. CA	-	-0.01	-0.06	-0.02
(95%CI)	-	(-0.07,0.05)	(-0.14, 0.01)	(-0.08, 0.04)
Mean QALYs	2.24	2.27	2.18	2.27
(95%CI)	(2.16,2.30)	(2.20,2.33)	(2.11,2.25)	(2.20,2.33)
Mean difference vs. CA	-	0.03	-0.05	0.03
(95%CI)	-	(-5.30,1.20)	(-4.50,2.01)	(-3.08,3.95)
Mean discounted costs (£)	5322	4989	5249	5865
(95%CI)	(4343,6526)	(4514,5466)	(4737,5756)	(5181, 6634)
Mean difference vs. CA	-	-333	-73	544
(95%CI)		(-1613,760)	(-1379,	(809, 1791)
			1040)	
Probability cost effective	-	0.75	0.24	0.49
at £20k per QALY				
Probability cost effective	-	0.74	0.22	0.55
at £30k per QALY				

BMJ Open

538 Table 2a Cost-effectiveness summaries for patients managed by interventional

539 cardiologists to 3 years post randomization

	Angiography	SPECT	Cardiac MRI	Stress Echo
	(n=73)	(n=96)	(n=93)	(n=98)
Mean survival (years)	2.96	2.97	2.89	2.96
(95%CI)	(2.91, 2.98)	(2.93, 3.00)	(2.80, 2.97)	(2.90, 2.98)
Mean difference vs. CA	-	0.01	-0.07	0
(95%CI)	-	(-0.05,0.07)	(-0.17, 0.02)	(-0.07,0.05)
Mean QALYs	2.25	2.29	2.21	2.2
(95%CI)	(2.14,2.36)	(2.19,2.38)	(2.10,2.32)	(2.09,2.29)
Mean difference vs. CA	-	0.03	-0.04	-0.06
(95%CI)	-	(-5.48,2.06)	(-5.22,2.21)	(-3.11,6.17)
Mean discounted costs (£)	5810	5610	5656	6733
(95%CI)	(4733, 7033)	(4872, 6381)	(4947, 6389)	(5530, 8140)
Mean difference vs. CA	-	-200	-154	923
(95%CI)		(-1620,	(-1568,	(-770, 2712)
		1160)	1165)	
Probability cost effective		0.67	0.37	0.19
at £20k per QALY				
Probability cost effective		0.66	0.35	0.21
at £30k per QALY				

541 Table 2b Cost-effectiveness summaries for patients managed by non-interventional

542 cardiologists to 3 years post randomization

	Angiography	SPECT	Cardiac MRI	Stress Echo
	(n=149)	(n=128)	(n=133)	(n=128)
Mean survival (vears)	2.95	2.93	29	2.92
(95%CI)	(2.89, 2.99)	(2.85, 2.98)	(2.81, 2.97)	(2.85, 2.98)
Mean difference vs. CA	-	-0.02	-0.05	-0.03
(95%CI)	-	(-0.11,0.06)	(-0.15, 0.04)	(-0.11, 0.05)
Mean QALYs	2.23	2.25	2.17	2.32
(95%CI)	(2.14,2.31)	(2.16,2.33)	(2.07,2.26)	(2.23,2.41)
Mean difference vs. CA	-	0.02	-0.06	0.09
(95%CI)	-	(-7.32,1.90)	(-5.98,3.37)	(-5.84,3.39)
Mean discounted costs (£)	5015	4521	5009	5077
(95%CI)	(3749, 6728)	(3931, 5132)	(4358, 5702)	(4398, 5767)
Mean difference vs. CA	-	-494	-6	-62
(95%CI)		(-2317, 956)	(-1831,	(-1774, 1568)
			1492)	
Probability cost effective		0.70	0.25	0.82
at £20k per QALY				
Probability cost effective		0.69	0.24	0.85
at £30k per QALY				

		Angiography	SPECT	Cardiac MRI	Stress Echo
	Adverse event	(n=222)	(n=224)	(n=226)	(n=226
	Total adverse events	38	34	44	62
	Chest pain (not	21	20	28	35
	myocardial infarction)				
	Angina	7	5	4	:
	Myocardial infarction	2	0	3	(
547	* Note that beyond this tim	e only events that re	equired hosp	ital admission v	were recorde
548					
549					

Table 4 Summary of the frequency of use of the main resource use elements during follow up

- 551 of up to 3 years (excluding initial diagnostic test)

	Angiography	SPECT	Cardiac MRI	Stress Echo
Resource use (unit cost)	(n=222)	(n=224)	(n=226)	(n=226)
CABG (£7195)	28	33	28	34
PCI (£3660)	57	46	60	62
Other hospital admission	36	29	28	53
(£467 per day)				
Angiography (£1032)	12	183	175	181
SPECT (£983)	16	3	3	6
Cardiac MRI (£388)	5	5	12	5
Echocardiography (£435)	30	17	24	18
PET scan (£842)	0	3	0	1
Preadmission clinic (£85)	22	21	27	24
Follow up clinic (£85)	19	22	31	21
Outpatient visits (£143)	247	270	300	284

* Cardiac drugs were also included but are not shown here due to many different

555 combinations of drugs and doses prescribed.

1		
2 3	558	Figure Legends
4 5	559	
6 7 9	560	Figure 1 CONSORT diagram describing recruitment and randomization
o 9 10	561	
10 11 12	562	Figure 2 Kaplan-Meier survival estimates according to initial modality of diagnosis
13 14	563	
15 16	564	Figure 3 Quality of life assessed by EQ5D over time
17 18	565	
19 20	566	Figure 4 Bootstrapped estimates of the joint distribution of mean cost difference
21 22	567	against mean QALY difference up to 3-years post randomisation
23 24	568	
25 26	569	Figure 5 Estimated probability of being cost-effective compared with angiography
27 28	570	alone against the amount (£) a health provider is willing to pay for one additional
29 30	571	QALY
31 32	572	
33 34	573	
35 36 27	574	
37 38 30	575	
40 41	576	
42	577	
44 45	578	
46 47	579	
48 49	580	
50 51	581	
52 53	582	
54 55	583	
56 57	584	
58 59	585	
60		27

586	Acknowledgements
587	
588	The original CECaT study was funded by a grant from the UK National Health Service R&D
589	Health Technology Assessment Program (project no. 99/26/04). HT, CJ and LDS were
590	supported by the Medical Research Council [Programme number U015232027].
591	
592	Competing interests
593	
594	All authors have completed the ICMJE uniform disclosure form at
595	http://www.icmje.org/coi_disclosure.pdf and declare: support from the UK National Health
596	Service R&D Health Technology Assessment Program (project no. 99/26/04) and the UK
597	Medical Research Council [Programme number U015232027] for the submitted work ; no
598	financial relationships with any organisations that might have an interest in the submitted
599	work in the previous three years; no other relationships or activities that could appear to
600	have influenced the submitted work
601	
602	Exclusive licence statement
603	
604	The Corresponding Author has the right to grant on behalf of all authors and does grant on
605	behalf of all authors, an exclusive licence (or non exclusive for government employees) on a
606	worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if
607	accepted) to be published in BMJ editions and any other BMJPGL products and sublicences
608	to exploit all subsidiary rights, as set out in our licence
609	(<u>http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication</u>).
610	
611	
612	
613	

BMJ Open

2	614	Contributorship statement
3	614	Contributorship statement
5 6	615	
7 8	616	HT performed literature review, data analysis and interpretation; NW was involved in image
9 10	617	analysis, drafting the manuscript and critical revision; VH was involved in recruiting the
11 12	618	patients, data management, administering health questionnaires, data analysis and drafting
13 14	619	the manuscript; MD and MB were responsible for data analysis, health economic
15 16	620	assessment, drafting the manuscript and critical revision; LDS was responsible for study
17 18	621	design, trial management, statistical analysis, drafting the manuscript and critical revision;
19 20	622	CJ performed statistical and health economic analysis, drafting the manuscript and critical
21 22	623	revision; AMC was involved in study design, patient recruitment, image interpretation, trial
23 24	624	management, drafting the manuscript and critical revision and is the overall guarantor of
25 26	625	manuscript integrity.
27 28	626	
29 30	627	All authors have read the manuscript in its submitted form and have provided final approval
31 32	628	for publication.
33 34	629	
35 36	630	Data sharing statement:
37 38	631	
39 40	632	There are no additional data available
41 42	633	
43 44	634	Funding Statement
45 46	635	
47 48	636	This work was supported by Health Technology Assessment division of NIHR
49 50	637	
51 52		
53 54		
55		
56		
5/ 58		
50 59		
60		

638 References

640 1. NICE. Myocardial perfusion scintigraphy for the diagnosis and management of
 641 angina and myocardial infarction: National Institute for Clinical Excellence 2003; Technology
 642 Appraisal Guidance 73.

Boden WE. Surgery, angioplasty, or medical therapy for symptomatic multivessel
coronary artery disease: is there an indisputable "winning strategy" from evidence-based
clinical trials? Journal of the American College of Cardiology. 2004;43(10):1752-4. Epub
2004/05/18.

647 3. Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass
648 surgery. Quality of life in patients randomly assigned to treatment groups. Circulation.
649 1983;68(5):951-60. Epub 1983/11/01.

650 4. Boden WE, O'Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al.
651 Optimal medical therapy with or without PCI for stable coronary disease. The New England
652 journal of medicine. 2007;356(15):1503-16. Epub 2007/03/28.

5. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low
diagnostic yield of elective coronary angiography. The New England journal of medicine.
2010;362(10):886-95. Epub 2010/03/12.

656
6. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al.
657 ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the
658 American College of Cardiology/American Heart Association Task Force on Practice
659 Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Journal of the
660 American College of Cardiology. 2002;40(8):1531-40. Epub 2002/10/24.

Douglas PS, Khandheria B, Stainback RF, Weissman NJ, Peterson ED, Hendel RC, 7. et al. ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 appropriateness criteria for stress echocardiography: a report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, American Society of Echocardiography, American College of Emergency Physicians, American Heart Association, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance endorsed by the Heart Rhythm Society and the Society of Critical Care Medicine. Journal of the American College of Cardiology. 2008;51(11):1127-47. Epub 2008/03/18.

Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. 8. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging: A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Journal of the American College of Cardiology. 2009;53(23):2201-29. Epub 2009/06/06.

- 679 9. Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. 680 ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular

1		
2		
3	681	magnetic resonance: a report of the American College of Cardiology Foundation Task Force
4	682	on Expert Consensus Documents. Circulation. 2010;121(22):2462-508. Epub 2010/05/19.
5		
6	683	10. Sharples L, Hughes V, Crean A, Dyer M, Buxton M, Goldsmith K, et al. Cost-
7	684	effectiveness of functional cardiac testing in the diagnosis and management of coronary
8	685	artery disease: a randomised controlled trial. The CECaT trial. Health Technol Assess.
9	686	2007;11(49):iii-iv, ix-115. Epub 2007/11/21.
10		
10	687	11. Pryor DB, Shaw L, McCants CB, Lee KL, Mark DB, Harrell FE, Jr., et al. Value of the
12	688	history and physical in identifying patients at increased risk for coronary artery disease.
17	689	Annals of internal medicine. 1993;118(2):81-90. Epub 1993/01/15.
15		
16	690	12. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography; a
17	691	new technique. Acta radiologica. 1953;39(5):368-76. Epub 1953/05/01.
18		
19	692	13. Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer GJ, Eagle KA, et al.
20	693	ACC/AHA guidelines for coronary angiography. A report of the American College of
21	694	Cardiology/American Heart Association Task Force on practice guidelines (Committee on
22	695	Coronary Angiography). Developed in collaboration with the Society for Cardiac
23	696	Angiography and Interventions. Journal of the American College of Cardiology.
24	697	1999;33(6):1756-824. Epub 1999/05/20.
25		
26	698	14. Wackers FJ. Exercise myocardial perfusion imaging. Journal of nuclear medicine :
27	699	official publication, Society of Nuclear Medicine. 1994;35(4):726-9. Epub 1994/04/01.
28		
29	700	15. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et
30	701	al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel
31	702	report. Journal of cardiovascular magnetic resonance : official journal of the Society for
32	703	Cardiovascular Magnetic Resonance. 2004;6(4):727-65. Epub 2005/01/14.
33		
34	704	16. Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Multi-echo segmented k-space
35	705	imaging: an optimized hybrid sequence for ultrafast cardiac imaging. Magnetic resonance in
36	706	medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of
37	707	Magnetic Resonance in Medicine. 1999;41(2):375-85. Epub 1999/03/18.
38		
39	708	17. Canet EP, Janier MF, Revel D. Magnetic resonance perfusion imaging in ischemic
40	709	heart disease. Journal of magnetic resonance imaging : JMRI. 1999;10(3):423-33. Epub
41	710	1999/10/03.
42		
44	711	18. Kind P. The EuroQol instrument: an index of health-related quality of life. In: Spiker
45	712	B, editor. Quality of life and pharmacoeconomics in clinical trials. Philadelphia, PA:
46	713	Lippincott-Raven; 1996.
47		
48	714	19. Dolan P GC, Kind P. A social tariff for EuroQol: results from a UK general population
49	715	survery 1995.
50		
51	716	20. Willan AR, Lin DY, Cook RJ, Chen EB. Using inverse-weighting in cost-effectiveness
52	717	analysis with censored data. Statistical methods in medical research. 2002;11(6):539-51.
53	718	Epub 2003/01/09.
54		
55	719	21. Efron B TR. An introduction to the bootstrap. San Francisco: Chapman and Hall:
56	720	1993.
57		
58		
59 60		
UO		21
22. Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. Journal of the American College of Cardiology. 2010;55(25):2816-21. Epub 2010/06/29. 23. Mozes B. Shabtai E. The appropriateness of performing coronary angiography in two major teaching hospitals in Israel. International journal for guality in health care : journal of the International Society for Quality in Health Care / ISQua. 1994;6(3):245-9. Epub 1994/09/01. 24. Gray D, Hampton JR. Methods of establishing criteria for purchasing coronary angiography in the investigation of chest pain. Journal of public health medicine. 1994;16(4):399-405. Epub 1994/12/01. 25. Guadagnoli E, Hauptman PJ, Ayanian JZ, Pashos CL, McNeil BJ, Cleary PD. Variation in the use of cardiac procedures after acute myocardial infarction. The New England journal of medicine. 1995;333(9):573-8. Epub 1995/08/31. Mark DB, Naylor CD, Hlatky MA, Califf RM, Topol EJ, Granger CB, et al. Use of 26. medical resources and quality of life after acute myocardial infarction in Canada and the United States. The New England journal of medicine. 1994;331(17):1130-5. Epub 1994/10/27. 27. Rouleau JL, Move LA, Pfeffer MA, Arnold JM, Bernstein V, Cuddy TE, et al. A comparison of management patterns after acute myocardial infarction in Canada and the United States. The SAVE investigators. The New England journal of medicine. 1993;328(11):779-84. Epub 1993/03/18. 28. Tu JV, Pashos CL, Naylor CD, Chen E, Normand SL, Newhouse JP, et al. Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada. The New England journal of medicine. 1997;336(21):1500-5. Epub 1997/05/22. Selby JV, Fireman BH, Lundstrom RJ, Swain BE, Truman AF, Wong CC, et al. 29. Variation among hospitals in coronary-angiography practices and outcomes after myocardial infarction in a large health maintenance organization. The New England journal of medicine. 1996;335(25):1888-96. Epub 1996/12/19. 30. Chan PS, Patel MR, Klein LW, Krone RJ, Dehmer GJ, Kennedy K, et al. Appropriateness of percutaneous coronary intervention. JAMA : the journal of the American Medical Association. 2011;306(1):53-61. Epub 2011/07/07. 31. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. Journal of the American College of Cardiology. 2010;56(3):177-84. Epub 2010/06/12. 32. Griffin SC, Barber JA, Manca A, Sculpher MJ, Thompson SG, Buxton MJ, et al. Cost effectiveness of clinically appropriate decisions on alternative treatments for angina pectoris: prospective observational study. BMJ. 2007;334(7594):624. Epub 2007/03/07.

1		
2		
3	762	33. Watkins S, McGeoch R, Lyne J, Steedman T, Good R, McLaughlin MJ, et al.
4	763	Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve
5	764	for the detection of significant coronary heart disease. Circulation. 2009;120(22):2207-13.
6	765	Epub 2009/11/18.
/	7//	
0	/66	34. Krittayaphong R, Chaithiraphan V, Maneesal A, Udompanturak S. Prognostic value
9 10	/6/	of combined magnetic resonance myocardial perfusion imaging and late gadolinium
10	768	enhancement. The international journal of cardiovascular imaging. 2011;27(5):705-14. Epub
10	769	2011/04/12.
12		
13	770	35. Bingham SE, Hachamovitch R. Incremental prognostic significance of combined
14	771	cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement,
15	772	and left ventricular function over preimaging information for the prediction of adverse events.
16 17	773	Circulation. 2011;123(14):1509-18. Epub 2011/03/30.
18		
19	774	36. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al.
20	775	Cardiovascular magnetic resonance and single-photon emission computed tomography for
20	776	diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet.
21	777	2012;379(9814):453-60. Epub 2011/12/27.
22		
23	778	37 Greenwood JP, CMR versus SPECT for diagnosis of coronary heart disease –
24	779	Authors' renly The Lancet 2012:370(0832):2147 - 8
25	11)	Authors reply the Eancet. 2012,373(3032).2147 - 0.
26	700	20 Beenlands BC Nichol C Lluceti E Llumon D. Beeine N. Freeman M. et al. E 40
27	/80	38. Beaniands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. F-18-
28	/81	fluorodeoxyglucose positron emission tomography imaging-assisted management of patients
29	782	with severe left ventricular dysfunction and suspected coronary disease: a randomized,
30	783	controlled trial (PARR-2). Journal of the American College of Cardiology. 2007;50(20):2002-
31	784	12. Epub 2007/11/13.
32		
33	785	39. Maron DJ, Stone GW, Berman DS, Mancini GB, Scott TA, Byrne DW, et al. Is cardiac
34	786	catheterization necessary before initial management of patients with stable ischemic heart
35	787	disease? Results from a Web-based survey of cardiologists. American heart journal.
36	788	2011;162(6):1034-43 e13. Epub 2011/12/06.
37		
38	789	40 Nallamothu BK Rogers MA Chernew ME Krumholz HM Eagle KA Birkmeyer ID
39	790	Opening of specialty cardiac hospitals and use of coronary revascularization in medicare
40	791	beneficiaries IAMA : the journal of the American Medical Association 2007:207(0):062-8
41	702	Enub 2007/03/08
42	192	
43	702	44 Fait F. Mueller I.C. Draunweld F. Daga D. Hadres M. Harrison MV/ at al.
44	/93	41. Feit F, Mueller HS, Braunwald E, Ross R, Hodges M, Herman MV, et al.
45	/94	I nrombolysis in Myocardial Infarction (TIMI) phase II trial: outcome comparison of a
46	795	"conservative strategy" in community versus tertiary hospitals. The TIMI Research Group.
47	796	Journal of the American College of Cardiology. 1990;16(7):1529-34. Epub 1990/12/01.
48		
49	797	42. Blustein J. High-technology cardiac procedures. The impact of service availability on
50	798	service use in New York State. JAMA : the journal of the American Medical Association.
51	799	1993;270(3):344-9. Epub 1993/07/21.
52		
53	800	43. Every NR, Larson EB, Litwin PF, Maynard C, Fihn SD, Fisenberg MS, et al. The
54	801	association between on-site cardiac catheterization facilities and the use of coronary
55	802	andiography after acute myocardial infarction. Myocardial Infarction Triage and Intervention
56	803	Project Investigators. The New England journal of medicine 1003-320(8)-546-51. Epub
57	804	1003/08/10
58	004	
59		
60		

44. Shaw LJ, Hachamovitch R, Berman DS, Marwick TH, Lauer MS, Heller GV, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. Journal of the American College of Cardiology. 1999;33(3):661-9. Epub 1999/03/18. Mowatt G, Vale L, Brazzelli M, Hernandez R, Murray A, Scott N, et al. Systematic 45. review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction. Health Technol Assess. 2004;8(30):iii-iv, 1-207. Epub 2004/07/14. Underwood SR, Godman B, Salyani S, Ogle JR, Ell PJ. Economics of myocardial 46. perfusion imaging in Europe--the EMPIRE Study. European heart journal. 1999;20(2):157-66. Epub 1999/04/01. 47. Underwood SR, Shaw LJ, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint J, et al. Myocardial perfusion scintigraphy and cost effectiveness of diagnosis and management of coronary heart disease. Heart. 2004;90 Suppl 5:v34-6. Epub 2004/07/16. 48. Uchida T, Popma J, Stone GW, Ellis SG, Turco MA, Ormiston JA, et al. The clinical impact of routine angiographic follow-up in randomized trials of drug-eluting stents: a critical assessment of "oculostenotic" reintervention in patients with intermediate lesions. JACC Cardiovascular interventions. 2010;3(4):403-11. Epub 2010/04/20. 49. Christou MA, Siontis GC, Katritsis DG, Ioannidis JP. Meta-analysis of fractional flow reserve versus quantitative coronary angiography and noninvasive imaging for evaluation of myocardial ischemia. The American journal of cardiology. 2007;99(4):450-6. Epub 2007/02/13. 50. Gould KL. Does coronary flow trump coronary anatomy? JACC Cardiovascular imaging. 2009;2(8):1009-23. Epub 2009/08/15. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus 51. standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. Journal of the American College of Cardiology. 2010;55(3):221-30. Epub 2009/11/17. 52. Boldt J, Leber AW, Bonaventura K, Sohns C, Stula M, Huppertz A, et al. Cost-effectiveness of cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary artery disease in Germany. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2013;15:30. Epub 2013/04/12. 53. Walker S, Girardin F, McKenna C, Ball SG, Nixon J, Plein S, et al. Cost-effectiveness of cardiovascular magnetic resonance in the diagnosis of coronary heart disease: an economic evaluation using data from the CE-MARC study. Heart. 2013;99(12):873-81. Epub 2013/04/18. 54. Kuntz KM, Fleischmann KE, Hunink MG, Douglas PS. Cost-effectiveness of diagnostic strategies for patients with chest pain. Annals of internal medicine. 1999;130(9):709-18. Epub 1999/06/05.

