Characterization of the interaction between protein Snu13p/15.5K and the

Rsa1p/NUFIP factor and demonstration of its functional importance for

snoRNP assembly

Benjamin Rothé¹, Régis Back¹⁺, Marc Quinternet², Jonathan Bizarro³, Marie-Cécile Robert³, Magali Blaud¹⁺⁺, Christophe Romier⁴, Xavier Manival^{1*}, Bruno Charpentier^{1*}, Edouard Bertrand^{3*}, and Christiane Branlant¹

SUPPLEMENTARY DATA

SUPPLEMENTARY METHODS

GST pull-down assays

Recombinant proteins GST-Snu13p, wild-type or variant $E_{72}D_{73}K_{74}/AAA$, (0.35 nmol) were loaded onto 15 µl of beads of Glutathione-Sepharose 4B (GE Healthcare[©]) in 100 µl of binding buffer (10 mM phosphate pH 7.0, 150 mM NaCl). Recombinant _{His6}Rsa1p₂₃₀₋₂₆₆ (0.7 nmol) was treated in the same way. The protein partners were incubated for 30 min at room temperature. Beads loaded with proteins were washed three times with the binding buffer. Proteins were eluted by boiling in Laemmli loading buffer. Protein fractions were resolved by SDS-PAGE on 15% polyacrylamide gels and visualized by Coomassie staining.

Isothermal Titration Calorimetry

Binding of purified Snu13p and synthetic Rsa1p₂₃₈₋₂₅₉ was measured at 20°C in 10 mM NaPi, pH 5.6, 150 mM NaCl on a VP-ITC microcalorimeter (Microcal) with a cell volume of 1.4228 mL. 28 injections of 10 μ L peptide solution (1.4 mM in the needle) were performed into 130 μ M of protein in the chamber. The syringe speed was set at 300 rpm and a 200 s

delay time was maintained between each injection. After subtraction of dilution heats, calorimetric data were analyzed using a non-linear least square curve fitting algorithm provided by the manufacturing (Origin version 7) with four parameters: stoichiometry (n), association constant (K_a), variation in enthalpy (Δ H), and in entropy (Δ S). Gibbs free energy (Δ G) was calculated by using Gibbs free energy equation (Δ H-T Δ S).

SUPPLEMENTARY FIGURES (S1-S4)

Figure S1. GST-pull down experiments. A His6-tagged version of the conserved peptide $Rsa1p_{230-366}$ within the yeast Ras1p protein was over-expressed and purified in *E. coli*. It was assayed for binding to the indicated recombinant GST fusions. The gel was stained with Coomassie blue.

Figure S2. The PEP sequences. Multiple amino acid sequence alignments were constructed using CLUSTALW. Numbering corresponds to residues of the *S. cerevisiae* Rsa1p protein. Identical and similar residues are highlighted in dark and light grey respectively.

				Sequenc NMR and	e of Rsa1p used for docking experiments	5
			238	<		→ ²⁵⁹
			230	240	250	260
			$ \cdot \cdot \cdot \cdot \cdot \cdot$	$\cdot \cdot \mid \cdot \cdot \cdot \cdot$		
S.	cerevisiae	(230-266)	PG-TSIALI	TDEDVKK	WREERKKMWLLKIS	NNKQKHMQ
C.	glabrata	(205-241)	PG-TSISLE	TEEDIKK	WKDERRKMWLLRIS	NNKKEHME
H.	sapiens	(223-260)	PGMKKIKLD	TPEEIAR	WREERRKNYPTLAN	IERKKKLK
М.	musculus	(214-251)	PGMKKIKLD	TPEEIAR	WREERRKNYPTLAN	IERKKKLQ
Х.	laevis	(151-188)	PGAKRIKLD	TPEEIAK	WREERRKNFPTLAN	IAKKQQLQ
D.	melanogaster	(133-172)	TYVKVKKVW	SEEELAA	WRAERRKKFPTAAN	VELARLAK
A.	gambiae	(143-182)	GCTKDTIGP	SAEEIEQ	WKEERRKRYPTKQN	VILRQQAQ
A.	thaliana	(250-287)	KKRSYALMY	TPREVQQ	WREARRKNYPTKFL	VEKKVKKN

Figure S3. Results of the isothermal titration calorimetry experiment performed between Snu13p and the synthetic Rsa1p₂₃₈₋₂₅₉ peptide at 20°C. N, Δ H, Δ S and Kd values depict respectively the site number, the enthalpy, the entropy and the dissociation constant of the system. Top panel: Heat values measured from 28 injections of 10 µL of a 1.4 mM peptide solution into the 1.4288 mL chamber containing 130 µM of Snu13p. Bottom panel: Non-linear least-square fit (using one set of sites model) of the integrated heat data from the top panel as a function of molar ratio.

Figure S4. NOE connectivities for amide proton amide (N), alpha (α) and beta (β) protons of Rsa1p₂₃₈₋₂₅₉. The NOE intensities are represented by lines with different thicknesses; the intensities of the lines reflect the intensities of the connectivities.

SUPPLEMENTARY TABLES (S1-S2)

Restraints	number	
Distance restraints		
total of distance restraints	439	
intra	133	
short	149	
medium	157	
Dihedral angles		
Ψ	20	
Φ	20	
X_1	4	
CNS Violation	Occurrence	
dihedral violation> 5 degrees	0	
Ramachandran statistics (PROCHECK-NMR)		
residues in the most favorable region (%)	99.5	
residues in additionally allowed regions (%)	0.5	
residues in generously allowed regions (%)	0	
residues in disallowed regions (%)	0	
Atoms (residues 3 to 20)	rmsd (Å)	
backbone	0.47 ± 0.14	
heavy	1.17 ± 0.22	

Table S1. NMR-Derived Geometrical Restraints and Structural Statistics of Rsa1p₂₃₈₋₂₅₉.

Table S2. Analysis of the NAMD trajectory calculated on the Snu13p/Rsa1p₂₃₈₋₂₅₉ 3D model.

(A) Backbone RMSD calculated along the trajectory. The reference structure was the previously structure coming from haddock. (B) Mean distance between $Rsa1p_{238-259}$ and Snu13p atoms along the trajectory. (C) Salt bridges analysis between $Rsa1p_{238-359} R_{249}$ and K_{250} residues and $Snu13p E_{72}$ and D_{73} residues. A cut-off of 3.8 Å between acceptor and donor atoms has been defined to evaluate the time occupancy of the salt bridges.

Rsa1p ₂₃₈₋₂₅₉	Snu13p	Time occupancy
R249	E72	91.4 %
K250	D73	98.6 %