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ABSTRACT A mathematical model of the periodic, rip-
pled PpB phase of phosphatidylcholine is described. In this
model the Ppl phase shows a periodic variation in membrane
properties corresponding to a lateral periodic variation be-
tween fluid-like and crystal-like states. The model is based on
a curvature-dependent Landau-de Gennes free-energy func-
tional. Our proposed form of the curvature-dependent free en-
ergy remedies a subtle mathematical flaw in an earlier model
having similar physical content [Falkovitz, M. F., Seul, M.,
Frisch, H. L. & McConnell, H. M. (1982) Proc. NatW. Acad.
Sci. USA 79, 3918-3921].

There have been numerous experimental and theoretical
studies of the rippled (Pa,) phase of phosphatidylcholine bi-
layers. Leading references to relevant literature can be
found in a recent communication by Parsegian (1). See also
Nagle (2). This thermodynamic phase is observed over mod-
erate temperature ranges (10-30'C) for a number of phospha-
tidylcholines, and is of special interest because it shows
long-range, long-wavelength ("200-300 A) periodic struc-
tures (1-3). At higher temperatures, the rippled phase under-
goes a first-order phase transition to a fluid, flat membrane
(La phase). At lower temperatures, the rippled phase under-
goes a first-order phase transition to a crystalline, flat phase,
L,3. The rippled phase is thus a thermodynamically stable
phase intermediate between the solid Lo phase and the fluid
La phase.

In previous work it has been suggested that this periodic
structure of the Pa, phase reflects a periodic variation be-
tween a solid-like and a fluid-like structure together in a sin-
gle thermodynamic phase (4). As pointed out to one of us
(H.M.M.) by G. Kirk and S. M. Gruner and by J. Nagle and
S. M. Bhattacharjee, the model previously employed to de-
scribe this intermediate phase contains a mathematical flaw.
A model of the Pa, phase proposed by Doniach has a similar
difficulty (5). In both cases a low-amplitude, high-spatial-fre-
quency "sawtooth" solution is mathematically acceptable
but physically unreasonable. Such unrealistic solutions can,
of course, be eliminated by including higher-order deriva-
tives in the free energy function. The purpose of the present
paper is to provide such an improved Landau-de Gennes
free energy expression that yields a rippled intermediate
thermodynamic phase with physical properties similar in es-
sential respects to those that have been suggested earlier (4).

LANDAU-DE GENNES FREE ENERGY
We employ the following expression for the free energy (per
unit area) of bilayer membrane

where

Go= 1/2(Tt2 - 2t3 + t4)
G==/2(t",)2 + att".

[2]

[3]
Here, t is an order parameter that describes the membrane
thickness, specifically,

t= (d - df)/(d, - df), [4]
where d is the thickness of the membrane at the rescaled
dimensionless temperature T, and df and d, are the thick-
nesses of the fluid and solid membrane phases, respectively,
at T = 1. This thickness parameter is numerically nearly
equal to the lipid area order parameter that has been dis-
cussed elsewhere (4, 6, 7).
The function Go(t) is the free energy per unit area of a

membrane with uniform thickness. Go has two minima: t = 0
corresponding to a thinner fluid phase, and t = [3 + (9 -
8T)/V]/4 corresponding to a thicker solid phase. The transi-
tion between these two phases, as predicted by Go alone,
takes place at T = 1 and is first order, The quantity G1 is a
curvature-dependent correction to Go. In this expression,
primes denote differentiation with respect to position x. We
consider only one-dimensional spatial variations of t(x); and,
for present purposes, we shall ignore the difference between
curvature and t". With a > 0, G, is the simplest mathematical
expression coupling membrane thickness to membrane cur-
vature. This term favors negative curvature (t" < 0) for t > 0,
positive curvature for t < 0, and a flat surface for t = 0. A
more physically intuitive interpretation of G, will be present-
ed in Discussion.
Our problem is to determine the variation of thickness

with position t = t(x) such that the following expression is a
minimum.