55. Hayashino Y, Nagata-Kobayashi S, Morimoto T, Maeda K, Shimbo T, Fukui T. Cost-effectiveness of screening for coronary artery disease in asymptomatic patients with Type 2 diabetes and additional atherogenic risk factors. Journal of general internal medicine. 2004;19(12):1181-91. Epub 2004/12/22.

56. Tan SS, Oppe M, Zoet-Nugteren SK, Niezen RA, Kofflard MJ, Ten Cate FJ, et al. A microcosting study of diagnostic tests for the detection of coronary artery disease in The Netherlands. European journal of radiology. 2009;72(1):98-103. Epub 2008/08/16.

57. Kim C, Kwok YS, Saha S, Redberg RF. Diagnosis of suspected coronary artery disease in women: a cost-effectiveness analysis. American heart journal. 1999;137(6):1019-27. Epub 1999/05/29.

/ski w, ,e coronary a. al. 2007;14(6):544-5. 58. Lewandowski M, Szwed H, Kowalik I. Searching for the optimal strategy for the diagnosis of stable coronary artery disease. Cost-effectiveness of the new algorithm. Cardiology journal. 2007;14(6):544-51. Epub 2008/07/25.

Item	Description	Reported on
		line number
Title	Identification of the study as randomized	4
Authors *	Contact details for the corresponding author	26
Trial design	Description of the trial design (e.g. parallel, cluster, non-inferiority)	140
Methods		
Participants	Eligibility criteria for participants and the settings where the data were collected	153-157
Interventions	Interventions intended for each group	140-144 & 163- 165
Objective	Specific objective or hypothesis	147
Outcome	Clearly defined primary outcome for this report	219
Randomization	How participants were allocated to interventions	159
Blinding (masking)	Whether or not participants, care givers, and those assessing the outcomes were blinded to group assignment	140
Results		
Numbers randomized	Number of participants randomized to each group	285 & 582
Recruitment	Trial status	
Numbers analysed	Number of participants analysed in each group	582
Outcome	For the primary outcome, a result for each group and the estimated effect size and its precision	585
Harms	Important adverse events or side effects	318-9
Conclusions	General interpretation of the results	540
Trial registration	Registration number and name of trial register	124
Funding	Source of funding	546-548

CONSORT checklist CECaT Trial BMJ Open Re-Submission

Figure 1 Trial summary

SPECT – ANGIO

BMJ Open Cost effectiveness acceptability curves

Cost effectiveness of initial stress cardiovascular MR, stress SPECT or stress echocardiography as a gatekeeper test, compared to upfront invasive coronary angiography in the investigation and management of patients with stable chest pain: mid term outcomes from the CECaT* randomised controlled trial

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003419.R2
Article Type:	Research
Date Submitted by the Author:	28-Nov-2013
Complete List of Authors:	Thom, Howard; Institute of Public Health, Biostatistics West, Nicholas; Papworth Hospital, Cardiology Hughes, Vikki; Papworth Hospital, Research & Development Dyer, Matthew; Brunel University, Health Economics Research Group Buxton, Martin; Brunel University, Health Economics Research Group Sharples, Linda; Institute of Public Health, Biostatistics Jackson, Christopher; Institute of Public Health, Biostatistics Crean, Andrew; Toronto General Hospital, Cardiology
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Health economics, Health policy, Health services research, Medical management, Radiology and imaging
Keywords:	Adult cardiology < CARDIOLOGY, Ischaemic heart disease < CARDIOLOGY, Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Cardiology < INTERNAL MEDICINE, Cardiovascular imaging < RADIOLOGY & IMAGING

SCHOLARONE[™] Manuscripts

BMJ Open

2		
4	1	Title: Cost effectiveness of initial stress cardiovascular MR, stress SPECT or stress
5 6	2	echocardiography as a gatekeeper test, compared to upfront invasive coronary
7 8	3	angiography in the investigation and management of patients with stable chest
9 10 11	4	pain: mid term outcomes from the CECaT* randomised controlled trial
12 13 14 15	5 6 7 8	*Cost Effectiveness of non-invasive Cardiac Testing
16 17	9	Howard Thom MSc, Nicholas West MD, FRCP, Vikki Hughes PhD, Matthew Dyer
18 19	10	MSc, Martin Buxton MSc, Linda D Sharples PhD, Christopher H Jackson PhD,
20 21	11	Andrew M Crean MRCP, FRCR
22 23	12	
24 25	13	Affiliations:
26 27	14	MRC Biostatistics Unit, Institute of Public Health, Cambridge CB2 0SR, UK, Howard Thom,
28 29	15	biostatistician; Department of Cardiology, Papworth Hospital, Cambridge, CB23 3RE, UK
30 31	16	Nicholas West, consultant cardiologist; Research and Development Office, Papworth
32 33	17	Hospital, Cambridge, CB23 3RE, UK, Vikki Hughes senior research analyst; Health
34 35	18	Economics Research Group, Brunel University, Uxbridge, Middlesex UB8 3PH, UK, Matthew
36 37	19	Dyer, research fellow; Health Economics Research Group, Brunel University, Uxbridge,
38 39	20	Middlesex UB8 3PH, UK, Martin Buxton, professor; and Clinical Trials Research Unit,
40 41	21	University of Leeds, West Yorkshire LS2 9JT, UK, Linda D Sharples, professor; MRC
42 43	22	Biostatistics Unit, Institute of Public Health, Cambridge CB2 0SR, UK, Christopher H
44 45	23	Jackson, senior statistician; Division of Cardiology, Toronto General Hospital, Toronto, M5G
46 47	24	2C4, Canada, Andrew M Crean, assistant professor of medicine & radiology.
48 ⊿q	25	
50 51	26	Corresponding author: Dr Andrew Crean MRCP FRCR, Division of Cardiology, Toronto
52 53	27	General Hospital, 585 University Avenue, Toronto, ON, Canada M5G 2C4
54 55	28	Tel: 1 416 340 4800 Fax: 1 888 502 6601 Email: andrew.crean@uhn.ca
56 57 58 59	29	Clinical Trial registration: ISRCTN 47108462, UKCRN 3696

