Identifying RNA-binding residues based on evolutionary conserved structural and energetic features

Yao Chi Chen¹, Karen Sargsyan¹, Jon Wright^{1,2}, Yi-Shuian Huang^{1*}, and Carmay Lim^{1,2,*}

¹Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ²Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, and ³Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan

*To whom correspondence should be addressed. E-mail: <u>carmay@gate.sinica.edu.tw</u> or yishuian@ibms.sinica.edu.tw

MATERIALS AND METHODS

Plasmid construction

The various CPEB3 alanine mutants were generated by QuikChange Site-Directed Mutagenesis Kit (Stratagene) according to the manufacturer's protocol. The pcDNA3.1-myc-hCPEB3 plasmid was used as the PCR template and the sets of sense and antisense used for mutagenesis primers were: R427A, 5'-GAGTAGAACGCTACTCTGCAAAGGTGTTTGTTGGAGG-3' and 5'-CCTCCAACAACACCTTTGCAGAGTAGCGTTCTACTC-3'; R449A, 5'-CACTGCCAGCTTTCGCGCGTTTGGACCTCTCGTAG-3' and 5'-CTACGAGAGGTCCAAACGCGCGAAAGCTGGCAGTG-3'; D456A. 5'-TGGACCTCTCGTAGTAGCCTGGCCTCACAAAGCT-3' and 5'-AGCTTTGTGAGGCCAGGCTACTACGAGAGGTCCA-3'; K460A, 5'-AGTAGACTGGCCTCACGCAGCTGAAAGCAAGTCTTA-3' and 5'-TAAGACTTGCTTTCAGCTGCGTGAGGCCAGTCTACT-3'; S465A, 5'-CACAAAGCTGAAAGCAAGGCTTATTTTCCTCCTAAAGGC-3' and 5'-GCCTTTAGGAGGAAAATAAGCCTTGCTTTCAGCTTTGTG-3'; F474A. 5'-CTCCTAAAGGCTATGCCGCTCTGCTGTTCCAAGAGG-3' and 5'-CCTCTTGGAACAGCAGAGCGGCATAGCCTTTAGGAG-3', R514A. 5'-GACAAGCCAGTGCAAATTGCACCATGGAACCTAAGTGA-3' and 5'-TCACTTAGGTTCCATGGTGCAATTTGCACTGGCTTGTC-3'. To construct F430A F430A and G432A mutants. the primer. sense 5'-TACTCTAGAAAGGTGGCTGTTGGAGGACTTCCT-3' or G432A 5'-TACTCTAGAAAGGTGTTTGTTGCAGGACTTCCTCCTGATA-3', along with the antisense primer 5'-CCGCTCGAGTCAGCTCCAGCGGAAC-3' were used to PCR amplify the RNA-binding domain of CPEB3. The amplified DNA fragments were digested with XbaI and XhoI and cloned to the XbaI and XhoI-linearized pcDNA3.1-myc-hCPEB3 vector. All constructs were sequenced to confirm the mutations.

Cell culture and transfection

HEK-293T cells were cultured in DMEM with 10% fetal bovine serum (Invitrogen). Transfection of plasmid DNAs was carried out using lipofectamine 2000 (Invitrogen) following the manufacture's protocol. In general, a 35-mm dish of 293T cells was transfected with the mixture of 2 μ g plasmid DNA and 5 μ l lipofectamine 2000 and incubated overnight for CPEB3 production.

The 35-mm dish of 293T cells expressing myc-tagged CPEB3 variants was lysed in 140 μ l of 2X gel retardation buffer (20 mM Hepes, pH 7.4, 100 mM KCl, 2 mM

MgCl₂, 0.1% TritonX-100, 10% glycerol, 0.5 mM DTT and 1X protease inhibitor (Roche)) on ice for 15 min, followed by centrifugation at 10,000 rpm for 5 minutes. The resulting supernatants were used for RNA-binding assay. The 1904 RNA probe identified previously as the CPEB3-binding sequence (1) was labelled by *in vitro* transcription with α^{32} P-UTP.