2	
3	
4	
5	
6	
/	
0	
9 10	
11	
12	
13	
14	
15	
16	
18	
19	
20	
21	
22	
23	
24	
25	
20 27	
28	
29	
30	
31	
32	
33	
35	
36	
37	
38	
39	
40	
41	
42 43	
44	
45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58 50	
59 60	
~~~	

#### The CECaT study group were:

Johanna Armstrong, Martin Buxton, Noreen Caine, Richard Coulden, Andrew Crean,

- Matthew Dyer, Margaret Gillham, Hester Goddard, Kim Goldsmith, Vikki Hughes, Evelyn
- utu Lee, Roger Patel, Peter Schofield, Linda Sharples, Emer Sonnex, David Stone, Carmen
- Treacy

#### **BMJ Open**

459 <b>Objectives:</b> to compare outcomes and cost effectives of various initial imaging sti660the management of stable chest pain in a long term prospective randomized trial.961 <b>Setting:</b> regional cardiothoracic referral center in the east of England1062 <b>Participants:</b> 898 patients (69% male) entered the study with 869 alive at 2yr folk1363Patients were included if they presented for assessment of stable chest pain with1464exercise test and no prior history of ischemic heart disease. Exclusion criteria wer1564infarction, unstable symptoms or any contra-indication to stress MRI.1966 <b>Primary outcome measures:</b> The primary outcomes of this follow up study were2167to a minimum of 2 years post-treatment, quality-adjusted survival and cost-utility o2368strategy2469 <b>Results:</b> 898 patients were randomized. Compared to angiography, mortality was2770marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1,	
060the management of stable chest pain in a long term prospective randomized trial.861Setting: regional cardiothoracic referral center in the east of England1062Participants: 898 patients (69% male) entered the study with 869 alive at 2yr folke1363Patients were included if they presented for assessment of stable chest pain with1464exercise test and no prior history of ischemic heart disease. Exclusion criteria wer1765infarction, unstable symptoms or any contra-indication to stress MRI.1866Primary outcome measures: The primary outcomes of this follow up study were2067to a minimum of 2 years post-treatment, quality-adjusted survival and cost-utility o2368strategy2469Results: 898 patients were randomized. Compared to angiography, mortality was2770marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1,	rategies on
<ul> <li>61 Setting: regional cardiothoracic referral center in the east of England</li> <li>62 Participants: 898 patients (69% male) entered the study with 869 alive at 2yr follo</li> <li>63 Patients were included if they presented for assessment of stable chest pain with</li> <li>64 exercise test and no prior history of ischemic heart disease. Exclusion criteria wer</li> <li>65 infarction, unstable symptoms or any contra-indication to stress MRI.</li> <li>66 Primary outcome measures: The primary outcomes of this follow up study were</li> <li>67 to a minimum of 2 years post-treatment, quality-adjusted survival and cost-utility o</li> <li>68 strategy</li> <li>69 Results: 898 patients were randomized. Compared to angiography, mortality was</li> <li>70 marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1,</li> </ul>	
<ul> <li>Participants: 898 patients (69% male) entered the study with 869 alive at 2yr following</li> <li>Patients were included if they presented for assessment of stable chest pain with</li> <li>exercise test and no prior history of ischemic heart disease. Exclusion criteria wer</li> <li>infarction, unstable symptoms or any contra-indication to stress MRI.</li> <li>Primary outcome measures: The primary outcomes of this follow up study were</li> <li>to a minimum of 2 years post-treatment, quality-adjusted survival and cost-utility o</li> <li>strategy</li> <li>Results: 898 patients were randomized. Compared to angiography, mortality was</li> <li>marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1,</li> </ul>	
<ul> <li>Patients were included if they presented for assessment of stable chest pain with</li> <li>exercise test and no prior history of ischemic heart disease. Exclusion criteria wer</li> <li>infarction, unstable symptoms or any contra-indication to stress MRI.</li> <li>Primary outcome measures: The primary outcomes of this follow up study were</li> <li>to a minimum of 2 years post-treatment, quality-adjusted survival and cost-utility o</li> <li>strategy</li> <li>Results: 898 patients were randomized. Compared to angiography, mortality was</li> <li>marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1,</li> </ul>	ow up.
<ul> <li>exercise test and no prior history of ischemic heart disease. Exclusion criteria wer</li> <li>infarction, unstable symptoms or any contra-indication to stress MRI.</li> <li>Primary outcome measures: The primary outcomes of this follow up study were</li> <li>to a minimum of 2 years post-treatment, quality-adjusted survival and cost-utility o</li> <li>strategy</li> <li>Results: 898 patients were randomized. Compared to angiography, mortality was</li> <li>marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1,</li> </ul>	a positive
<ul> <li>infarction, unstable symptoms or any contra-indication to stress MRI.</li> <li>Primary outcome measures: The primary outcomes of this follow up study were</li> <li>to a minimum of 2 years post-treatment, quality-adjusted survival and cost-utility o</li> <li>strategy</li> <li>Results: 898 patients were randomized. Compared to angiography, mortality was</li> <li>marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1,</li> </ul>	e recent
<ul> <li>Primary outcome measures: The primary outcomes of this follow up study were</li> <li>to a minimum of 2 years post-treatment, quality-adjusted survival and cost-utility o</li> <li>strategy</li> <li>Results: 898 patients were randomized. Compared to angiography, mortality was</li> <li>marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1,</li> </ul>	
<ul> <li>to a minimum of 2 years post-treatment, quality-adjusted survival and cost-utility c</li> <li>to a minimum of 2 years post-treatment, quality-adjusted survival and cost-utility c</li> <li>strategy</li> <li><b>Results:</b> 898 patients were randomized. Compared to angiography, mortality was</li> <li>marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1,</li> </ul>	survival up
<ul> <li>68 strategy</li> <li>69 <b>Results:</b> 898 patients were randomized. Compared to angiography, mortality was</li> <li>70 marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1,</li> </ul>	f each
<ul> <li>Results: 898 patients were randomized. Compared to angiography, mortality was</li> <li>70 marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1,</li> </ul>	
27 70 marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1,	S
28	6.2), but
29 71 similar in the SPECT-MIBI (hazard ratio 1.0, 95%CI 0.4, 2.9) and ECHO groups (h	nazard ratio
31 32721.6, 95%CI 0.6, 4.0). Although SPECT-MIBI was marginally superior to other non-	invasive
<ul> <li>tests there were no other significant differences between the groups in mortality, c</li> </ul>	quality
35 3674adjusted survival or costs.	
37 3875Conclusions: Non-invasive cardiac imaging can be used safely as the initial diag	nostic test
<ul> <li>to diagnose CAD without adverse effects on patient outcomes or increased costs,</li> </ul>	relative to
41 42 77 angiography. These results should be interpreted in the context of recent advance	s in
434478imaging technology.	
45 46 79 <b>Trial registration:</b> ISRCTN 47108462, UKCRN 3696	
47 48 80 <b>Key words:</b> MRI, cardiovascular magnetic resonance, comparative effectiveness	, SPECT,
49 50 81 stress echo, coronary angiography.	
51 52 82	
53 54 83	
55 56 84	
57 58 85	
60 2	

3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
29
30
31
32
32
33
34
35
36
37
38
39
40
41
42
43
44
45
40
40
47
48
49
50
51
52
53
54
55
56
57
58
50
59
60

86	Article	e summary:
87	Article	focus:
88	1.	Is non-invasive imaging a safe and appropriate gate-keeper to coronary angiography
89		in patients with stable chest pain ?
90	2.	Is there any difference in cost-effectiveness and cost-utility between the different
91		non-invasive approaches and conventional coronary angiography
92	3.	Are patients disadvantaged in any meaningful way by having a non-invasive test to
93		decide whether they should go forward for coronary angiography ?
94	4.	How does stress perfusion CMR compare to the more established tests of SPECT-
95		MIBI and stress echocardiography as a gate-keeper to coronary angiography ?
96		
97	Key m	essages:
98	1.	Non-invasive testing may be used safely as a gate-keeper to coronary angiography
99		in patients with stable chest pain without any material disadvantage to them in terms
100		of survival and quality of life up to 6 years after initial randomisation.
101	2.	SPECT-MIBI appears marginally superior statistically to the other non-invasive
102		methods although clinically meaningful differences are small between all strategies.
103	3.	Stress perfusion CMR appears to be an effective technique in a stable out-patient
104		population with undiagnosed chest pain.
105		
106	Sti	rengths and limitations:
107	1.	This is the only large randomised prospective trial of a strategy of non-invasive gate-
108		keeper cardiac imaging versus upfront angiography in the literature.
109	2.	The cost-utility data are derived from NHS tariffs and our results are not necessarily
110		directly transferrable to other healthcare systems
111		

Introduction

**BMJ Open** 

113	
114	CAD is common and its management is costly ⁽¹⁾ . Revascularisation using bypass surgery
115	(CABG) or percutaneous coronary intervention (PCI) is effective for patients with severe
116	disease ⁽²⁾ but a significant minority of patients do not gain symptomatic relief ⁽³⁾ . Data from
117	the COURAGE trial did not show prognostic benefit from revascularization in any patient
118	subgroup ⁽⁴⁾ . The yield of coronary angiography is variable with one recent large study of
119	nearly 400, 000 patients demonstrating a normalcy rate approaching 40% $^{(5)}$ . Therefore
120	non-invasive testing to identify those with a low likelihood of obstructive CAD may be safer,
121	cheaper and more appropriate than upfront angiography. This approach is codified in
122	multiple AHA/ACC guidelines on the investigation of stable or suspected angina pectoris in
123	which initial non-invasive imaging is rated as highly appropriate ^{(6) (7) (8) (9)} .
124	
125	The 'Cost-Effectiveness of non-invasive Cardiac Testing' (CECaT) trial was an unblinded
126	non-inferiority trial designed to assess three functional tests - stress echocardiography,
127	single photon emission computed tomography (SPECT) and stress cardiac magnetic
128	resonance imaging (CMR) - as a gatekeeper to coronary angiography (CA) in patients
129	referred for CA with suspected coronary artery disease (CAD). Early clinical and cost-
130	effectiveness estimates have been published and showed that the CMR group had slightly
131	lower mean exercise treadmill time according to the Bruce protocol but otherwise the tests
132	could be considered equally effective ⁽¹⁰⁾ . This report provides the main cost-effectiveness
133	and mortality outcomes up to 6 years after randomisation.
134	
135	Methods
136	Study design
137	The design of the study has been described elsewhere $^{(10)}$ and is reviewed briefly here. All
138	patients referred to Papworth Hospital, UK for non-urgent angiography were eligible for the

139 study. Inclusion criteria were: established or suspected chronic stable angina and a positive

140	exercise tolerance test result with subsequent referral for angiography. Exclusion criteria
141	were: recent MI (<3 months), revascularisation (<6 months); urgent need for
142	revascularisation; contra-indication to adenosine or CMR; inability to exercise.
143	
144	Trial design was of four parallel arms with a 1:1:1:1 randomisation ratio. Randomisation was
145	computer generated and stratified according to Pryor risk assessment ⁽¹¹⁾ . Within each Pryor
146	risk group, randomisation was in blocks of length 6 or 8. Sequentially numbered group
147	designation was held in the Research & Development (R&D) Office and was not available to
148	trial personnel. Patients were randomised to their initial diagnostic test - stress SPECT,
149	stress CMR, stress echocardiography, or angiography - by R&D within 4 weeks of
150	recruitment and only after they had given consent and been registered.
151	
152	Non invasive imaging results were returned with a recommendation to proceed with
153	angiography only when reported as 'positive' for inducible ischemia. Protocol adherence to
154	this recommendation was not mandated by trial design and patients proceeded to
155	angiography if considered clinically indicated. Treatment with PCI or CABG (performed
156	within six months of angiography) or to medical therapy was according to standard practice.
157	
158	Coronary angiography.
159	Standard diagnostic angiography was performed from the right femoral artery approach ⁽¹²⁾ .
160	A minimum of 5 views of the left and 3 views of the right coronary system were taken ⁽¹³⁾ . All
161	examinations were reported by an experienced staff cardiologist and segmental location of
162	disease (if any) recorded.
163	
164	Stress echocardiography
165	Beta-blocker medications were stopped 2 days beforehand. Dobutamine was infused at
166	rates of 10- 40 mcg/kg/min, increased at 3 minute intervals. If necessary, 300-600
167	micrograms of atropine were added at peak stress to achieve 90% of target heart

### **BMJ Open**

1		
2 3	168	rate. Images were acquired in standard planes in the final minute of each 3 minute stage.
5	169	Intravenous microspheres were used to delineate the endocardial surface. All examinations
6 7	170	were reported by one of two staff cardiologists experienced in stress echocardiography.
8 9	171	Studies were positive for ischemia if stress-induced deterioration in contractility was
10	172	observed.
12	173	
14 15 16	174	SPECT
17	175	Rest/stress 99mTc sestamibi (99mTc MIBI) SPECT was performed (2 day protocol). A 6
19	176	minute adenosine infusion (140 g/kg/min) was employed. 400 MBq 99m-Tc MIBI was
20 21 22	177	administered at 3 minutes after infusion of adenosine was started. Gated SPECT imaging
23 24	178	occurred 60 minutes after injection. Tomographic images were assessed for fixed and
25 26	179	reversible defects by a single observer (as per established criteria) ⁽¹⁴⁾ .
20 27 28	180	
20 29 30	181	CMR
30 31 32	182	Stress CMR imaging was performed at a standard similar to that which was subsequently
33 34	183	recommended by the Society of Cardiovascular Magnetic Resonance ⁽¹⁵⁾ . A 1.5T mobile
35 36	184	CMR system and 4-channel phased array surface coil were used (Signa CV/i, GE Medical
37 38	185	Systems). Stress/rest dynamic first-pass perfusion imaging was performed. A hybrid fast
39 40	186	gradient echo/echoplanar sequence was employed ⁽¹⁶⁾ . Adenosine was infused at 140
41 42	187	mcg/kg/min for 4 minutes. After 3 minutes, a bolus of Gadolinium-DTPA (0.1mmol/kg) was
43 44	188	delivered at 5mls/sec, followed by a 25ml saline flush. First-pass imaging of the heart
45 46	189	occurred over 80 heart beats. A volumetric notched-saturation pre-pulse preserved a
47 48	190	constant saturation-recovery time during slice acquisition ⁽¹⁷⁾ . 6-8 short axis slices were
49 50	191	obtained every 2 heart beats. Rest imaging was repeated after a minimum interval of 15
51 52	192	minutes. Cine steady state free precession images and late gadolinium enhancement
53 54	193	images were also acquired as described in the original CECaT protocol ⁽¹⁰⁾ Studies were
55 56	194	reported as positive if there was an inducible perfusion defect visible for at least 5 frames
57 58		

195	either: a) in a region of normal wall thickness; or b) in a region of myocardial thinning in the
196	absence of a history of prior myocardial infarction.
197	
198	Outcomes
199	The primary outcome in the original CECaT trial was exercise treadmill time at 18 months
200	post-randomisation using the modified Bruce protocol, in which exercise intensity was
201	increased every 3 minutes. There was a range of secondary outcomes including diagnostic
202	accuracy, clinical events, health-related quality and cost-effectiveness of life up to 18 months
203	after randomisation ⁽¹⁰⁾ .
204	The primary outcomes of this follow up study were survival up to a minimum of 2 years post-
205	treatment, quality-adjusted survival and cost-utility of each strategy. Survival status at the
206	end of follow up was determined from the Office for National Statistics database, UK
207	( <u>http://www.ons.gov.uk/</u> ).
208	Quality of life was measured using the EuroQoL EQ-5D questionnaire ⁽¹⁸⁾ which was
209	completed at baseline, 6 and 18 months post-randomisation, and at 6, 18 and 24 months
210	post-treatment. The social tariff for the EQ-5D was applied in order to calculate utility values
211	⁽¹⁹⁾ . Because post- <b>treatment</b> measurements were at variable times post- <b>randomisation</b>
212	(randomisation date is time zero for a randomised trial) daily utilities were estimated using
213	linear interpolation.
214	
215	Sample size calculations
216	The sample size of 898 patients was based on exercise performance and was calculated
217	according to the methodology published in the initial report of the CECaT study $^{(10)}$ .
218	
219	Statistical and economic analysis
220	For this study, survival was summarised using Kaplan-Meier estimates and the groups were
221	compared using Cox proportional hazards regression. This assumes that the instantaneous
222	risk of death (hazard) for a reference value of a covariate will vary through time, but that the

#### **BMJ Open**

hazards for other values of the covariate will be a constant multiple of this baseline hazard, and this multiple will not vary through time. This assumption was tested using Schoenfeld residuals and there was little evidence against it. The diagnostic test was entered into the Cox regression as a 4-level fixed covariate, with angiography as the reference category. In sensitivity analysis CABG and PCI were included in the regression analyses as time-varying covariates, taking a value 0 up to the time of intervention and 1 thereafter, to ensure that any differences between the groups was not due to differences in treatment. Inclusion of treatment (CABG/PCI) did not affect comparison of diagnostic strategies and results of these analyses are not included here.

Patient-specific hospital resource use was collected for 2 years post-*treatment* with revascularisation or medical management. Costs were based on National Health Service reference costs 2005/06 prices. An annual discount rate of 3.5% was applied to all costs and quality-adjusted life-years (QALYs) after 12 months post-randomisation. Resources costed were: imaging tests; revascularisation; inpatient/outpatient episodes; adverse events; cardiac-related medications. Patient-reported admissions for MI were verified with the admitting hospital and adjudicated.

Quality adjusted survival and cost estimates were censored at the last follow up at 2 years after treatment, resulting in varying duration of follow-up from the time of randomisation to the different diagnostic strategies, so that mean values over a range of time horizons were estimated using inverse weighting methods ⁽²⁰⁾. This method allows for differing follow up times between patients by splitting follow up time into intervals, and up-weighting the observed quality adjusted survival and costs in an interval in proportion to the inverse of the Kaplan-Meier estimate of the proportion observed during the interval. In the base case we used a time horizon of 3 years since it was the longest period over which results were stable, with acceptable precision. Confidence intervals for costs and QALYs were estimated using bootstrapping with 5000 samples ⁽²¹⁾.

3	251	Sensitivity analysis
4 5 6	252	Sensitivity of cost-utility results for different time horizons was assessed by re-estimating
7	253	results up to 12, 18, 24, 36 and 48 months after randomization. In addition, cardiologists
o 9 10	254	were divided into those who did and did not perform percutaneous coronary intervention as
10 11 12	255	part of their routine clinical practice, and results were recalculated for each subgroup. With
12 13 14	256	the exception of this post-hoc data interrogation, all other results presented derive from
14 15 16	257	intention-to-treat analysis.
17 18	258	
19 20	259	The study had IRB approval and full written informed consent was obtained from all
20 21 22	260	participants. All authors had full access to the data and take responsibility for the manuscript
23 24	261	as written.
25 26	262	
27 28	263	Results
29 30	264	Recruitment and compliance
31 32	265	Between September 2001 and September 2004, 3,201 patients were assessed, 1,981 were
33 34	266	excluded and 322 refused entry to the trial. Refusals were more likely to come from women
35 36	267	(46% compared with 31% enrolled into the study, $p<0.001$ ) and were significantly older
37 38	268	(mean age 64.6, (SD 10.1) compared with study group mean age 61.8, (9.4), p<0.001).
39 40	269	
41 42	270	898 patients were randomised. Groups were well matched at baseline (table 1). In each
43 44	271	group 69% of patients were high risk for CAD (Pryor score > 0.8). The trial was closed to
45 46	272	recruitment in September 2004 after enrolling the pre-specified number of subjects.
47 48	273	
49 50	274	One-hundred-seventy-five (78%) SPECT patients, 180 (80%) CMR patients and 169 (75%)
51 52	275	stress echo patients were referred on for angiography (Figure 1). Between 20% and 25% of
53 54	276	patients undergoing non-invasive tests did not require further investigation. Twenty-one
55 56	277	percent of patients who had negative tests were referred for angiography and the proportion
57 58 59 60	278	was similar in each group (SPECT n=45, CMR n=50, ECHO n=48, p=0.858). Of these 14

#### **BMJ Open**

3	
4	
5	
5	
0	
1	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
24	
20	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
-TJ 16	
40	
41	
48	
49	
50	
51	
52	
52	
03	
54	
55	
56	
57	
58	
50	
60	
CUU -	

279 (31%) SPECT, 26 (52%) CMR and 23 (48%) ECHO resulted in a positive angiogram 280 (p=0.130). Four patients died and four withdrew from the trial early on. Of the remaining 281 patients, revascularization was required in 34% (301/890 - see Figure 1 for numbers in 282 each arm). There was no significant difference between the groups in initial patient 283 management (Figure 1, p=0.527). Beyond the initial management strategy 42 subsequent 284 revascularisation procedures were required in the angiography arm compared with 30 in the 285 SPECT, 44 in the CMR and 41 in the ECHO arms. The median times between 286 randomisation and initial revascularisation were 122 days in the angiography group, 192 287 days for SPECT, 184 days for CMR and 177.5 days for ECHO, resulting in a delay due to 288 functional testing of approximately 2 months.

290 Survival

289

291 During the study there were 7 (3%), 7 (3%), 18 (8%) and 11 (5%) deaths in the angiography 292 , SPECT, CMR and ECHO groups respectively. Kaplan-Meier survival curves for the 4 293 groups are plotted in Figure 2. Survival over the whole trial period in the SPECT (hazard 294 ratio 1.0, 95%CI 0.4, 2.9) and stress echo (hazard ratio 1.6, 95%CI 0.6, 4.0) groups were not 295 significantly different from angiography but the CMR group had higher mortality, with hazard 296 ratio 2.6 (95%CI 1.1 to 6.2), p=0.032. The significant effect of CMR on survival remained 297 when CABG or PCI were included in the models. However, mortality was low in all groups 298 and the absolute mean difference in survival was less than 1 month over 3 years (Table 2). 299 Mean survival estimates over 3 years with 95% confidence intervals are shown in Table 2. 300 All patients had complete adverse event data up to 18 months post-randomisation during 301 which there were 178 non-fatal adverse events in 114 patients, mostly hospital admissions 302 for chest pain (Table 3). Beyond this time only adverse events that resulted in admissions 303 were recorded as they were relevant for the economic analysis. No patient suffered any 304 adverse event at the time of the initial randomised imaging test. 305

306 Cost-utility

Table 4 shows some of the highest incurred follow up costs for the 4 groups and shows that patient management varied substantially between individuals. Although angiography was the most expensive of the four initial diagnostic tests, the strategy of initial angiography had lower mean overall cost than stress echo, and was similar to CMR up to 3 years (**Table 2**).
Extra costs for patients in the three non-invasive groups was largely due to patients undergoing follow-on angiography. There were no significant differences in overall costs between the groups.

During the study there were no significant differences in EQ-5D between the groups. Figure **3** shows daily mean EQ-5D utility over time based on interpolation between measurements for survivors who completed the EQ-5D. Using inverse-weighting we calculated QALYs over different time horizons and these are presented up to 3 years in Table 2. Mean QALYs over 3 years in the angiography group was 2.24, which was not significantly different from the other groups. Figure 4 shows the joint distribution of the difference in mean cost against the difference in mean QALY for each diagnostic strategy group and angiography alone, and shows the uncertainty in these estimates. Figure 5 shows the Cost-Effectiveness Acceptability Curve and demonstrated that SPECT has a high chance (>70%) of being cost-effective whatever the willingness-to-pay threshold is but for CMR and ECHO there is much less certainty about this decision. The mean differences between groups were close to zero in all 3 cases so that the cost-per-QALY estimates are unstable and a cost-minimization approach may be more appropriate. This would favour SPECT, which was both cheaper and more effective on average than angiography, and had the lowest overall cost ().

330 Sensitivity analysis

The comparisons between the diagnostic strategy groups did not change substantially when
we varied the time horizon; the main effect of this was that the variation surrounding
estimates increased as the time horizon lengthened due to the heavy censoring (results not
shown). Tables 2a and 2b show results for interventional and non-invasive cardiologists

#### **BMJ Open**

ge 13 of 79	BMJ Open			
335	respectively. Patients who were managed by interventional cardiologists incurred higher			
336	costs due to the greater number of tests and revascularization procedures performed, with			
337	minimal incremental benefit in QALY.			
338				
339	Discussion			
340	CECaT is the first completed prospective randomized trial to look at the clinical and cost-			
341	effectiveness of non-invasive imaging in the diagnosis and management of angina. To the			
342	best of the authors' knowledge there has been no comparable outcomes trial published on			
343	this scale evaluating three independent non-invasive 'gatekeeper' modalities versus initial			
344	angiography in stable chest pain. The trial is also unusual in the length of prospective follow			
345	up extending to 6 years for mortality outcomes.			
346				
347	We have demonstrated that use of any one of stress CMR, stress echo or stress SPECT as			
348	the initial test for a stable chest pain patient leads to non-inferior outcomes in quality of life			
349	and cost utility compared to patients randomised to upfront invasive coronary angiography.			
350	Typically, non invasive tests perform well in low risk populations because of a negative			
351	predictive value which is usually better than the positive predictive value. However, the			
352	patient risk profile was relatively high in our study, and despite this there was no significant			
353	difference between an initial functional or anatomic approach.			
354				
355	There are several reasons why initial angiography may not have led to clear benefit in our			
356	study. Firstly, although angiography has stood at the heart of the diagnostic chest pain			
357	pathway, the traditional binary cut-off values of 50% or 70% percentage stenosis by visual			
358	estimation were shown in the FAME study to bear little relation to the true physiologic			
359	significance of luminal narrowing ⁽²²⁾ .			
360				
361	Secondly, data from various countries suggest that not only is coronary angiography often			
362	inappropriate when formally rated by expert observers (23) (24) but that disparate national or			

Page 14 of 79

#### **BMJ Open**

regional rates of angiography do not translate into clear mortality benefits between countries (25) (26) (27) (28) and on occasion may even demonstrate an inverse relationship (29). Contemporary US data from approximately 500,000 PCI procedures collected prospectively in the National Cardiovascular Data Registry demonstrated that, of 145,000 elective PCI cases, roughly 12% were judged inappropriate. Furthermore, the rate of inappropriate elective PCI between hospital sites ranged from 0-55% suggesting significant variability in practice ⁽³⁰⁾. The data suggest a better way of selecting patients for invasive investigation is needed.

Ischemia-driven revascularisation has been shown to be of benefit in a number of trials, most recently in the FAME study in which an invasive method of measuring the flow reserve of the microcirculation (Fractional Flow Reserve, FFR) was used to allocate patients to intervention or observation vs a clinical decision on intervention based on angiography alone (³¹). At 2 years follow up there were clear survival and MACE benefits to the FFR-based approach.

The ACRE study reported that, up to 6 years after diagnosis, medical management was a more cost-effective strategy for angina compared with PCI ⁽³²⁾. The lack of evidence for survival from revascularisation was also seen in the COURAGE trial ⁽⁴⁾. Critics have suggested this may be because randomization to PCI versus optimal medical therapy was made after coronary angiography had been performed, potentially leading to a recruitment bias of patients with less severe disease. In the CECaT trial this bias was avoided by randomization to a management strategy defined by the non-invasive test result for each of the 3 functional arms of the trial. In a relatively high risk population, we demonstrated no clinically significant survival or economic detriment from using non-invasive imaging as a gate-keeper to catheterization. Similarly, quality of life was not significantly different across all four groups and these differences extended to a warranty period of at least 3 years. 

#### **BMJ Open**

We did observe a marginal decrease in survival in the CMR arm. The reasons for the difference are unclear but do not relate to patient characteristics or management with CABG or PCI. Although statistically significant, the mean survival difference from the other groups was only 4 weeks over 3 years and is unlikely to be clinically meaningful. Since recent work has established a strong correspondence between FFR measurements and stress CMR perfusion indices it would be surprising if CMR were genuinely inferior to other modalities for risk stratification ⁽³³⁾. Indeed several recent publications have highlighted the incremental prognostic data (above that obtained from clinical variables) derived from several thousand perfusion CMR studies ^{(34) (35)}.

Given the recent publication of the CEMARC trial ⁽³⁶⁾ in which a clear diagnostic superiority was demonstrated for stress CMR over SPECT, it is interesting that our data nonetheless show an equivalence in functional health status between those randomized to SPECT versus CMR in the CECaT trial. The implication may be that although CMR detects the presence of any ischemia with a greater sensitivity it is the overall burden of ischemia that alters a patient's prognosis. As such, it has not yet been demonstrated that the higher diagnostic accuracy of CMR translates into better long-term patient outcomes - a fact acknowledged by Greenwood et al subsequent to CEMARC's publication ⁽³⁷⁾. In this context the CECaT nuclear results are congruent with numerous past publications and reconfirm the reassuring warranty period of a normal SPECT study.

#### 412 Cost effectiveness

There was no significant difference in cost-effectiveness between the angiography -asdefault group and the non-invasive test groups up to 3 years, perhaps relating to the higherthan-anticipated rate of referral for angiography after negative functional tests. Protocol deviation of this kind is not infrequent in trials of non-invasive technology. In the recent PARR-2 study of patients undergoing fluorodeoxyglucose positron emission tomography for the assessment of viability, roughly 25 % of the study population did not adhere to protocol

419	⁽³⁸⁾ . The willingness of a cardiologist to defer referral for coronary angiography in the face of
420	a normal non-invasive study may in part reflect individual prejudices and job description
421	(interventional versus non-invasive) as demonstrated in a recent survey of cardiology
422	attitudes ⁽³⁹⁾ and was also reflected in our own data.
423	
424	In CECaT, 20-25% of patients receiving a non-invasive test did not go on to have
425	angiography. A proportion of the additional cost in the non-invasive arms related to
426	angiography and PCI in the patients with a <i>negative</i> test, although only very few
427	subsequently required CABG - a robust marker of significant disease - during follow-up. This
428	readiness to employ PCI in a group in whom the indication/benefit is debatable was also
429	seen in the ACRE trial ⁽³²⁾ and reflects understandable clinical response to uncertainty but
430	also the easy access to PCI in healthcare systems without barriers to self-referral ⁽⁴⁰⁾ .
431	Similarly, studies from the US have demonstrated a greater willingness to use coronary
432	angiography when available 'on site' as is increasingly seen even in small-to-medium sized
433	hospitals (41) (42) (43).
434	
435	Cost effectiveness of each non-invasive technique
436	
437	Nuclear myocardial perfusion imaging
438	
439	The END study used propensity matching to compare a large cohort of patients referred for
440	either gate-keeper myocardial perfusion imaging or upfront angiography - this non
441	randomised study demonstrated a significant cost reduction in the $^{(44)}$ nuclear arm. In
442	contrast to this and other work $^{(45)}$ $^{(46)}$ $^{(47)}$ we were unable to show a significant difference in
443	cost effectiveness in our own study. To some extent this reflected the participating physician
444	bias towards angiography during the period of trial recruitment (2001-2006) with many
445	patients referred for angiography despite normal perfusion studies. This continues in the
446	contemporary era with Chan et al demonstrating that almost 80% of Delphi-adjudicated

#### **BMJ Open**

3	
1	
т Б	
5	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
55	
56	
57	
58	
59	
60	

inappropriate elective PCIs were performed following either low risk ischemia imaging in
 mildly symptomatic patients or intermediate risk imaging in entirely asymptomatic patients
 ⁽³⁰⁾.

450

451 In the CECaT study, when PCI was performed despite a negative initial non-invasive test, 452 this occurred because subsequent angiography indicated 'significant' stenosis. This was a 453 clinical judgment based on 'eveball assessment' of lesion severity as has been reported in clinical trials with angiographic end points ⁽⁴⁸⁾. However, the severity and functional 454 455 significance of many stenoses may be over-called, even by quantitative assessment, when 456 compared with physiological assessment of fractional flow reserve across the lesion (49) (50). 457 Further improvement in cost-effectiveness could likely have been achieved in the nuclear 458 arm of the trial. Our post-trial practice is to perform the stress SPECT first - and if this is 459 negative - cancel the rest test, likely augmenting the relative cost-effectiveness of SPECT (51) 460

461

462 CMR

463 There are relatively few data available regarding the cost effectiveness of CMR. One recent 464 mathematical modelling study estimated that CMR likely has greater cost effectiveness/utility 465 compared to SPECT despite greater base case cost of the former ⁽⁵²⁾. The economic 466 superiority of CMR was also recently described by the CEMARC group, although 467 interestingly the base case costs employed for CMR and SPECT in their analysis differed by 468 only a few pounds. Their own sensitivity analysis in fact demonstrated that if the costs of the 469 two tests varied by more than 100 pounds (which was the case in our study) then in fact - as 470 we found - SPECT became the dominant strategy in a low-to-intermediate risk population. (53) 471 472

473 Stress echo

Stress echocardiography may be a more cost-effective strategy than angiography for men aged 50-60 with CAD prevalence of 50%^{(54), (47)}. There is also some evidence that stress echo is more cost-effective than SPECT as an initial test (55) (56), especially in women with suspected CAD ⁽⁵⁷⁾. A similar benefit was not seen in our study probably because of the high disease prevalence in our population. The lack of superiority of either stress echocardiography or a combined strategy of exercise testing and stress echo compared to upfront catheterisation was also evident in a recent Polish study of 600 patients with a similar age, gender and disease prevalence to our own study population ⁽⁵⁸⁾. Taken overall, our data clearly demonstrate a limited future role for cost-effective non-invasive imaging if referring physicians are not willing to accept a negative result as ground truth. This might be interpreted as reflecting a need for greater physician education since we showed a clear difference in onward referral rates for angiography after a negative test between interventional and non-invasive cardiologists. Clinical effectiveness We demonstrated that SPECT can obviate the need for coronary angiography for a significant number of patients without any clinical detriment. In the stress echo group clinical outcomes were also comparable to the angiography subgroup at 18 months. The CMR group had statistically marginally poorer survival and this follows our earlier finding that CMR patients had significantly worse exercise tolerance at 18 months after randomisation ⁽¹⁰⁾. This is difficult to explain on the basis of Pryor risk score or other baseline clinical variables. However, the mean difference in survival between the CMR arm and the other groups was only 4 weeks and thus of marginal clinical significance. More importantly, the CMR group were not otherwise disadvantaged - compared to the angiographic control group - with respect to major adverse events, other resource use, or quality of life. Limitations

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 79		BMJ Open			
1					
2 3	502	This study was carried out in a single specialist cardiothoracic centre with a significant			
4 5	503	proportion of high risk, predominantly white European, male patients. Those eligible who			
6 7	504	refused the trial were older and were more likely to be women.			
8 9 10 11 12 13 14 15 16 17	505				
	506	Survival data from the national registry did not include cause of death so that deaths due to			
	507	cardiovascular causes could not be reported separately.			
	508				
	509	The trial completed recruitment in 2004 and we used the technology that was available to us			
18 19	510	at the onset of the trial. At that time, we were not able to use attenuation correction for			
20 21	511	SPECT imaging; however this was also not used in the much more recent CEMARC trial ⁽³⁶⁾ .			
22	512	Similarly, we performed our CMR exams in a mobile facility on a 1.5T scanner with only			
24 25	513	modest coil technology and limited temporal and anatomic coverage that would compare			
26 27 28	514	unfavourably with the 3T whole heart high resolution perfusion studies available today.			
20 29 20	515				
31 32	516	The trial aimed to reflect the strategy of using non-invasive imaging as a gateway to			
33 34	517	angiography in contemporary clinical practice. The test results were considered in			
35 36	518	conjunction with other information available at the time. Thus it was not the aim to formally			
37 38	519	assess diagnostic accuracy of the non-invasive tests in this context. This trial-based study			
39 40	520	was limited to 3 year cost-effectiveness follow up - longer-term economic models would			
41 42	521	provide lifetime estimates of the cost-effectiveness of the non-invasive strategies and could			
43 44	522	include advances in imaging technology.			
45 46	523				
47 48	524	Conclusions			
49 50	525	We have demonstrated in the CECaT trial that stress echo, stress CMR and stress SPECT			
51 52	526	may each be used to defer invasive coronary angiography without clinical detriment or			
53 54	527	significant excess costs in an outpatient population with stable chest pain.			
55 56	528				
57 58	529				
59 60					

530	Acknowledgements
531	
532	The original CECaT study was funded by a grant from the UK National Health Service R&D
533	Health Technology Assessment Program (project no. 99/26/04). HT, CJ and LDS were
534	supported by the Medical Research Council [Programme number U015232027].
535	
536	Competing interests
537	
538	All authors have completed the ICMJE uniform disclosure form at
539	http://www.icmje.org/coi_disclosure.pdf and declare: support from the UK National Health
540	Service R&D Health Technology Assessment Program (project no. 99/26/04) and the UK
541	Medical Research Council [Programme number U015232027] for the submitted work ; no
542	financial relationships with any organisations that might have an interest in the submitted
543	work in the previous three years; no other relationships or activities that could appear to
544	have influenced the submitted work
545	Exclusive licence statement
546	
547	The Corresponding Author has the right to grant on behalf of all authors and does grant on
548	behalf of all authors, an exclusive licence (or non exclusive for government employees) on a
549	worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if
550	accepted) to be published in BMJ editions and any other BMJPGL products and sublicences
551	to exploit all subsidiary rights, as set out in our licence
552	( <u>http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication</u> ).
553	
554	Contributorship statement
555	
556	HT performed literature review, data analysis and interpretation; NW was involved in image
557	analysis, drafting the manuscript and critical revision; VH was involved in recruiting the

# **BMJ Open**

3	558	patients, data management, administering health questionnaires, data analysis and drafting
4 5 6 7	559	the manuscript; MD and MB were responsible for data analysis, health economic
	560	assessment, drafting the manuscript and critical revision; LDS was responsible for study
9 10	561	design, trial management, statistical analysis, drafting the manuscript and critical revision;
10 11 12	562	CJ performed statistical and health economic analysis, drafting the manuscript and critical
13 14	563	revision; AMC was involved in study design, patient recruitment, image interpretation, trial
15 16	564	management, drafting the manuscript and critical revision and is the overall guarantor of
17 18	565	manuscript integrity.
19 20	566	
21 22	567	All authors have read the manuscript in its submitted form and have provided final approval
23 24	568	for publication.
25 26	569	
27 28	570	Contributorship statement:
29 30	571	
31 32	572	HT, MD, MB, LDS, CHJ were involved in economic and statistical analysis. LDS was the
33 34	573	senior project statistician, was involved in original study design and takes overall
35 36	574	responsibility for statistical portion of the manuscript. All of these individuals contributed to
37 38 39 40 41 42 43 44	575	drafting and revision of the manuscript.
	576	
	577	VH was involved in study design, patient recruitment, data collection and project
	578	management from the project's inception to its conclusion. She also contributed to drafting
45 46	579	and revision of the manuscript
47 48 49 50 51 52 53 54 55 55 56	580	
	581	NW was responsible for blinded review of clinical data and contributed to drafting and
	582	revision of the manuscript.
	583	
	584	AC was involved in the original study design, was responsible for the day-to-day clinical
57 58 59	585	aspects of running the trial and was involved in the recruitment and follow up of patients as
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- <text><text><text><text> well as analysis of the cardiac MR studies. He wrote the final manuscript and contributed to

# 

591 Table 1 Baseline characteristics*						
	Angiography	SPECT	Cardiac MRI	Stress Echo		
Demographics	(n=222)	(n=224)	(n=226)	(n=226)		
Mean (SD) age (years)	60.7 (9.1)	62.1 (9.5)	62.2 (9.0)	61.9 (9.9)		
Males (%)	149 (67%)	157 (70%)	153 (68%)	160 (71%)		
History/risk factors						
Previous MI (%)	63 (28%)	52 (23%)	69 (31%)	59 (26%)		
Previous CVA (%)	10 (5%)	13 (6%)	8 (4%)	12 (5%)		
Diabetes(%)						