REFERENCES

1. Huang, Y.S., Kan, M.C., Lin, C.L. and Richter, J.D. (2006) CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. *EMBO J*, **25**, 4865-4876.

Supplementary Table S1

Dataset I		Dataset II		RMSD (Å)	Sequence id (%)
PDB code	chain identifier	PDB code	chain identifier		
1a9n	С				
1av6	А	2gaf	А	0.68	98
1c0a	А	1eqr	А	1.64	100
1ddl	А				
1dfu*	Р	1b75*	А	4.26	100
1di2	А				
1f7u	А	1bs2	А	2.22	100
1feu*	А				
1fjg*	Μ				
1fxl	А				
1gax	А				
1gtf	L	2zcz	А	1.78	97
1h4s	А	1h4t	А	1.28	100
1hq1	А				
1j1u	А	1u7x	А	1.5	98
1jbs	А	1aqz	А	0.71	99
1jid	А				
1k8w	А	1r3f	А	1.95	98
1m8w	А	3gvt	А	1.24	91
1mms*	А	2k3f*	А	4.17	100
1n78	А	1j09	А	1.86	100
100a	А	2v2t	В	8.87	99
1q2r	А	1enu	А	0.87	100
1qf6	А	1evk	А	1.32	100
1sds	С	1ra4	А	0.35	100
1ser	А				
1vq8*	1				
1vq8*	3				
1vq8*	А				
1vq8*	В				
1vq8*	С				
1vq8*	D				
1vq8*	E				
1vq8*	Н				
1vq8*	J				

1 0*					
1vq8*	ĸ				
1vq8*	L				
1vq8*	M				
1vq8*	N				
1vq8*	0				
1vq8*	Р				
1vq8*	Q				
1vq8*	R				
1vq8*	U				
1vq8*	V				
1vq8*	W				
1vq8*	Х				
1wpu	А	1wpt	А	2.23	100
1yz9	А	1rc5	А	1.37	98
1zh5	А				
1zho	А	487d	Н	5.78	98
2a8v	А	1a63	А	1.9	100
2anr	А				
2asb	А	1k0r	А	1.08	98
2bgg	А	1w9h	А	0.97	98
2bu1	А	1msc	А	3.34	99
2e9t	А	1u09	А	0.78	100
2fk6	А	1y44	В	1.99	99
2fmt	А	1fmt	А	1.17	100
2gic	А	3hhw	К	1.74	99
2j01*	I.				
2j01*	R	1gd8*	А	1.25	100
2q66	А	1fa0	А	3.55	96
2r8s	L	1dee	А	3.65	95
2vqe*	В				
2vqe*	С				
2vqe*	D				
2vqe*	F				
2vqe*	G	1rss*	А	2.93	100
2vqe*	н	1an7*	А	1.05	100
2vqe*	I.				
2vqe*	J				
2vqe*	К				
2vqe*	Ν				
2vqe*	Р	1emw*	А	2.42	100
2vqe*	R				

S	1qkf*	A	4.09	100
Т				
А				
А	1u1t	А	0.93	93
А				
	S T A A A	S 1qkf* T A A 1u1t A	S 1qkf* A T A A 1u1t A A	S 1qkf* A 4.09 T A A 1u1t A 0.93 A

* denotes ribosomal proteins

Supplementary Table S2. Performance of DR_bind1 and BindN+ for the same number of predictions made by DR_bind1 based on the RNA-bound structures of 17 proteins whose sequences are nonhomologous to those in PRINR25 compared.

Methods	DR_bind1	BindN+
precision	0.74	0.47
sensitivity	0.08	0.05
specificity	1	0.99
accuracy	0.90	0.89
mcc	0.22	0.12

Supplementary Table S3. Performance of DR_bind1 based on 83 DNA-bound protein structures.

	DR_bind1 ^a
ТР	177
FP	84
TN	18,866
FN	1,922
Sensitivity	0.08
Specificity	1
Precision	0.68
Accuracy	0.90
MCC	0.22