IDDM	12 (5%)	8 (4%)	11 (5%)	5 (2%)		
NIDDM	16 (7%)	18 (8%)	21 (9%)	22 (10%)		
Family history CAD	60 (27%)	55 (25%)	63 (28%)	59 (26%)		
Smoking history (%)						
<25 pack years	149 (67%)	162 (72%)	148 (65%)	155 (69%)		
>=25 pack years	73 (33%)	62 (28%)	78 (35%)	71 (31%)		
Treated hyperlipidaemia	164 (74%)	171 (76%)	179 (79%)	179 (79%)		
(%)						
Treated hypertension (%)	117 (53%)	132 (59%)	115 (51%)	129 (57%)		
Exercise tolerance using the	modified Bruce	protocol	0			
Mean (SD) total exercise	11.29 (4.56)	10.46 (4.41)	10.43 (4.43)	10.89 (4.36)		
time (mins)						
ECG changes on exercise test						
1-2 mm ST depression	53 (24%)	43 (19%)	54 (24%)	57 (25%)		
with symptoms						
>= 2mm ST depression	16 (7%)	24 (11%)	20 (9%)	24 (11%)		
without overtome						
	Demographics Mean (SD) age (years) Males (%) History/risk factors Previous MI (%) Previous CVA (%) Diabetes(%) IDDM NIDDM Family history CAD Smoking history (%) <25 pack years >=25 pack years Treated hyperlipidaemia (%) Treated hypertension (%) Exercise tolerance using the Mean (SD) total exercise time (mins) ECG changes on exercise te 1-2 mm ST depression with symptoms >= 2mm ST depression	AngiographyDemographics $(n=222)$ Mean (SD) age (years) $60.7 (9.1)$ Males (%) $149 (67\%)$ History/risk factorsPrevious MI (%) $63 (28\%)$ Previous CVA (%) $10 (5\%)$ Diabetes(%) $10 (5\%)$ IDDM $12 (5\%)$ NIDDM $16 (7\%)$ Family history CAD $60 (27\%)$ Smoking history (%) $-25$ pack years $< 25$ pack years $73 (33\%)$ Treated hyperlipidaemia $164 (74\%)$ (%) $117 (53\%)$ Exercise tolerance using the modified BruceMean (SD) total exercise $11.29 (4.56)$ time (mins) $53 (24\%)$ with symptoms $53 (24\%)$ $>= 2mm ST$ depression $16 (7\%)$	Angiography         SPECT           Demographics         (n=222)         (n=224)           Mean (SD) age (years)         60.7 (9.1)         62.1 (9.5)           Males (%)         149 (67%)         157 (70%)           History/risk factors	Angiography         SPECT         Cardiac MRI           Demographics         (n=222)         (n=224)         (n=226)           Mean (SD) age (years)         60.7 (9.1)         62.1 (9.5)         62.2 (9.0)           Males (%)         149 (67%)         157 (70%)         153 (68%)           History/risk factors           69 (31%)           Previous MI (%)         63 (28%)         52 (23%)         69 (31%)           Previous CVA (%)         10 (5%)         13 (6%)         8 (4%)           Diabetes(%)         10 (5%)         13 (6%)         8 (4%)           NIDDM         16 (7%)         18 (8%)         21 (9%)           Family history CAD         60 (27%)         55 (25%)         63 (28%)           Smoking history (%)          225 pack years         149 (67%)         162 (72%)         148 (65%)           >=25 pack years         73 (33%)         62 (28%)         78 (35%)         179 (79%)         (%)           Treated hypertension (%)         117 (53%)         132 (59%)         115 (51%)         10.43 (4.43)           time (mins)         11.29 (4.56)         10.46 (4.41)         10.43 (4.43)         11.43 (4.43)           time (mins)         53 (24%)         43 (19%)		

ST elevation**/ no change	153 (69%)	157 (70%)	152 (67%)	145 (64%)
CCS class				
0-1	60 (27%)	54 (24%)	78 (35%)	58 (26%)
II	138 (62%)	144 (64%)	122 (54%)	132 (58%)
III-IV	24 (11%)	26 (12%)	26 (11%)	36 (16%)

* There were no significant differences between the groups in any variable 

** ST elevation was observed in 3 angiography, 2 CMR and 1 ECHO patients. 

Table 2 Cost-effectiveness summaries to 3 years post randomization

	Angiography	SPECT (n=224)	Cardiac MRI	Stress Echo
	(n=222)		(n=226)	(n=226)
Hazard ratio for death	Baseline	0.99	2.60	1.42
(95%CI)		(0.35,2.85)	(1.09,6.22)	(0.54,3.74)
Mean survival (years)	2.96	2.95	2.90	2.94
(95%CI)	(2.92, 2.99)	(2.90, 2.99)	(2.83, 2.95)	(2.89, 2.97)
Mean difference vs. CA	-	-0.01	-0.06	-0.02
(95%CI)	-	(-0.07,0.05)	(-0.14, 0.01)	(-0.08, 0.04)
Mean QALYs	2.24	2.27	2.18	2.27
(95%CI)	(2.16,2.31)	(2.20,2.33)	(2.11,2.25)	(2.19,2.33)
Mean difference vs. CA	-	0.03	-0.05	0.03
(95%CI)	-	(-5.21,1.38)	(-5.21,1.38)	(-3.04,4.21)
Mean discounted costs	5243	4644	4947	5530
(£)				
(95%CI)	(4282,6461)	(4194,5126)	(4480,5431)	(4857, 6262)
Mean difference vs. CA	-	-599	-296	287
(95%CI)		(-1901,503)	(-1603, 824)	(-1109,
				1537)
Probability cost effective	-	0.82	0.29	0.55
at £20k per QALY				
Probability cost effective	-	0.79	0.25	0.59
at £30k per QALY				
#### 597 Table 2a Cost-effectiveness summaries for patients managed by interventional

#### 598 cardiologists to 3 years post randomization

	Angiography	SPECT	Cardiac MRI	Stress Echo
	(n=73)	(n=96)	(n=93)	(n=98)
Mean survival (years)	2.96	2.97	2.89	2.96
(95%CI)	(2.91, 2.98)	(2.93, 3.00)	(2.80, 2.97)	(2.90, 2.98)
Mean difference vs. CA	-	0.01	-0.07	0
(95%CI)	-	(-0.05,0.07)	(-0.17, 0.02)	(-0.07,0.05)
Mean QALYs	2.25	2.29	2.21	2.2
(95%CI)	(2.14,2.36)	(2.19,2.38)	(2.10,2.32)	(2.10,2.29)
Mean difference vs. CA	-	0.03	-0.04	-0.06
(95%CI)	-	(-5.31,2.30)	(-4.96,2.41)	(-3.06,6.42)
Mean discounted costs (£)	5754	5205	5307	6329
(95%CI)	(4651, 6941)	(4475, 5979)	(4610, 6032)	(5120, 7713)
Mean difference vs. CA	-	-549	-447	574
(95%CI)		(-1973, 799)	(-1841, 897)	(-1097, 2262)
Probability cost effective		0.72	0.42	0.20
at £20k per QALY				
Probability cost effective		0.70	0.39	0.21
at £30k per QALY				

#### **BMJ Open**

#### 600 Table 2b Cost-effectiveness summaries for patients managed by non-interventional

#### 601 cardiologists to 3 years post randomization

	Angiography	SPECT	Cardiac MRI	Stress Echo
	(n=149)	(n=128)	(n=133)	(n=128)
Mean survival (years)	2.95	2.93	2.9	2.92
(95%CI)	(2.89, 2.99)	(2.85, 2.98)	(2.81, 2.97)	(2.85, 2.98)
Mean difference vs. CA	-	-0.02	-0.05	-0.03
(95%CI)	-	(-0.11,0.06)	(-0.15, 0.04)	(-0.11, 0.05)
Mean QALYs	2.23	2.25	2.17	2.31
(95%CI)	(2.14,2.31)	(2.16,2.33)	(2.07,2.26)	(2.22,2.40)
Mean difference vs. CA	-	0.02	-0.06	0.09
(95%CI)	-	(-6.92,1.90)	(-5.50,3.45)	(-5.45,3.71)
Mean discounted costs (£)	4936	4216	4723	4780
(95%CI)	(3681, 6665)	(3635, 4799)	(4068, 5381)	(4136, 5467)
Mean difference vs. CA	-	-719	-212	-156
(95%CI)		(-2527, 695)	(-2007,	(-1990, 1353)
			1258)	
Probability cost effective		0.75	0.29	0.85
at £20k per QALY				
Probability cost effective		0.72	0.27	0.86
at £30k per QALY				

3	
4	
5	
6	
7	
ı Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
10	
11	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
54 5-	
55	
56	
57	
58	
59	
60	
-	

#### 605 Table 3 Summary adverse events during initial 18 months follow up*

	Angiography	SPECT	Cardiac MRI	Stress Echo
Adverse event	(n=222)	(n=224)	(n=226)	(n=226)
Total adverse events	38	34	44	62
Chest pain (not	21	20	28	35
myocardial infarction)				
Angina	7	5	4	3
Myocardial infarction	2	0	3	6
* Note that beyond this tim	e only events that	required hospi	tal admission v	vere recorded.

* Note that beyond this time only events that required hospital admission were recorded. 606

607

#### **BMJ Open**

**Table 4** Summary of the frequency of use of the main resource use elements during follow up

- 610 of up to 3 years (excluding initial diagnostic test)

	Angiography	SPECT	Cardiac MRI	Stress Echo
Resource use (unit cost)	(n=222)	(n=224)	(n=226)	(n=226)
CABG (£7195)	28	33	28	34
PCI (£3660)	57	46	60	62
Other hospital admission	36	29	28	53
(£467 per day)				
Angiography (£625)	12	183	175	181
SPECT (£405)	16	3	3	6
Cardiac MRI (£565)	5	5	12	5
Echocardiography (£435)	30	17	24	18
PET scan (£842)	0	3	0	1
Preadmission clinic (£85)	22	21	27	24
Follow up clinic (£85)	19	22	31	21
Outpatient visits (£143)	247	270	300	284

613 * Cardiac drugs were also included but are not shown here due to many different

614 combinations of drugs and doses prescribed.

3	
4	
5	
6	
7	
8	
g	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
21	
31 22	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>40</u>	
50	
50	
51	
52 50	
ວ <b></b> ⊊ 4	
54	
55	
56	
57	
58	
59	
60	

617	Figure Legends
618	
619	Figure 1 CONSORT diagram describing recruitment and randomization
620	
621	Figure 2 Kaplan-Meier survival estimates according to initial modality of diagnosis
622	
623	Figure 3 Quality of life assessed by EQ5D over time
624	
625	Figure 4 Bootstrapped estimates of the joint distribution of mean cost difference
626	against mean QALY difference up to 3-years post randomisation
627	
628	Figure 5 Estimated probability of being cost-effective compared with angiography
629	alone against the amount $(\mathbf{\hat{r}})$ a health provider is willing to pay for one additional
630	QALY
631	
632	
633	
634	
635	

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665 666

667

668

669

670

671

672

673 674

675

676

677

678

60

1.

2.

3.

4.

5.

6.

7.

8.

References

2004/05/18.

Epub 2007/03/28.

2010/03/12.

2008/03/18.

Appraisal Guidance 73.

1983;68(5):951-60. Epub 1983/11/01.

2002;40(8):1531-40. Epub 2002/10/24.

1

NICE. Myocardial perfusion scintigraphy for the diagnosis and management of

angina and myocardial infarction: National Institute for Clinical Excellence 2003; Technology

coronary artery disease: is there an indisputable "winning strategy" from evidence-based

clinical trials? Journal of the American College of Cardiology. 2004;43(10):1752-4. Epub

surgery. Quality of life in patients randomly assigned to treatment groups. Circulation.

for stable coronary disease. The New England journal of medicine. 2007;356(15):1503-16.

Patel MR, Peterson ED, Dai D, et al. Low diagnostic yield of elective coronary

Gibbons RJ, Balady GJ, Bricker JT, et al. ACC/AHA 2002 guideline update for

exercise testing: summary article. A report of the American College of Cardiology/American

ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 appropriateness criteria for stress

College of Emergency Physicians, American Heart Association, American Society of Nuclear

Appropriateness Criteria Task Force, American Society of Echocardiography, American

Heart Association Task Force on Practice Guidelines (Committee to Update the 1997

Exercise Testing Guidelines). Journal of the American College of Cardiology.

echocardiography: a report of the American College of Cardiology Foundation

Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic

Resonance endorsed by the Heart Rhythm Society and the Society of Critical Care

Radionuclide Imaging: A Report of the American College of Cardiology Foundation

Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of

Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for

Medicine. Journal of the American College of Cardiology. 2008;51(11):1127-47. Epub

ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac

Douglas PS, Khandheria B, Stainback RF, et al.

Hendel RC, Berman DS, Di Carli MF, et al.

angiography. The New England journal of medicine. 2010;362(10):886-95. Epub

Boden WE. Surgery, angioplasty, or medical therapy for symptomatic multivessel

Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass

Boden WE, O'Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI

2	
3	
1	
7	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
2Q	
20	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
20	
29	
40	
41	
42	
43	
44	
15	
40	
46	
47	
48	
49	
50	
50	
2.1	
52	
53	
54	
55	
55	
50	
57	
58	
59	

# Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Journal of the American College of Cardiology. 2009;53(23):2201-29. Epub 2009/06/06. 9. Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the

American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation. 2010;121(22):2462-508. Epub 2010/05/19. Sharples L, Hughes V, Crean A, et al. Cost-effectiveness of functional cardiac testing 10. in the diagnosis and management of coronary artery disease: a randomised controlled trial. The CECaT trial. Health Technol Assess. 2007;11(49):iii-iv, ix-115. Epub 2007/11/21. 11. Pryor DB, Shaw L, McCants CB, et al. Value of the history and physical in identifying patients at increased risk for coronary artery disease. Annals of internal medicine. 1993;118(2):81-90. Epub 1993/01/15. 12. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta radiologica. 1953;39(5):368-76. Epub 1953/05/01. Scanlon PJ, Faxon DP, Audet AM, et al. ACC/AHA guidelines for coronary 13. angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. Journal of the American College of Cardiology. 1999;33(6):1756-824. Epub 1999/05/20. 14. Wackers FJ. Exercise myocardial perfusion imaging. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 1994;35(4):726-9. Epub 1994/04/01. Pennell DJ, Sechtem UP, Higgins CB, et al. Clinical indications for cardiovascular 15. magnetic resonance (CMR): Consensus Panel report. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2004;6(4):727-65. Epub 2005/01/14. 16. Reeder SB, Atalar E, Faranesh AZ, et al. Multi-echo segmented k-space imaging: an optimized hybrid sequence for ultrafast cardiac imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 1999;41(2):375-85. Epub 1999/03/18. Canet EP, Janier MF, Revel D. Magnetic resonance perfusion imaging in ischemic 17. heart disease. Journal of magnetic resonance imaging : JMRI. 1999;10(3):423-33. Epub 1999/10/03. Kind P. The EuroQol instrument: an index of health-related quality of life. In: Spiker 18. B, editor. Quality of life and pharmacoeconomics in clinical trials. Philadelphia, PA: Lippincott-Raven; 1996. 19. Dolan P GC, Kind P. A social tariff for EuroQol: results from a UK general population survery 1995. 20. Willan AR, Lin DY, Cook RJ, Chen EB. Using inverse-weighting in cost-effectiveness analysis with censored data. Statistical methods in medical research. 2002;11(6):539-51. Epub 2003/01/09. 21. Efron B TR. An introduction to the bootstrap. San Francisco: Chapman and Hall; 1993. 22. Tonino PA, Fearon WF, De Bruyne B, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in 

1		
2		
3	719	multivessel evaluation. Journal of the American College of Cardiology. 2010;55(25):2816-21.
4	720	Epub 2010/06/29.
5	701	
0	721	23. Mozes B, Shabtai E. The appropriateness of performing coronary angiography in two
7 8	122	major teaching hospitals in Israel. International journal for quality in health care : journal of
0	723	the International Society for Quality in Health Care / ISQua. 1994;6(3):245-9. Epub
10	724	1994/09/01.
11	705	04 Crev D. Herriter, ID. Methods of establishing evitoria for surplusing establishing
12	125	24. Gray D, Hampton JR. Methods of establishing criteria for purchasing coronary
13	720	anglography in the investigation of chest pain. Journal of public health medicine.
14	121	1994;16(4):399-405. Epub 1994/12/01.
15	700	05 Ouedersell F. Heuriteren D.I. Aussien, 17 et el Marietien in the une of combine
16	728	25. Guadagnoli E, Hauptman PJ, Ayanian JZ, et al. Variation in the use of cardiac
17	729	procedures after acute myocardial infarction. The New England journal of medicine.
18	/30	1995;333(9):573-8. Epub 1995/08/31.
19	701	00 Mart DD Nation OD History MA at all the of medical measures and multiplet of life
20	/31	26. Mark DB, Naylor CD, Hiatky MA, et al. Use of medical resources and quality of life
21	132	after acute myocardial infarction in Canada and the United States. The New England journal
22	133	of medicine. 1994;331(17):1130-5. Epub 1994/10/27.
23	724	07 Devices II Mars IA Differ MA shall A companies of more sense to the set
24	734	27. Rouleau JL, Moye LA, Pfeffer MA, et al. A comparison of management patterns after
25	135	acute myocardial infarction in Canada and the United States. The SAVE investigators. The
26	/30	
27	727	20 Tu IV Deckes CL Neuler CD et al. Use of service presedures and subserves in
20	131	28. IU JV, Pasnos CL, Naylor CD, et al. Use of cardiac procedures and outcomes in
29	/38	Enderly patients with myocardial infarction in the United States and Canada. The New
30	/39	England journal of medicine. 1997;336(21):1500-5. Epub 1997/05/22.
32	740	00 Calley IV Eiroman BLL Lundature BL stal Veriation among beauitals in sevenant
33	740	29. Selby JV, Fireman BH, Lundstrom RJ, et al. Variation among nospitals in coronary-
34	741	angiography practices and outcomes after myocardial infarction in a large health
35	742	maintenance organization. The New England journal of medicine. 1996;335(25):1888-96.
36	743	Epub 1996/12/19.
37	711	20 Chan BC, Batal MB, Klain J.W. et al. Annyanyistanaga of navoutanagus sevenavy
38	744	intervention IAMA : the journal of the American Medical Association 2011;206(1):52.61
39	745	
40	/40	
41	747	21 Dillo NH, Ecoron WE, Toning DA, et al. Erectional flow records versus angiagraphy
42	/4/ 7/2	for guiding percutapeous coropary intervention in patients with multivessed ecropary artery
43	740	diseases: 2 year follow up of the EAME (Fractional Flow Reserve Versus Angiography for
44	749	Multivessel Evaluation) study Journal of the American College of Cardiology
45	750	2010/56(2)/177.84 Epub 2010/06/12
46	731	2010,30(3).177-04. Lpub 2010/00/12.
4/	752	32 Griffin SC, Barber, IA, Manca A, et al. Cost effectiveness of clinically enprepriete
48	752	desisions on alternative treatments for anging posteris; prespective observational study
49 50	757	BM L 2007:334/7504):624 Epub 2007/03/07
50	754	DN0. 2007,004(7004).024. Epub 2007/00/07.
52	755	33 Watkins S. McGeoch B. Lyne, Let al. Validation of magnetic resonance myocardial
53	756	nerfusion imaging with fractional flow reserve for the detection of significant coronary heart
54	750	disease Circulation 2009.120(22).2207-12 Enub 2000/11/18
55	151	abbabb. birodialion. 2000, 120(22).2201 10. Epub 2000/11/10.
56		
57		
58		
59		
60		

2		
3	758	34. Krittayaphong R, Chaithiraphan V, Maneesai A, et al. Prognostic value of combined
4	759	magnetic resonance myocardial perfusion imaging and late gadolinium enhancement. The
5	760	international journal of cardiovascular imaging. 2011:27(5):705-14. Epub 2011/04/12.
6		
7	761	35. Bingham SE, Hachamovitch R, Incremental prognostic significance of combined
8	762	cardiac magnetic resonance imaging adenosine stress perfusion delayed enhancement
9	763	and left ventricular function over preimaging information for the prediction of adverse events
10	764	Circulation 2011:123/14):1509-18 Enub 2011/03/30
11	704	
12	765	26 Creenwood ID Maradia N. Vaunger IE et al. Cardiovacaular magnetic recononce
13	705	30. Greenwood JF, Maredia N, Fouriger JF, et al. Cardiovascular magnetic resonance
14	700	and single-photon emission computed tomography for diagnosis of coronary heart disease
15	/0/	(CE-MARC): a prospective trial. Lancet. 2012;379(9814):453-60. Epub 2011/12/27.
16	-	
17	768	37. Greenwood JP. CMR versus SPECT for diagnosis of coronary heart disease –
18	769	Authors' reply The Lancet. 2012;379(9832):2147 - 8.
19		
20	770	38. Beanlands RS, Nichol G, Huszti E, et al. F-18-fluorodeoxyglucose positron emission
21	771	tomography imaging-assisted management of patients with severe left ventricular
22	772	dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2).
23	773	Journal of the American College of Cardiology. 2007;50(20):2002-12. Epub 2007/11/13.
24		
25	774	39. Maron DJ. Stone GW. Berman DS. et al. Is cardiac catheterization necessary before
26	775	initial management of patients with stable ischemic heart disease? Results from a Web-
27	776	based survey of cardiologists. American heart journal, 2011;162(6);1034-43 e13. Epub
28	777	2011/12/06
20	,,,,	
30	770	10 Nollomethy PK, Pegers MA, Cherney ME, et al. Opening of appointly pardiag
31	770	40. Naliamotriu BK, Rogers MA, Chemew ME, et al. Opening of specially calculate
32	790	nospitals and use of coronary revascularization in medicare beneficiaries. JAINA : the journal
33	/80	
34	701	
35	/81	41. Feit F, Mueller HS, Braunwald E, et al. Inrombolysis in Myocardial Infarction (IIMI)
36	782	phase II trial: outcome comparison of a "conservative strategy" in community versus tertiary
37	/83	nospitals. The TIMI Research Group, Journal of the American College of Cardiology.
38	784	1990;16(7):1529-34. Epub 1990/12/01.
30		
40	785	42. Blustein J. High-technology cardiac procedures. The impact of service availability on
40 41	786	service use in New York State. JAMA : the journal of the American Medical Association.
42	787	1993;270(3):344-9. Epub 1993/07/21.
43		
40	788	43. Every NR, Larson EB, Litwin PE, et al. The association between on-site cardiac
45	789	catheterization facilities and the use of coronary angiography after acute myocardial
40 46	790	infarction. Myocardial Infarction Triage and Intervention Project Investigators. The New
40	791	England journal of medicine. 1993:329(8):546-51. Epub 1993/08/19.
47 /8		<b>5</b>
40 /Q	792	44 Shaw LL Hachamovitch B Berman DS et al. The economic consequences of
49 50	793	available diagnostic and prognostic strategies for the evaluation of stable angina patients: an
51	794	observational assessment of the value of precatheterization ischemia. Economics of
52	795	Noninvasive Diagnosis (FND) Multicenter Study Group Journal of the American College of
53	796	Cardiology 1999:33(3):661-9 Epub 1999/03/18
54	170	ourdiology. 1000,00(0).001 0. Epub 1000/00/10.
55	707	45 Mowett C. Vela I. Prozzelli M. et al. Systematic review of the effective sector and east
56	171 700	40. INDWALL G, VALE L, DIAZZEIII IVI, EL AL SYSTEMATIC REVIEW OF THE Effectiveness and coopering evolution of myceocrdial participan cointigraphy for the
57	190	enectiveness, and economic evaluation, or myocardial perfusion scintigraphy for the
58		
50		
00		

1		
2 3 4 5	799 800	diagnosis and management of angina and myocardial infarction. Health Technol Assess. 2004;8(30):iii-iv, 1-207. Epub 2004/07/14.
6 7 8 9	801 802 803	46. Underwood SR, Godman B, Salyani S, et al. Economics of myocardial perfusion imaging in Europethe EMPIRE Study. European heart journal. 1999;20(2):157-66. Epub 1999/04/01.
10 11 12 13	804 805 806	47. Underwood SR, Shaw LJ, Anagnostopoulos C, et al. Myocardial perfusion scintigraphy and cost effectiveness of diagnosis and management of coronary heart disease. Heart. 2004;90 Suppl 5:v34-6. Epub 2004/07/16.
14 15 16 17 18	807 808 809 810	48. Uchida T, Popma J, Stone GW, et al. The clinical impact of routine angiographic follow-up in randomized trials of drug-eluting stents: a critical assessment of "oculostenotic" reintervention in patients with intermediate lesions. JACC Cardiovascular interventions. 2010;3(4):403-11. Epub 2010/04/20.
19 20 21 22 23 24	811 812 813 814	49. Christou MA, Siontis GC, Katritsis DG, et al. Meta-analysis of fractional flow reserve versus quantitative coronary angiography and noninvasive imaging for evaluation of myocardial ischemia. The American journal of cardiology. 2007;99(4):450-6. Epub 2007/02/13.
24 25 26 27	815 816	50. Gould KL. Does coronary flow trump coronary anatomy? JACC Cardiovascular imaging. 2009;2(8):1009-23. Epub 2009/08/15.
28 29 30 31	817 818 819	51. Chang SM, Nabi F, Xu J, et al. Normal stress-only versus standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. Journal of the American College of Cardiology. 2010;55(3):221-30. Epub 2009/11/17.
32 33 34 35 36 37	820 821 822 823 824	52. Boldt J, Leber AW, Bonaventura K, et al. Cost-effectiveness of cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary artery disease in Germany. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2013;15:30. Epub 2013/04/12.
38 39 40 41	825 826 827	53. Walker S, Girardin F, McKenna C, et al. Cost-effectiveness of cardiovascular magnetic resonance in the diagnosis of coronary heart disease: an economic evaluation using data from the CE-MARC study. Heart. 2013;99(12):873-81. Epub 2013/04/18.
42 43 44 45	828 829 830	54. Kuntz KM, Fleischmann KE, Hunink MG, et al. Cost-effectiveness of diagnostic strategies for patients with chest pain. Annals of internal medicine. 1999;130(9):709-18. Epub 1999/06/05.
48 47 48 49 50	831 832 833 834	55. Hayashino Y, Nagata-Kobayashi S, Morimoto T, et al. Cost-effectiveness of screening for coronary artery disease in asymptomatic patients with Type 2 diabetes and additional atherogenic risk factors. Journal of general internal medicine. 2004;19(12):1181-91. Epub 2004/12/22.
52 53 54 55 56 57 57	835 836 837	56. Tan SS, Oppe M, Zoet-Nugteren SK, et al. A microcosting study of diagnostic tests for the detection of coronary artery disease in The Netherlands. European journal of radiology. 2009;72(1):98-103. Epub 2008/08/16.
59 60		

57. Kim C, Kwok YS, Saha S, et al. Diagnosis of suspected coronary artery disease in women: a cost-effectiveness analysis. American heart journal. 1999;137(6):1019-27. Epub 1999/05/29.

58. Lewandowski M, Szwed H, Kowalik I. Searching for the optimal strategy for the diagnosis of stable coronary artery disease. Cost-effectiveness of the new algorithm.

Cardiology journal. 2007;14(6):544-51. Epub 2008/07/25. to been terien only

Page 37 of 79		BMJ Open			
1					
2 3 4	1	Title: Cost effectiveness of initial stress cardiovascular MR, stress SPECT or stress			
5	1				
6 7	2	echocardiography as a gatekeeper test, compared to upfront invasive coronary			
8 9	3	angiography in the investigation and management of patients with stable chest			
10 11 12	4	pain: mid term outcomes from the CECaT* randomised controlled trial			
12	5 6	*Cost Effectiveness of non-invasive Cardiac Testing			
14 15	7 8				
16 17	9	Howard Thom MSc, Nicholas West MD, FRCP, Vikki Hughes PhD, Matthew Dyer			
18 19	10	MSc, Martin Buxton MSc, Linda D Sharples PhD, Christopher H Jackson PhD,			
20 21	11	Andrew M Crean MRCP, FRCR			
22 23	12				
24 25	13	Affiliations:			
26 27	14	MRC Biostatistics Unit, Institute of Public Health, Cambridge CB2 0SR, UK, Howard Thom,			
28 29	15	biostatistician; Department of Cardiology, Papworth Hospital, Cambridge, CB23 3RE, UK			
30 31	16	Nicholas West, consultant cardiologist; Research and Development Office, Papworth			
32 33	17	Hospital, Cambridge, CB23 3RE , UK ,Vikki Hughes senior research analyst; Health			
34 35	18	Economics Research Group, Brunel University, Uxbridge, Middlesex UB8 3PH, UK, Matthew			
36 37	19	Dyer, research fellow; Health Economics Research Group, Brunel University, Uxbridge,			
38 39	20	Middlesex UB8 3PH, UK, Martin Buxton, professor; and Clinical Trials Research Unit,			
40 41	21	University of Leeds, West Yorkshire LS2 9JT, UK, Linda D Sharples, professor; MRC			
42 43	22	Biostatistics Unit, Institute of Public Health, Cambridge CB2 0SR, UK, Christopher H			
44 45	23	Jackson, senior statistician; Division of Cardiology, Toronto General Hospital, Toronto, M5G			
46 47	24	2C4, Canada, Andrew M Crean, assistant professor of medicine & radiology.			
48 49	25				
50 51	26	Corresponding author: Dr Andrew Crean MRCP FRCR, Division of Cardiology, Toronto			
52 53	27	General Hospital, 585 University Avenue, Toronto, ON, Canada M5G 2C4			
54 55	28	Tel: 1 416 340 4800 Fax: 1 888 502 6601 Email: andrew.crean@uhn.ca			
56 57 58 59 60	29	Clinical Trial registration: ISRCTN 47108462, UKCRN 3696			

30	
31	The CECaT study group were:
32	Johanna Armstrong, Martin Buxton, Noreen Caine, Richard Coulden, Andrew Crean,
33	Matthew Dyer, Margaret Gillham, Hester Goddard, Kim Goldsmith, Vikki Hughes, Evelyn
34	Lee, Roger Patel, Peter Schofield, Linda Sharples, Emer Sonnex, David Stone, Carmen
35	Treacy
36	
37	
38	
39	
40	
41	
42	
43	
44	
	•

#### **BMJ Open**

45	Contributorship statement:
46	
47	HT, MD, MB, LDS, CHJ were involved in economic and statistical analysis. LDS was
48	the senior project statistician, was involved in original study design and takes overall
49	responsibility for statistical portion of the manuscript. All of these individuals
50	contributed to drafting and revision of the manuscript.
51	
52	VH was involved in study design, patient recruitment, data collection and project
53	management from the project's inception to its conclusion. She also contributed to
54	drafting and revision of the manuscript
55	
56	NW was responsible for blinded review of clinical data and contributed to drafting and
57	revision of the manuscript.
58	
59	AC was involved in the original study design, was responsible for the day-to-day
60	clinical aspects of running the trial and was involved in the recruitment and follow up
61	of patients as well as analysis of the cardiac MR studies. He wrote the final
62	manuscript and contributed to its revision. He takes overall responsibility for the
63	integrity of the clinical data.
64	
65	
66	
67	
68	
69	
70	
71	
72	

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
20 2∆	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 15	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

Article	e summary:
Article	e focus:
1.	Is non-invasive imaging a safe and appropriate gate-keeper to coronary
	angiography in patients with stable chest pain ?
2.	Is there any difference in cost-effectiveness and cost-utility between the
	different non-invasive approaches and conventional coronary angiography
3.	Are patients disadvantaged in any meaningful way by having a non-invasive
	test to decide whether they should go forward for coronary angiography ?
4.	How does stress perfusion CMR compare to the more established tests of
	SPECT-MIBI and stress echocardiography as a gate-keeper to coronary
	angiography ?
Key m	nessages:
1.	Non-invasive testing may be used safely as a gate-keeper to coronary
	angiography in patients with stable chest pain without any material
	disadvantage to them in terms of survival and quality of life up to 6 years after
	initial randomisation.
2.	SPECT-MIBI appears marginally superior statistically to the other non-invasive
	methods although clinically meaningful differences are small between all
	strategies.
3.	Stress perfusion CMR appears to be an effective technique in a stable out-
	patient population with undiagnosed chest pain.
St	rengths and limitations:
1.	This is the only large randomised prospective trial of a strategy of non-invasive
	gate-keeper cardiac imaging versus upfront angiography in the literature.
2.	The cost-utility data are derived from NHS tariffs and our results are not
	Article Article 1. 2. 3. 4. <i>Key m</i> 1. 2. 3. 3. 3. 2. 3.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

necessarily directly transferrable to other healthcare systems

1		
2 3	101	Data sharing statement:
4 5	102	There are no additional data available
$\begin{array}{c} 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 32\\ 4\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 67\\ 58\\ 9\\ 60\\ \end{array}$		

2	
3	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
26	
30	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40	
47	
48	
49	
50	
51	
52	
53	
54	
54	
55	
56	
57	
58	
59	
60	

# 103 Abstract

- 104 **Objectives:** to compare outcomes and cost effectives of various initial imaging strategies on
- 105 the management of stable chest pain in a long term prospective randomized trial.
- 106 **Setting:** regional cardiothoracic referral center in the east of England
- 107 **Participants:** 898 patients (69% male) entered the study with 869 alive at 2yr follow up.
- 108 Patients were included if they presented for assessment of stable chest pain with a positive
- 109 exercise test and no prior history of ischemic heart disease. Exclusion criteria were recent
- 110 infarction, unstable symptoms or any contra-indication to stress MRI.
- 111 **Primary outcome measures:** The primary outcomes of this follow up study were survival up
- 112 to a minimum of 2 years post-treatment, quality-adjusted survival and cost-utility of each
- 113 strategy
- 114 **Results:** 898 patients were randomized. Compared to angiography, mortality was
- 115 marginally higher in the groups randomized to CMR (hazard ratio 2.6, 95%CI 1.1, 6.2), but
- similar in the SPECT-MIBI (hazard ratio 1.0, 95%CI 0.4, 2.9) and ECHO groups (hazard ratio
- 117 1.6, 95%CI 0.6, 4.0). Although SPECT-MIBI was marginally superior to other non-invasive
- 118 tests there were no other significant differences between the groups in mortality, quality
- 119 adjusted survival or costs.
- 120 **Conclusions:** Non-invasive cardiac imaging can be used safely as the initial diagnostic test
- 121 to diagnose CAD without adverse effects on patient outcomes or increased costs, relative to
- 122 angiography. These results should be interpreted in the context of recent advances in
  - 123 imaging technology.
- 124 Trial registration: ISRCTN 47108462, UKCRN 3696
- 125 Key words: MRI, cardiovascular magnetic resonance, comparative effectiveness, SPECT,
- 126 stress echo, coronary angiography

Introduction

 **BMJ Open** 

128	
129	CAD is common and its management is costly ⁽¹⁾ . Revascularisation using bypass surgery
130	(CABG) or percutaneous coronary intervention (PCI) is effective for patients with severe
131	disease ⁽²⁾ but a significant minority of patients do not gain symptomatic relief ⁽³⁾ . Data from
132	the COURAGE trial did not show prognostic benefit from revascularization in any patient
133	subgroup ⁽⁴⁾ . The yield of coronary angiography is variable with one recent large study of
134	nearly 400, 000 patients demonstrating a normalcy rate approaching 40% ⁽⁵⁾ . Therefore
135	non-invasive testing to identify those with a low likelihood of obstructive CAD may be safer,
136	cheaper and more appropriate than upfront angiography. This approach is codified in
137	multiple AHA/ACC guidelines on the investigation of stable or suspected angina pectoris in
138	which initial non-invasive imaging is rated as highly appropriate ^{(6) (7) (8) (9)} .
139	
140	The 'Cost-Effectiveness of non-invasive Cardiac Testing' (CECaT) trial was an unblinded
141	non-inferiority trial designed to assess three functional tests - stress echocardiography,
142	single photon emission computed tomography (SPECT) and stress cardiac magnetic
143	resonance imaging (CMR) - as a gatekeeper to coronary angiography (CA) in patients
144	referred for CA with suspected coronary artery disease (CAD). Early clinical and cost-
145	effectiveness estimates have been published and showed that the CMR group had slightly
146	lower mean exercise treadmill time according to the Bruce protocol but otherwise the tests
147	could be considered equally effective ⁽¹⁰⁾ . This report provides the main cost-effectiveness
148	and mortality outcomes up to 6 years after randomisation.
149	
150	Methods
151	Study design
152	The design of the study has been described elsewhere $^{(10)}$ and is reviewed briefly here. All
153	patients referred to Papworth Hospital, UK for non-urgent angiography were eligible for the

154 study. Inclusion criteria were: established or suspected chronic stable angina and a positive

155	exercise tolerance test result with subsequent referral for angiography. Exclusion criteria
156	were: recent MI (<3 months), revascularisation (<6 months); urgent need for
157	revascularisation; contra-indication to adenosine or CMR; inability to exercise.
158	
159	Trial design was of four parallel arms with a 1:1:1:1 randomisation ratio. Randomisation was
160	computer generated and stratified according to Pryor risk assessment ⁽¹¹⁾ . Within each Pryor
161	risk group, randomisation was in blocks of length 6 or 8. Sequentially numbered group
162	designation was held in the Research & Development (R&D) Office and was not available to
163	trial personnel. Patients were randomised to their initial diagnostic test - stress SPECT,
164	stress CMR, stress echocardiography, or angiography - by R&D within 4 weeks of
165	recruitment and only after they had given consent and been registered.
166	
167	Non invasive imaging results were returned with a recommendation to proceed with
168	angiography only when reported as 'positive' for inducible ischemia. Protocol adherence to
169	this recommendation was not mandated by trial design and patients proceeded to
170	angiography if considered clinically indicated. Treatment with PCI or CABG (performed
171	within six months of angiography) or to medical therapy was according to standard practice.
172	
173	Coronary angiography.
174	Standard diagnostic angiography was performed from the right femoral artery approach ⁽¹²⁾ .
175	A minimum of 5 views of the left and 3 views of the right coronary system were taken ⁽¹³⁾ . All
176	examinations were reported by an experienced staff cardiologist and segmental location of
177	disease (if any) recorded.
178	
179	Stress echocardiography
180	Beta-blocker medications were stopped 2 days beforehand. Dobutamine was infused at
181	rates of 10- 40 mcg/kg/min, increased at 3 minute intervals. If necessary, 300-600
182	micrograms of atropine were added at peak stress to achieve 90% of target heart

#### **BMJ Open**

rate. Images were acquired in standard planes in the final minute of each 3 minute stage. Intravenous microspheres were used to delineate the endocardial surface. All examinations were reported by one of two staff cardiologists experienced in stress echocardiography. Studies were positive for ischemia if stress-induced deterioration in contractility was observed. SPECT Rest/stress 99mTc sestamibi (99mTc MIBI) SPECT was performed (2 day protocol). A 6 minute adenosine infusion (140L g/kg/min) was employed. 400 MBq 99m-Tc MIBI was administered at 3 minutes after infusion of adenosine was started. Gated SPECT imaging occurred 60 minutes after injection. Tomographic images were assessed for fixed and reversible defects by a single observer (as per established criteria)⁽¹⁴⁾. CMR Stress CMR imaging was performed at a standard similar to that which was subsequently recommended by the Society of Cardiovascular Magnetic Resonance ⁽¹⁵⁾. A 1.5T mobile CMR system and 4-channel phased array surface coil were used (Signa CV/i, GE Medical Systems). Stress/rest dynamic first-pass perfusion imaging was performed. A hybrid fast gradient echo/echoplanar sequence was employed ⁽¹⁶⁾. Adenosine was infused at 140 mcg/kg/min for 4 minutes. After 3 minutes, a bolus of Gadolinium-DTPA (0.1mmol/kg) was delivered at 5mls/sec, followed by a 25ml saline flush. First-pass imaging of the heart occurred over 80 heart beats. A volumetric notched-saturation pre-pulse preserved a constant saturation-recovery time during slice acquisition ⁽¹⁷⁾. 6-8 short axis slices were obtained every 2 heart beats. Rest imaging was repeated after a minimum interval of 15 minutes. Cine steady state free precession images and late gadolinium enhancement images were also acquired as described in the original CECaT protocol ⁽¹⁰⁾ Studies were reported as positive if there was an inducible perfusion defect visible for at least 5 frames

Page 46 of 79

210	either: a) in a region of normal wall thickness; or b) in a region of myocardial thinning in the
211	absence of a history of prior myocardial infarction.
212	
213	Outcomes
214	The primary outcome in the original CECaT trial was exercise treadmill time at 18 months
215	post-randomisation using the modified Bruce protocol, in which exercise intensity was
216	increased every 3 minutes. There was a range of secondary outcomes including diagnostic
217	accuracy, clinical events, health-related quality and cost-effectiveness of life up to 18 months
218	after randomisation ⁽¹⁰⁾ .
219	The primary outcomes of this follow up study were survival up to a minimum of 2 years post-
220	treatment, quality-adjusted survival and cost-utility of each strategy. Survival status at the
221	end of follow up was determined from the Office for National Statistics database, UK
222	( <u>http://www.ons.gov.uk/</u> ).
223	Quality of life was measured using the EuroQoL EQ-5D questionnaire ⁽¹⁸⁾ which was
224	completed at baseline, 6 and 18 months post-randomisation, and at 6, 18 and 24 months
225	post-treatment. The social tariff for the EQ-5D was applied in order to calculate utility values
226	⁽¹⁹⁾ . Because post- <b>treatment</b> measurements were at variable times post- <b>randomisation</b>
227	(randomisation date is time zero for a randomised trial) daily utilities were estimated using
228	linear interpolation.
229	
230	Sample size calculations
231	The sample size of 898 patients was based on exercise performance and was calculated
232	according to the methodology published in the initial report of the CECaT study ⁽¹⁰⁾ .
233	
234	Statistical and economic analysis
235	For this study, survival was summarised using Kaplan-Meier estimates and the groups were
236	compared using Cox proportional hazards regression. This assumes that the instantaneous
237	risk of death (hazard) for a reference value of a covariate will vary through time, but that the

#### **BMJ Open**

hazards for other values of the covariate will be a constant multiple of this baseline hazard, and this multiple will not vary through time. This assumption was tested using Schoenfeld residuals and there was little evidence against it. The diagnostic test was entered into the Cox regression as a 4-level fixed covariate, with angiography as the reference category. In sensitivity analysis CABG and PCI were included in the regression analyses as time-varying covariates, taking a value 0 up to the time of intervention and 1 thereafter, to ensure that any differences between the groups was not due to differences in treatment. Inclusion of treatment (CABG/PCI) did not affect comparison of diagnostic strategies and results of these analyses are not included here.

Patient-specific hospital resource use was collected for 2 years post-*treatment* with revascularisation or medical management. Costs were based on National Health Service reference costs 2005/06 prices. An annual discount rate of 3.5% was applied to all costs and quality-adjusted life-years (QALYs) after 12 months post-randomisation. Resources costed were: imaging tests; revascularisation; inpatient/outpatient episodes; adverse events; cardiac-related medications. Patient-reported admissions for MI were verified with the admitting hospital and adjudicated.

Quality adjusted survival and cost estimates were censored at the last follow up at 2 years after treatment, resulting in varying duration of follow-up from the time of randomisation to the different diagnostic strategies, so that mean values over a range of time horizons were estimated using inverse weighting methods ⁽²⁰⁾. This method allows for differing follow up times between patients by splitting follow up time into intervals, and up-weighting the observed quality adjusted survival and costs in an interval in proportion to the inverse of the Kaplan-Meier estimate of the proportion observed during the interval. In the base case we used a time horizon of 3 years since it was the longest period over which results were stable, with acceptable precision. Confidence intervals for costs and QALYs were estimated using bootstrapping with 5000 samples ⁽²¹⁾.

266	Sensitivity analysis
267	Sensitivity of cost-utility results for different time horizons was assessed by re-estimating
268	results up to 12, 18, 24, 36 and 48 months after randomization. In addition, cardiologists
269	were divided into those who did and did not perform percutaneous coronary intervention as
270	part of their routine clinical practice, and results were recalculated for each subgroup. With
271	the exception of this post-hoc data interrogation, all other results presented derive from
272	intention-to-treat analysis.
273	
274	The study had IRB approval and full written informed consent was obtained from all
275	participants. All authors had full access to the data and take responsibility for the manuscript
276	as written.
277	
278	Results
279	Recruitment and compliance
280	Between September 2001 and September 2004, 3,201 patients were assessed, 1,981 were
281	excluded and 322 refused entry to the trial. Refusals were more likely to come from women
282	(46% compared with 31% enrolled into the study, p<0.001) and were significantly older
283	(mean age 64.6, (SD 10.1) compared with study group mean age 61.8, (9.4), p<0.001).
284	
285	898 patients were randomised. Groups were well matched at baseline (table 1). In each
286	group 69% of patients were high risk for CAD (Pryor score > 0.8). The trial was closed to
287	recruitment in September 2004 after enrolling the pre-specified number of subjects.
288	
289	One-hundred-seventy-five (78%) SPECT patients, 180 (80%) CMR patients and 169 (75%)
290	stress echo patients were referred on for angiography (Figure 1). Between 20% and 25% of
291	patients undergoing non-invasive tests did not require further investigation. Twenty-one
292	percent of patients who had negative tests were referred for angiography and the proportion
293	was similar in each group (SPECT n=45, CMR n=50, ECHO n=48, p=0.858). Of these 14

#### **BMJ Open**

З	
4	
4	
5	
6	
7	
0	
0	
9	
10	
11	
10	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20 24	
21	
22	
23	
24	
25	
20	
26	
27	
28	
29	
20	
30	
31	
32	
33	
31	
24	
35	
36	
37	
38	
20	
39	
40	
41	
42	
13	
11	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
50	
00	
59	
60	

294	(31%) SPECT, 26 (52%) CMR and 23 (48%) ECHO resulted in a positive angiogram
295	(p=0.130). Four patients died and four withdrew from the trial early on. Of the remaining
296	patients, revascularization was required in 34% (301/890 – see Figure 1 for numbers in
297	each arm). There was no significant difference between the groups in initial patient
298	management (Figure 1, p=0.527). Beyond the initial management strategy 42 subsequent
299	revascularisation procedures were required in the angiography arm compared with 30 in the
300	SPECT, 44 in the CMR and 41 in the ECHO arms. The median times between
301	randomisation and initial revascularisation were 122 days in the angiography group, 192
302	days for SPECT, 184 days for CMR and 177.5 days for ECHO, resulting in a delay due to
303	functional testing of approximately 2 months.

305 Survival

304

During the study there were 7 (3%), 7 (3%), 18 (8%) and 11 (5%) deaths in the angiography 306 307 , SPECT, CMR and ECHO groups respectively. Kaplan-Meier survival curves for the 4 308 groups are plotted in Figure 2. Survival over the whole trial period in the SPECT (hazard 309 ratio 1.0, 95%CI 0.4, 2.9) and stress echo (hazard ratio 1.6, 95%CI 0.6, 4.0) groups were not 310 significantly different from angiography but the CMR group had higher mortality, with hazard 311 ratio 2.6 (95%CI 1.1 to 6.2), p=0.032. The significant effect of CMR on survival remained 312 when CABG or PCI were included in the models. However, mortality was low in all groups 313 and the absolute mean difference in survival was less than 1 month over 3 years (Table 2). 314 Mean survival estimates over 3 years with 95% confidence intervals are shown in Table 2. 315 All patients had complete adverse event data up to 18 months post-randomisation during 316 which there were 178 non-fatal adverse events in 114 patients, mostly hospital admissions 317 for chest pain (**Table 3**). Beyond this time only adverse events that resulted in admissions 318 were recorded as they were relevant for the economic analysis. No patient suffered any 319 adverse event at the time of the initial randomised imaging test. 320

321 Cost-utility

Table 4 shows some of the highest incurred follow up costs for the 4 groups and shows that patient management varied substantially between individuals. Although angiography was the most expensive of the four initial diagnostic tests, the strategy of initial angiography had lower mean overall cost than stress echo, and was similar to CMR up to 3 years (Table 2). Extra costs for patients in the three non-invasive groups was largely due to patients undergoing follow-on angiography. There were no significant differences in overall costs between the groups.

During the study there were no significant differences in EQ-5D between the groups. Figure **3** shows daily mean EQ-5D utility over time based on interpolation between measurements for survivors who completed the EQ-5D. Using inverse-weighting we calculated QALYs over different time horizons and these are presented up to 3 years in Table 2. Mean QALYs over 3 years in the angiography group was 2.24, which was not significantly different from the other groups. Figure 4 shows the joint distribution of the difference in mean cost against the difference in mean QALY for each diagnostic strategy group and angiography alone, and shows the uncertainty in these estimates. **Figure 5** shows the Cost-Effectiveness Acceptability Curve and demonstrated that SPECT has a high chance (>70%) of being cost-effective whatever the willingness-to-pay threshold is but for CMR and ECHO there is much less certainty about this decision. The mean differences between groups were close to zero in all 3 cases so that the cost-per-QALY estimates are unstable and a cost-minimization approach may be more appropriate. This would favour SPECT, which was both cheaper and more effective on average than angiography, and had the lowest overall cost (). 

345 Sensitivity analysis

The comparisons between the diagnostic strategy groups did not change substantially when we varied the time horizon; the main effect of this was that the variation surrounding estimates increased as the time horizon lengthened due to the heavy censoring (results not shown). **Tables 2a and 2b** show results for interventional and non-invasive cardiologists

#### **BMJ Open**

2 3	350	respectively. Patients who were managed by interventional cardiologists incurred higher
4 5 6	351	costs due to the greater number of tests and revascularization procedures performed, with
7	352	minimal incremental benefit in QALY.
o 9 10	353	
10 11 12	354	Discussion
12 13 14	355	CECaT is the first completed prospective randomized trial to look at the clinical and cost-
15 16	356	effectiveness of non-invasive imaging in the diagnosis and management of angina. To the
17 18	357	best of the authors' knowledge there has been no comparable outcomes trial published on
19 20	358	this scale evaluating three independent non-invasive 'gatekeeper' modalities versus initial
21 22	359	angiography in stable chest pain. The trial is also unusual in the length of prospective follow
23 24	360	up extending to 6 years for mortality outcomes.
25 26	361	
27 28	362	We have demonstrated that use of any one of stress CMR, stress echo or stress SPECT as
29 30	363	the initial test for a stable chest pain patient leads to non-inferior outcomes in quality of life
31 32	364	and cost utility compared to patients randomised to upfront invasive coronary angiography.
33 34	365	Typically, non invasive tests perform well in low risk populations because of a negative
35 36	366	predictive value which is usually better than the positive predictive value. However, the
37 38	367	patient risk profile was relatively high in our study, and despite this there was no significant
39 40	368	difference between an initial functional or anatomic approach.
41 42	369	
43 44	370	There are several reasons why initial angiography may not have led to clear benefit in our
45 46	371	study. Firstly, although angiography has stood at the heart of the diagnostic chest pain
47 48	372	pathway, the traditional binary cut-off values of 50% or 70% percentage stenosis by visual
49 50	373	estimation were shown in the FAME study to bear little relation to the true physiologic
51 52	374	significance of luminal narrowing (22).
53 54	375	
55 56	376	Secondly, data from various countries suggest that not only is coronary angiography often
57 58 59	377	inappropriate when formally rated by expert observers ^{(23) (24)} but that disparate national or

Page 52 of 79

#### **BMJ Open**

regional rates of angiography do not translate into clear mortality benefits between countries ⁽²⁵⁾ (26) (27) (28)</sup> and on occasion may even demonstrate an inverse relationship ⁽²⁹⁾. Contemporary US data from approximately 500,000 PCI procedures collected prospectively in the National Cardiovascular Data Registry demonstrated that, of 145,000 elective PCI cases, roughly 12% were judged inappropriate. Furthermore, the rate of inappropriate elective PCI between hospital sites ranged from 0-55% suggesting significant variability in practice ⁽³⁰⁾. The data suggest a better way of selecting patients for invasive investigation is needed.

387 Ischemia-driven revascularisation has been shown to be of benefit in a number of trials, 388 most recently in the FAME study in which an invasive method of measuring the flow reserve 389 of the microcirculation (Fractional Flow Reserve, FFR) was used to allocate patients to 390 intervention or observation vs a clinical decision on intervention based on angiography alone 391 ⁽³¹⁾. At 2 years follow up there were clear survival and MACE benefits to the FFR-based 392 approach.

The ACRE study reported that, up to 6 years after diagnosis, medical management was a more cost-effective strategy for angina compared with PCI ⁽³²⁾. The lack of evidence for survival from revascularisation was also seen in the COURAGE trial ⁽⁴⁾. Critics have suggested this may be because randomization to PCI versus optimal medical therapy was made after coronary angiography had been performed, potentially leading to a recruitment bias of patients with less severe disease. In the CECaT trial this bias was avoided by randomization to a management strategy defined by the non-invasive test result for each of the 3 functional arms of the trial. In a relatively high risk population, we demonstrated no clinically significant survival or economic detriment from using non-invasive imaging as a gate-keeper to catheterization. Similarly, quality of life was not significantly different across all four groups and these differences extended to a warranty period of at least 3 years. 

#### **BMJ Open**

We did observe a marginal decrease in survival in the CMR arm. The reasons for the difference are unclear but do not relate to patient characteristics or management with CABG or PCI. Although statistically significant, the mean survival difference from the other groups was only 4 weeks over 3 years and is unlikely to be clinically meaningful. Since recent work has established a strong correspondence between FFR measurements and stress CMR perfusion indices it would be surprising if CMR were genuinely inferior to other modalities for risk stratification ⁽³³⁾. Indeed several recent publications have highlighted the incremental prognostic data (above that obtained from clinical variables) derived from several thousand perfusion CMR studies ^{(34) (35)}. 

Given the recent publication of the CEMARC trial ⁽³⁶⁾ in which a clear diagnostic superiority was demonstrated for stress CMR over SPECT, it is interesting that our data nonetheless show an equivalence in functional health status between those randomized to SPECT versus CMR in the CECaT trial. The implication may be that although CMR detects the presence of any ischemia with a greater sensitivity it is the overall burden of ischemia that alters a patient's prognosis. As such, it has not yet been demonstrated that the higher diagnostic accuracy of CMR translates into better long-term patient outcomes - a fact acknowledged by Greenwood et al subsequent to CEMARC's publication ⁽³⁷⁾. In this context the CECaT nuclear results are congruent with numerous past publications and reconfirm the reassuring warranty period of a normal SPECT study.

#### 427 Cost effectiveness

There was no significant difference in cost-effectiveness between the angiography -asdefault group and the non-invasive test groups up to 3 years, perhaps relating to the higherthan-anticipated rate of referral for angiography after negative functional tests. Protocol deviation of this kind is not infrequent in trials of non-invasive technology. In the recent PARR-2 study of patients undergoing fluorodeoxyglucose positron emission tomography for the assessment of viability, roughly 25 % of the study population did not adhere to protocol

434	⁽³⁸⁾ . The willingness of a cardiologist to defer referral for coronary angiography in the face of
435	a normal non-invasive study may in part reflect individual prejudices and job description
436	(interventional versus non-invasive) as demonstrated in a recent survey of cardiology
437	attitudes ⁽³⁹⁾ and was also reflected in our own data.
438	
439	In CECaT, 20-25% of patients receiving a non-invasive test did not go on to have
440	angiography. A proportion of the additional cost in the non-invasive arms related to
441	angiography and PCI in the patients with a <i>negative</i> test, although only very few
442	subsequently required CABG - a robust marker of significant disease - during follow-up. This
443	readiness to employ PCI in a group in whom the indication/benefit is debatable was also
444	seen in the ACRE trial ⁽³²⁾ and reflects understandable clinical response to uncertainty but
445	also the easy access to PCI in healthcare systems without barriers to self-referral ⁽⁴⁰⁾ .
446	Similarly, studies from the US have demonstrated a greater willingness to use coronary
447	angiography when available 'on site' as is increasingly seen even in small-to-medium sized
448	hospitals ^{(41) (42) (43)} .
449	
450	Cost effectiveness of each non-invasive technique
451	
452	Nuclear myocardial perfusion imaging
453	
454	The END study used propensity matching to compare a large cohort of patients referred for
455	either gate-keeper myocardial perfusion imaging or upfront angiography – this non
456	randomised study demonstrated a significant cost reduction in the (44) nuclear arm. In
457	contrast to this and other work ^{(45) (46) (47)} we were unable to show a significant difference in
458	cost effectiveness in our own study. To some extent this reflected the participating physician
459	bias towards angiography during the period of trial recruitment (2001-2006) with many
460	patients referred for angiography despite normal perfusion studies. This continues in the
461	contemporary era with Chan et al demonstrating that almost 80% of Delphi-adjudicated

#### **BMJ Open**

3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
20	
30	
37	
38	
39	
40	
41	
42	
43	
10	
44	
40	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
30	
57	
58	
59	
60	

inappropriate elective PCIs were performed following either low risk ischemia imaging in
 mildly symptomatic patients or intermediate risk imaging in entirely asymptomatic patients
 ⁽³⁰⁾.

465

466 In the CECaT study, when PCI was performed despite a negative initial non-invasive test, 467 this occurred because subsequent angiography indicated 'significant' stenosis. This was a 468 clinical judgment based on 'eyeball assessment' of lesion severity as has been reported in clinical trials with angiographic end points ⁽⁴⁸⁾. However, the severity and functional 469 470 significance of many stenoses may be over-called, even by quantitative assessment, when 471 compared with physiological assessment of fractional flow reserve across the lesion (49)(50). 472 Further improvement in cost-effectiveness could likely have been achieved in the nuclear 473 arm of the trial. Our post-trial practice is to perform the stress SPECT first - and if this is 474 negative - cancel the rest test, likely augmenting the relative cost-effectiveness of SPECT (51) 475

476

477 CMR

478 There are relatively few data available regarding the cost effectiveness of CMR. One recent 479 mathematical modelling study estimated that CMR likely has greater cost effectiveness/utility 480 compared to SPECT despite greater base case cost of the former ⁽⁵²⁾. The economic 481 superiority of CMR was also recently described by the CEMARC group, although 482 interestingly the base case costs employed for CMR and SPECT in their analysis differed by 483 only a few pounds. Their own sensitivity analysis in fact demonstrated that if the costs of the 484 two tests varied by more than 100 pounds (which was the case in our study) then in fact – as 485 we found - SPECT became the dominant strategy in a low-to-intermediate risk population. (53) 486 487

488 Stress echo

Page 56 of 79

#### BMJ Open

Stress echocardiography may be a more cost-effective strategy than angiography for men aged 50-60 with CAD prevalence of 50%^{(54), (47)}. There is also some evidence that stress echo is more cost-effective than SPECT as an initial test ^{(55) (56)}, especially in women with suspected CAD ⁽⁵⁷⁾. A similar benefit was not seen in our study probably because of the high disease prevalence in our population. The lack of superiority of either stress echocardiography or a combined strategy of exercise testing and stress echo compared to upfront catheterisation was also evident in a recent Polish study of 600 patients with a similar age, gender and disease prevalence to our own study population ⁽⁵⁸⁾. Taken overall, our data clearly demonstrate a limited future role for cost-effective non-invasive imaging if referring physicians are not willing to accept a negative result as ground truth. This might be interpreted as reflecting a need for greater physician education since we showed a clear difference in onward referral rates for angiography after a negative test between interventional and non-invasive cardiologists. Clinical effectiveness We demonstrated that SPECT can obviate the need for coronary angiography for a

significant number of patients without any clinical detriment. In the stress echo group clinical outcomes were also comparable to the angiography subgroup at 18 months. The CMR group had statistically marginally poorer survival and this follows our earlier finding that CMR patients had significantly worse exercise tolerance at 18 months after randomisation ⁽¹⁰⁾. This is difficult to explain on the basis of Pryor risk score or other baseline clinical variables. However, the mean difference in survival between the CMR arm and the other groups was only 4 weeks and thus of marginal clinical significance. More importantly, the CMR group were not otherwise disadvantaged - compared to the angiographic control group - with respect to major adverse events, other resource use, or quality of life. 

#### *Limitations*

#### **BMJ Open**

2 3	517	This study was carried out in a single specialist cardiothoracic centre with a significant
4 5 6	518	proportion of high risk, predominantly white European, male patients. Those eligible who
7	519	refused the trial were older and were more likely to be women.
o 9 10	520	
10 11 12	521	Survival data from the national registry did not include cause of death so that deaths due to
13	522	cardiovascular causes could not be reported separately.
15 16	523	
17 18	524	The trial completed recruitment in 2004 and we used the technology that was available to us
19 20	525	at the onset of the trial. At that time, we were not able to use attenuation correction for
21 22	526	SPECT imaging; however this was also not used in the much more recent CEMARC trial ⁽³⁶⁾ .
23 24	527	Similarly, we performed our CMR exams in a mobile facility on a 1.5T scanner with only
25 26	528	modest coil technology and limited temporal and anatomic coverage that would compare
27 28	529	unfavourably with the 3T whole heart high resolution perfusion studies available today.
29 30	530	
31 32	531	The trial aimed to reflect the strategy of using non-invasive imaging as a gateway to
33 34	532	angiography in contemporary clinical practice. The test results were considered in
35 36	533	conjunction with other information available at the time. Thus it was not the aim to formally
37 38	534	assess diagnostic accuracy of the non-invasive tests in this context. This trial-based study
39 40	535	was limited to 3 year cost-effectiveness follow up - longer-term economic models would
41 42	536	provide lifetime estimates of the cost-effectiveness of the non-invasive strategies and could
43 44	537	include advances in imaging technology.
45 46	538	
47 48	539	Conclusions
49 50	540	We have demonstrated in the CECaT trial that stress echo, stress CMR and stress SPECT
51 52	541	may each be used to defer invasive coronary angiography without clinical detriment or
53 54	542	significant excess costs in an outpatient population with stable chest pain.
55 56	543	
57 58 59 60	544	Acknowledgements

545	
546	The original CECaT study was funded by a grant from the UK National Health Service R&D
547	Health Technology Assessment Program (project no. 99/26/04). HT, CJ and LDS were
548	supported by the Medical Research Council [Programme number U015232027].
549	
550	Competing interests
551	
552	All authors have completed the ICMJE uniform disclosure form at
553	http://www.icmje.org/coi_disclosure.pdf and declare: support from the UK National Health
554	Service R&D Health Technology Assessment Program (project no. 99/26/04) and the UK
555	Medical Research Council [Programme number U015232027] for the submitted work ; no
556	financial relationships with any organisations that might have an interest in the submitted
557	work in the previous three years; no other relationships or activities that could appear to
558	have influenced the submitted work
559	Exclusive licence statement
560	
561	The Corresponding Author has the right to grant on behalf of all authors and does grant on
562	behalf of all authors, an exclusive licence (or non exclusive for government employees) on a
563	worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if
564	accepted) to be published in BMJ editions and any other BMJPGL products and sublicences
565	to exploit all subsidiary rights, as set out in our licence
566	( http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication).
567	
568	Contributorship statement
569	
570	HT performed literature review, data analysis and interpretation; NW was involved in image
571	analysis, drafting the manuscript and critical revision; VH was involved in recruiting the
572	patients, data management, administering health questionnaires, data analysis and drafting

#### **BMJ Open**

the manuscript; MD and MB were responsible for data analysis, health economic assessment, drafting the manuscript and critical revision; LDS was responsible for study design, trial management, statistical analysis, drafting the manuscript and critical revision; CJ performed statistical and health economic analysis, drafting the manuscript and critical revision; AMC was involved in study design, patient recruitment, image interpretation, trial management, drafting the manuscript and critical revision and is the overall guarantor of manuscript integrity.

All authors have read the manuscript in its submitted form and have provided final approval 

for publication.

~	
2	
2	
3	
4	
-	
5	
6	
0	
7	
8	
0	
9	
10	
10	
11	
40	
12	
12	
15	
14	
15	
16	
10	
17	
18	
10	
19	
20	
20	
21	
22	
22	
23	
20	
24	
05	
25	
26	
20	
27	
~~	
28	
20	
29	
30	
00	
31	
22	
32	
33	
00	
34	
25	
35	
36	
00	
37	
00	
38	
30	
55	
40	
41	
42	
72	
43	
4.4	
44	
45	
46	
17	
41	
48	
49	
E 0	
50	
51	
51	
52	
53	
51	
94	
55	
50	
56	
57	
57	
57 58	
57 58	
57 58 59	
57 58 59	

## 583 Table 1 Baseline characteristics*

	Angiography	SPECT	Cardiac MRI	Stress Echo		
Demographics	(n=222)	(n=224)	(n=226)	(n=226)		
Mean (SD) age (years)	60.7 (9.1)	62.1 (9.5)	62.2 (9.0)	61.9 (9.9)		
Males (%)	149 (67%)	157 (70%)	153 (68%)	160 (71%)		
History/risk factors						
Previous MI (%)	63 (28%)	52 (23%)	69 (31%)	59 (26%)		
Previous CVA (%)	10 (5%)	13 (6%)	8 (4%)	12 (5%)		
Diabetes(%)						
IDDM	12 (5%)	8 (4%)	11 (5%)	5 (2%)		
NIDDM	16 (7%)	18 (8%)	21 (9%)	22 (10%)		
Family history CAD	60 (27%)	55 (25%)	63 (28%)	59 (26%)		
Smoking history (%)						
<25 pack years	149 (67%)	162 (72%)	148 (65%)	155 (69%)		
>=25 pack years	73 (33%)	62 (28%)	78 (35%)	71 (31%)		
Treated hyperlipidaemia	164 (74%)	171 (76%)	179 (79%)	179 (79%)		
(%)						
Treated hypertension (%)	117 (53%)	132 (59%)	115 (51%)	129 (57%)		
Exercise tolerance using the	modified Bruce	protocol				
Mean (SD) total exercise	11.29 (4.56)	10.46 (4.41)	10.43 (4.43)	10.89 (4.36)		
time (mins)						
ECG changes on exercise test						
1-2 mm ST depression	53 (24%)	43 (19%)	54 (24%)	57 (25%)		
with symptoms						
>= 2mm ST depression	16 (7%)	24 (11%)	20 (9%)	24 (11%)		
without symtoms						

**BMJ Open** 

ST elevation**/ no change	153 (69%)	157 (70%)	152 (67%)	145 (64%)
CCS class				
0-I	60 (27%)	54 (24%)	78 (35%)	58 (26%)
Π	138 (62%)	144 (64%)	122 (54%)	132 (58%)
III-IV	24 (11%)	26 (12%)	26 (11%)	36 (16%)

* There were no significant differences between the groups in any variable 

** ST elevation was observed in 3 angiography, 2 CMR and 1 ECHO patients.
586	Table 2 Cost-effectiveness summaries to 3 years post randomization
-----	--------------------------------------------------------------------

	Angiography	SPECT (n=224)	Cardiac MRI	Stress Echo
	(n=222)		(n=226)	(n=226)
Hazard ratio for death	Baseline	0.99	2.60	1.42
(95%CI)		(0.35,2.85)	(1.09,6.22)	(0.54,3.74)
Mean survival (years)	2.96	2.95	2.90	2.94
(95%CI)	(2.92, 2.99)	(2.90, 2.99)	(2.83, 2.95)	(2.89, 2.97)
Mean difference vs. CA	-	-0.01	-0.06	-0.02
(95%CI)	-	(-0.07,0.05)	(-0.14, 0.01)	(-0.08, 0.04)
Mean QALYs	2.24	2.27	2.18	2.27
(95%CI)	(2.16,2.31)	(2.20,2.33)	(2.11,2.25)	(2.19,2.33)
Mean difference vs. CA	-	0.03	-0.05	0.03
(95%CI)	-	<mark>(-5.21,1.38)</mark>	<mark>(-5.21,1.38)</mark>	<mark>(-3.04,4.21)</mark>
Mean discounted costs	<mark>5243</mark>	<mark>4644</mark>	<mark>4947</mark>	<mark>5530</mark>
(£)				
(95%CI)	<mark>(4282,6461)</mark>	<mark>(4194,5126)</mark>	<mark>(4480,5431)</mark>	<mark>(4857, 6262)</mark>
Mean difference vs. CA	•	<mark>-599</mark>	<mark>-296</mark>	<mark>287</mark>
(95%CI)		<mark>(-1901,503)</mark>	<mark>(-1603, 824)</mark>	<mark>(-1109,</mark>
				<mark>1537)</mark>
Probability cost effective	•	<mark>0.82</mark>	<mark>0.29</mark>	<mark>0.55</mark>
at £20k per QALY				
Probability cost effective	•	<mark>0.79</mark>	<mark>0.25</mark>	<mark>0.59</mark>
at £30k per QALY				

**BMJ Open** 

589 Table 2a Cost-effectiveness summaries for patients managed by interventional

590 cardiologists to 3 years post randomization

	Angiography	SPECT	Cardiac MRI	Stress Echo
	(n=73)	(n=96)	(n=93)	(n=98)
Mean survival (years)	2.96	2.97	2.89	2.96
(95%CI)	(2.91, 2.98)	(2.93, 3.00)	(2.80, 2.97)	(2.90, 2.98)
Mean difference vs. CA	-	0.01	-0.07	0
(95%CI)	-	(-0.05,0.07)	(-0.17, 0.02)	(-0.07,0.05)
Mean QALYs	2.25	2.29	2.21	2.2
(95%CI)	(2.14,2.36)	(2.19,2.38)	(2.10,2.32)	(2.10,2.29)
Mean difference vs. CA	-	0.03	-0.04	-0.06
(95%CI)	-	<mark>(-5.31,2.30)</mark>	<mark>(-4.96,2.41)</mark>	<mark>(-3.06,6.42)</mark>
Mean discounted costs (£)	<mark>5754</mark>	<mark>5205</mark>	<mark>5307</mark>	<mark>6329</mark>
(95%CI)	<mark>(4651, 6941)</mark>	<mark>(4475, 5979)</mark>	<mark>(4610, 6032)</mark>	<mark>(5120, 7713)</mark>
Mean difference vs. CA		<mark>-549</mark>	<mark>-447</mark>	<mark>574</mark>
(95%CI)		<mark>(-1973, 799)</mark>	<mark>(-1841, 897)</mark>	<mark>(-1097, 2262)</mark>
Probability cost effective		<mark>0.72</mark>	<mark>0.42</mark>	<mark>0.20</mark>
at £20k per QALY				
Probability cost effective		<mark>0.70</mark>	<mark>0.39</mark>	<mark>0.21</mark>
at £30k per QALY				

#### 592 Table 2b Cost-effectiveness summaries for patients managed by non-interventional

#### 593 cardiologists to 3 years post randomization

	Angiography	SPECT	Cardiac MRI	Stress Echo
	(n=149)	(n=128)	(n=133)	(n=128)
Mean survival (years)	2.95	2.93	2.9	2.92
(95%CI)	(2.89, 2.99)	(2.85, 2.98)	(2.81, 2.97)	(2.85, 2.98)
Mean difference vs. CA	-	-0.02	-0.05	-0.03
(95%CI)	-	(-0.11,0.06)	(-0.15, 0.04)	(-0.11, 0.05)
Mean QALYs	2.23	2.25	2.17	2.31
(95%CI)	(2.14,2.31)	(2.16,2.33)	(2.07,2.26)	(2.22,2.40)
Mean difference vs. CA	-	0.02	-0.06	0.09
(95%CI)	-	<mark>(-6.92,1.90)</mark>	<mark>(-5.50,3.45)</mark>	<mark>(-5.45,3.71)</mark>
Mean discounted costs (£)	<mark>4936</mark>	<mark>4216</mark>	<mark>4723</mark>	<mark>4780</mark>
(95%CI)	<mark>(3681, 6665)</mark>	<mark>(3635, 4799)</mark>	<mark>(4068, 5381)</mark>	<mark>(4136, 5467)</mark>
Mean difference vs. CA	-	<mark>-719</mark>	<mark>-212</mark>	<mark>-156</mark>
(95%CI)		<mark>(-2527, 695)</mark>	<mark>(-2007,</mark>	<mark>(-1990, 1353)</mark>
			<mark>1258)</mark>	
Probability cost effective		<mark>0.75</mark>	<mark>0.29</mark>	<mark>0.85</mark>
at £20k per QALY				
Probability cost effective		<mark>0.72</mark>	<mark>0.27</mark>	<mark>0.86</mark>
at £30k per QALY				

		Angiography	SPECT	Cardiac MRI	Stress Echo
	Adverse event	(n=222)	(n=224)	(n=226)	(n=226
	Total adverse events	38	34	44	62
	Chest pain (not	21	20	28	35
	myocardial infarction)				
	Angina	7	5	4	:
	Myocardial infarction	2	0	3	(
598	* Note that beyond this tim	e only events that re	equired hosp	ital admission v	were recorde
599					
600					

**Table 4** Summary of the frequency of use of the main resource use elements during follow up

602 of up to 3 years (excluding initial diagnostic test)

	Angiography	SPECT	Cardiac MRI	Stress Echo
Resource use (unit cost)	(n=222)	(n=224)	(n=226)	(n=226)
CABG (£7195)	28	33	28	34
PCI (£3660)	57	46	60	62
Other hospital admission	36	29	28	53
(£467 per day)				
<mark>Angiography (£625)</mark>	12	183	175	181
SPECT (£405)	16	3	3	6
Cardiac MRI (£565)	5	5	12	5
Echocardiography (£435)	30	17	24	18
PET scan (£842)	0	3	0	1
Preadmission clinic (£85)	22	21	27	24
Follow up clinic (£85)	19	22	31	21
Outpatient visits (£143)	247	270	300	284

* Cardiac drugs were also included but are not shown here due to many different

606 combinations of drugs and doses prescribed.

2 3	609	Figure Legends
4 5	610	
6 7	611	Figure 1 CONSORT diagram describing recruitment and randomization
8 9 10	612	
10 11 12	613	Figure 2 Kaplan-Meier survival estimates according to initial modality of diagnosis
13 14	614	
15 16	615	Figure 3 Quality of life assessed by EQ5D over time
17 18	616	
19 20	617	Figure 4 Bootstrapped estimates of the joint distribution of mean cost difference
21 22	618	against mean QALY difference up to 3-years post randomisation
23 24	619	
25 26	620	Figure 5 Estimated probability of being cost-effective compared with angiography
27 28	621	alone against the amount ( ${f \pounds}$ ) a health provider is willing to pay for one additional
29 30	622	QALY
31 32	623	
33 34	624	
35 36	625	
37 38	626	
39 40	627	
41 42		
43 44		
45 46		
47 48		
49		
50 51		
52 53		
54		
55 56		
57 58		
56 59		
60		

## 628 References

630 1. NICE. Myocardial perfusion scintigraphy for the diagnosis and management of
 631 angina and myocardial infarction: National Institute for Clinical Excellence 2003; Technology
 632 Appraisal Guidance 73.

Boden WE. Surgery, angioplasty, or medical therapy for symptomatic multivessel
coronary artery disease: is there an indisputable "winning strategy" from evidence-based
clinical trials? Journal of the American College of Cardiology. 2004;43(10):1752-4. Epub
2004/05/18.

637 3. Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass
638 surgery. Quality of life in patients randomly assigned to treatment groups. Circulation.
639 1983;68(5):951-60. Epub 1983/11/01.

640 4. Boden WE, O'Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al.
641 Optimal medical therapy with or without PCI for stable coronary disease. The New England
642 journal of medicine. 2007;356(15):1503-16. Epub 2007/03/28.

5. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low
diagnostic yield of elective coronary angiography. The New England journal of medicine.
2010;362(10):886-95. Epub 2010/03/12.

646
6. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al.
647
647 ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the
648
648 American College of Cardiology/American Heart Association Task Force on Practice
649 Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Journal of the
650 American College of Cardiology. 2002;40(8):1531-40. Epub 2002/10/24.

Douglas PS, Khandheria B, Stainback RF, Weissman NJ, Peterson ED, Hendel RC, 7. et al. ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 appropriateness criteria for stress echocardiography: a report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, American Society of Echocardiography, American College of Emergency Physicians, American Heart Association, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance endorsed by the Heart Rhythm Society and the Society of Critical Care Medicine. Journal of the American College of Cardiology. 2008;51(11):1127-47. Epub 2008/03/18.

Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. 8. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging: A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Journal of the American College of Cardiology. 2009;53(23):2201-29. Epub 2009/06/06.

669 9. Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. 670 ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular

1		
2	< <b>-</b> 4	
3	671	magnetic resonance: a report of the American College of Cardiology Foundation Task Force
4 5	0/2	on Expert Consensus Documents. Circulation. 2010, 121(22).2462-508. Epub 2010/05/19.
6	673	10. Sharples L, Hughes V, Crean A, Dyer M, Buxton M, Goldsmith K, et al. Cost-
7	674	effectiveness of functional cardiac testing in the diagnosis and management of coronary
8	675	artery disease: a randomised controlled trial. The CECaT trial. Health Technol Assess.
9 10	676	2007;11(49):III-IV, IX-115. Epub 2007/11/21.
11	(77	11 Driver DD Chow I. McCente CD Lee KI. Mark DD Llerroll FF. In et al. Value of the
12	0// 678	history and physical in identifying patients at increased risk for coronary artery disease
13	679	Annals of internal medicine 1993:118(2):81-90 Enub 1993/01/15
14	017	
15	680	12. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography: a
16	681	new technique. Acta radiologica. 1953;39(5):368-76. Epub 1953/05/01.
18		
19	682	13. Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer GJ, Eagle KA, et al.
20	683	ACC/AHA guidelines for coronary angiography. A report of the American College of
21	684	Cardiology/American Heart Association Task Force on practice guidelines (Committee on
22	685	Coronary Angiography). Developed in collaboration with the Society for Cardiac
23	686 687	Anglography and Interventions. Journal of the American College of Cardiology.
24	007	1999,33(0). 1750-624. Epub 1999/05/20.
20 26	688	14 Wackers F.I. Exercise myocardial perfusion imaging Journal of nuclear medicine
27	689	official publication. Society of Nuclear Medicine. 1994:35(4):726-9. Epub 1994/04/01.
28	007	
29	690	15. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et
30	691	al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel
31	692	report. Journal of cardiovascular magnetic resonance : official journal of the Society for
32	693	Cardiovascular Magnetic Resonance. 2004;6(4):727-65. Epub 2005/01/14.
33		
35	694	16. Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Multi-echo segmented k-space
36	695	imaging: an optimized hybrid sequence for ultratast cardiac imaging. Magnetic resonance in
37	090 607	Magnetic Resonance in Medicine, 1000:41(2):375 85, Epub 1000(03/18
38	097	
39	698	17 Capet EP Janier MF Revel D Magnetic resonance perfusion imaging in ischemic
40	699	heart disease. Journal of magnetic resonance imaging : JMRI, 1999:10(3):423-33. Epub
41	700	1999/10/03.
42 43		
44	701	18. Kind P. The EuroQol instrument: an index of health-related quality of life. In: Spiker
45	702	B, editor. Quality of life and pharmacoeconomics in clinical trials. Philadelphia, PA:
46	703	Lippincott-Raven; 1996.
47		
48	704	19. Dolan P GC, Kind P. A social tariff for EuroQol: results from a UK general population
49	/05	survery 1995.
วU 51	704	20 Willon AD Lin DV Cook DJ Chan ED Llaing invariant weighting in cost effectiveness
52	700	analysis with consored data. Statistical methods in medical research. 2002:11(6):520-51
53	708	Enub 2003/01/09
54	,00	
55	709	21. Efron B TR. An introduction to the bootstrap. San Francisco: Chapman and Hall:
56	710	1993.
57		
00 50		
60		
		22

22. Tonino PA, Fearon WF, De Bruvne B, Oldrovd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. Journal of the American College of Cardiology. 2010;55(25):2816-21. Epub 2010/06/29. 23. Mozes B. Shabtai E. The appropriateness of performing coronary angiography in two major teaching hospitals in Israel. International journal for quality in health care : journal of the International Society for Quality in Health Care / ISQua. 1994;6(3):245-9. Epub 1994/09/01. 24. Gray D, Hampton JR. Methods of establishing criteria for purchasing coronary angiography in the investigation of chest pain. Journal of public health medicine. 1994;16(4):399-405. Epub 1994/12/01. 25. Guadagnoli E, Hauptman PJ, Ayanian JZ, Pashos CL, McNeil BJ, Cleary PD. Variation in the use of cardiac procedures after acute myocardial infarction. The New England journal of medicine. 1995;333(9):573-8. Epub 1995/08/31. Mark DB, Naylor CD, Hlatky MA, Califf RM, Topol EJ, Granger CB, et al. Use of 26. medical resources and quality of life after acute myocardial infarction in Canada and the United States. The New England journal of medicine. 1994;331(17):1130-5. Epub 1994/10/27. 27. Rouleau JL, Move LA, Pfeffer MA, Arnold JM, Bernstein V, Cuddy TE, et al. A comparison of management patterns after acute myocardial infarction in Canada and the United States. The SAVE investigators. The New England journal of medicine. 1993;328(11):779-84. Epub 1993/03/18. Tu JV, Pashos CL, Naylor CD, Chen E, Normand SL, Newhouse JP, et al. Use of 28. cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada. The New England journal of medicine. 1997;336(21):1500-5. Epub 1997/05/22. Selby JV, Fireman BH, Lundstrom RJ, Swain BE, Truman AF, Wong CC. et al. 29. Variation among hospitals in coronary-angiography practices and outcomes after myocardial infarction in a large health maintenance organization. The New England journal of medicine. 1996;335(25):1888-96. Epub 1996/12/19. 30. Chan PS, Patel MR, Klein LW, Krone RJ, Dehmer GJ, Kennedy K, et al. Appropriateness of percutaneous coronary intervention. JAMA : the journal of the American Medical Association. 2011;306(1):53-61. Epub 2011/07/07. 31. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. Journal of the American College of Cardiology. 2010;56(3):177-84. Epub 2010/06/12. 32. Griffin SC, Barber JA, Manca A, Sculpher MJ, Thompson SG, Buxton MJ, et al. Cost effectiveness of clinically appropriate decisions on alternative treatments for angina pectoris: prospective observational study. BMJ. 2007;334(7594):624. Epub 2007/03/07. 

1		
2	750	
3	152	33. Watkins S, McGeoch R, Lyne J, Steedman T, Good R, McLaughlin MJ, et al.
4 5	/33 754	validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve
5	755	For the detection of significant coronary near disease. Circulation. 2009, 120(22).2207-15.
7	155	
8	756	34. Krittavaphong R, Chaithiraphan V, Maneesai A, Udompanturak S. Prognostic value
9	757	of combined magnetic resonance myocardial perfusion imaging and late gadolinium
10	758	enhancement. The international journal of cardiovascular imaging. 2011;27(5):705-14. Epub
11	759	2011/04/12.
12		
13	760	35. Bingham SE, Hachamovitch R. Incremental prognostic significance of combined
14	761	cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement,
16	762	and left ventricular function over preimaging information for the prediction of adverse events.
17	763	Circulation. 2011;123(14):1509-18. Epub 2011/03/30.
18	-	
19	764	36. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al.
20	/65	Cardiovascular magnetic resonance and single-photon emission computed tomography for
21	/66	diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet.
22	/6/	2012;379(9814):453-60. Epub 2011/12/27.
23	769	27 Creanwood ID CMD varius CDECT for diagnosis of coronomy boart diagood
24	760 760	37. Greenwood JP. CINR Versus SPECT for diagnosis of coronary heart disease – Authors' roply The Lancet 2012:370(0832):2147 8
25	/09	Authors reply the Lancel. 2012,379(9032).2147 - 0.
20 27	770	38 Beanlands BS Nichol G. Huszti F. Human D. Bacine N. Freeman M. et al. E-18-
28	771	fluorodeoxyalucose positron emission tomography imaging-assisted management of patients
20	772	with severe left ventricular dysfunction and suspected coronary disease: a randomized
30	773	controlled trial (PARR-2) Journal of the American College of Cardiology 2007:50(20):2002-
31	774	12. Epub 2007/11/13.
32		
33	775	39. Maron DJ, Stone GW, Berman DS, Mancini GB, Scott TA, Byrne DW, et al. Is cardiac
34	776	catheterization necessary before initial management of patients with stable ischemic heart
35	777	disease? Results from a Web-based survey of cardiologists. American heart journal.
36	778	2011;162(6):1034-43 e13. Epub 2011/12/06.
37		
38	779	40. Nallamothu BK, Rogers MA, Chernew ME, Krumholz HM, Eagle KA, Birkmeyer JD.
39 40	780	Opening of specialty cardiac hospitals and use of coronary revascularization in medicare
40	781	beneficiaries. JAMA : the journal of the American Medical Association. 2007;297(9):962-8.
42	782	Epub 2007/03/08.
43		
44	783	41. Feit F, Mueller HS, Braunwald E, Ross R, Hodges M, Herman MV, et al.
45	/84 785	Inrombolysis in Myocardial Infarction (11MI) phase II trial: outcome comparison of a
46	183	conservative strategy in community versus tertiary hospitals. The Tivit Research Group.
47	/80	
48	797	42 Plustein I. High technology cardiac procedures. The impact of convice availability on
49	788	service use in New York State IAMA : the journal of the American Medical Association
5U 51	789	1993:270(3):344-9 Epub 1993/07/21
52	, 0,	
53	790	43. Every NR, Larson EB, Litwin PF, Maynard C, Fihn SD, Fisenberg MS, et al. The
54	791	association between on-site cardiac catheterization facilities and the use of coronary
55	792	angiography after acute myocardial infarction. Myocardial Infarction Triage and Intervention
56	793	Project Investigators. The New England journal of medicine. 1993;329(8):546-51. Epub
57	794	1993/08/19.
58		
59		
60		

44. Shaw LJ, Hachamovitch R, Berman DS, Marwick TH, Lauer MS, Heller GV, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. Journal of the American College of Cardiology. 1999;33(3):661-9. Epub 1999/03/18. Mowatt G, Vale L, Brazzelli M, Hernandez R, Murray A, Scott N, et al. Systematic 45. review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction. Health Technol Assess. 2004;8(30):iii-iv, 1-207. Epub 2004/07/14. Underwood SR, Godman B, Salyani S, Ogle JR, Ell PJ. Economics of myocardial 46. perfusion imaging in Europe--the EMPIRE Study. European heart journal. 1999;20(2):157-66. Epub 1999/04/01. Underwood SR, Shaw LJ, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint J, et al. 47. Myocardial perfusion scintigraphy and cost effectiveness of diagnosis and management of coronary heart disease. Heart. 2004;90 Suppl 5:v34-6. Epub 2004/07/16. 48. Uchida T, Popma J, Stone GW, Ellis SG, Turco MA, Ormiston JA, et al. The clinical impact of routine angiographic follow-up in randomized trials of drug-eluting stents: a critical assessment of "oculostenotic" reintervention in patients with intermediate lesions. JACC Cardiovascular interventions. 2010;3(4):403-11. Epub 2010/04/20. 49. Christou MA, Siontis GC, Katritsis DG, Ioannidis JP. Meta-analysis of fractional flow reserve versus quantitative coronary angiography and noninvasive imaging for evaluation of myocardial ischemia. The American journal of cardiology. 2007;99(4):450-6. Epub 2007/02/13. 50. Gould KL. Does coronary flow trump coronary anatomy? JACC Cardiovascular imaging. 2009;2(8):1009-23. Epub 2009/08/15. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus 51. standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. Journal of the American College of Cardiology. 2010;55(3):221-30. Epub 2009/11/17. 52. Boldt J, Leber AW, Bonaventura K, Sohns C, Stula M, Huppertz A, et al. Cost-effectiveness of cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary artery disease in Germany. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2013;15:30. Epub 2013/04/12. 53. Walker S, Girardin F, McKenna C, Ball SG, Nixon J, Plein S, et al. Cost-effectiveness of cardiovascular magnetic resonance in the diagnosis of coronary heart disease: an economic evaluation using data from the CE-MARC study. Heart. 2013;99(12):873-81. Epub 2013/04/18. 54. Kuntz KM, Fleischmann KE, Hunink MG, Douglas PS. Cost-effectiveness of diagnostic strategies for patients with chest pain. Annals of internal medicine. 1999;130(9):709-18. Epub 1999/06/05. 

55. Hayashino Y, Nagata-Kobayashi S, Morimoto T, Maeda K, Shimbo T, Fukui T. Cost-effectiveness of screening for coronary artery disease in asymptomatic patients with Type 2 diabetes and additional atherogenic risk factors. Journal of general internal medicine. 2004;19(12):1181-91. Epub 2004/12/22.

56. Tan SS, Oppe M, Zoet-Nugteren SK, Niezen RA, Kofflard MJ, Ten Cate FJ, et al. A microcosting study of diagnostic tests for the detection of coronary artery disease in The Netherlands. European journal of radiology. 2009;72(1):98-103. Epub 2008/08/16.

57. Kim C, Kwok YS, Saha S, Redberg RF. Diagnosis of suspected coronary artery disease in women: a cost-effectiveness analysis. American heart journal. 1999;137(6):1019-27. Epub 1999/05/29. 

/Ski w., le coronary a.. al. 2007;14(6):544-5 .. 58. Lewandowski M, Szwed H, Kowalik I. Searching for the optimal strategy for the diagnosis of stable coronary artery disease. Cost-effectiveness of the new algorithm. Cardiology journal. 2007;14(6):544-51. Epub 2008/07/25.

#### Figure 1 Trial summary

#### Initial test randomised to



Final assessment at 2 years post treatment

90x119mm (300 x 300 DPI)



90x90mm (300 x 300 DPI)







90x90mm (300 x 300 DPI)



0

-4000

-0.2

-0.1

Incremental Cost (£)

MRI – ANGIO

0.0

Incremental QALY

0.1

0.2

SPECT - ANGIO

2000

0

-4000

2000

0

-4000

-0.2

-0.2

-0.1

0.0

Incremental QALY

0.1

0.2

90x90mm (300 x 300 DPI)

-0.1

0.0

Incremental QALY

ECHO - ANGIO

0.1

0.2





90x90mm (300 x 300 DPI)



Itom	Description	Reported on
nem		
		line number
Title	Identification of the study as randomized	4
Authors *	Contact details for the corresponding author	26
Trial design	Description of the trial design (e.g. parallel, cluster, non-inferiority)	140
Methods		
Participants	Eligibility criteria for participants and the settings where the data were collected	153-157
Interventions	Interventions intended for each group	140-144 & 163- 165
Objective	Specific objective or hypothesis	147
Outcome	Clearly defined primary outcome for this report	219
Randomization	How participants were allocated to interventions	159
Blinding (masking)	Whether or not participants, care givers, and those assessing the outcomes were blinded to group assignment	140
Results		
Numbers randomized	Number of participants randomized to each group	285 & 582
Recruitment	Trial status	
Numbers analysed	Number of participants analysed in each group	582
Outcome	For the primary outcome, a result for each group and the estimated effect size and its precision	585
Harms	Important adverse events or side effects	318-9
Conclusions	General interpretation of the results	540
Trial registration	Registration number and name of trial register	124
Funding	Source of funding	546-548

#### CONSORT checklist CECaT Trial BMJ Open Re-Submission