G{t} = 1i Gdx
L [5]

Here L is a suitably large distance in the plane of the mem-
brane. As described above, there are two local minima with t
= constant. As a first approximation, we seek a third local
minimum using the following trial function.

t(x) = A + B cos kx. [6]

Numerically, we find that, for a > 0.335 and for a limited a-
dependent temperature range, the rippled phase provides an
absolute minimum. For this phase, k2 = a, and the amplitude
of the ripple is given by

A = '/2 + {sgn(r)}{(3jqj)'/2 sin['/3tan-'(q3/r2 + 1)'/2]
G = Go + Gi, [1] (Iq )'/2 cos[1/3tan-'(q3/ + 1)1/2]}

B = (4/3[(a2 - T)/2 + 3A - 3A2])/2
q = (2T - 4a2 - 3)/60
r = (T- 1)/40.
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The membrane thickness t(x) calculated by using the trial
function Eq. 6 is shown in Fig. 1 for a = 0.4.
To find the exact periodic local minima of Eq. 5, we have

solved numerically the Euler-Lagrange equation corre-
sponding'to Eq. 5,

Tt - 3t2 + 2t3 + 2at" + f"' = 0. [9]

Two numerical techniques have been used, a shooting
scheme and an implicit relaxation scheme. Both methods
give identical results, which are surprisingly close to those
obtained with the trial function Eq. 6. A comparison of the
exact t(x) with the trial t(x) is given in Fig. 1. Plots of the free
energy vs. temperature are giyen in Fig. 2 for various values
of the coupling constant a. Note that the range of tempera-
ture in which there is rippling increases with the coupling
constant. Results obtained with the trial function and exact
function are the same to within 10%.

Plots of ripple amplitude vs. temperature are shown in Fig.
3. It will be seen that increasing the coupling parameter a
increases the ripple amplitude. There is also a temperature
dependence of this amplitude, such that the amplitude al-
ways decreases with increasing temperature.

DISCUSSION
The molecular origin of the curvature-dependent free energy
G1 can be made plausible, as follows. Rewrite G1 in the form

G - 1/2(t + at)2 - 1/2a2t2 [10]

and note that the last term can be combined with Go by rede-
fining Tto be T- a2. Thus, G1 is effectively a nonnegative
energy that favors t" = -at.' In the crystalline Lo phase,
where t 1, the. hydrocarbon chains of the phospholipids are
fully extended (8, 9), and the projected area of each choline
head group can, depending' on the assumed configuration,
exceed that of the two chains. Thus there may be a tendency
of the'headgroup region to "splay" (t" -a < 0). [Similar
effects are shape-determining factors for detergent micelles
(10).] In the fluid phase of the bilayer, where t 0, the pro-
jected area of the hydrocarbon chains is larger and, in the
limit of a thin membrane, must exceed the projected area of
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FIG. 1. Membrane thickness parameters t(x). The two periodic
variations shown correspond to the A + B cos kx trial function (---)
and the exact solution to Euler-Lagrange Eq. 9 (-).
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FIG. 2. Calculated free energy G per unit area of membrane. The
heavy line to the left of the figure (lower temperatures) gives the
calculated free energy of the flat solid bilayer phase, and the heavy
line to the right of the figure gives the free energy of the flat fluid
bilayer phase. The thin lines corresponding to different values of the
coupling parameter give the free energy of the rippled intermediate
phase.

the choline head groups. In this case the membrane surface
will tend to be flat (" 0) or perhaps to splay in the opposite
direction (t" positive) (analogous to an inverted micelle
shape) (10). The idea that the shape of amphiphilic molecules
affects membrane curvature is broadly recognized. Here we
emphasize the fact that the "shape" of a chain-containing
molecule changes at a chain melting phase transition.
The intermediate rippled phase predicted by our model oc-

curs for temperatures near T = 1, where neither the solid nor
the liquid phase is overwhelmingly most favorable energeti-
cally. Under these conditions, the curvature effect described
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FIG. 3. Ripple amplitude as a function of the reduced tempera-
ture T for different values of the coupling parameter a. The plots
show that the ripple amplitude decreases with increasing tempera-
ture for a given value of the coupling parameter a.

6560 Chemistry: Marder et al.



Proc. NatL. Acad. Sci. USA 81 (1984) 6561

above makes it energetically favorable for the surface of the
membrane to curve inward in solid-like regions and, corre-
spondingly, outward in liquid-like regions. The result is a pe-
riodic variation in membrane thickness and, presumably, a
corresponding periodic variation in membrane "fluidity."
Some quantitative features of our model should not be tak-

en literally. For example, as discussed previously, if the free
energy function we have used for the bilayer is applied to a
monolayer, and a 180° phase shift is made between the thick-
ness variations on the two halves of a bilayer, then the peri-
odic variation of membrane thickness is converted into a
periodic corrugation, or undulation of a membrane of ap-
proximately constant thickness. There remains a lateral sol-
id-fluid periodic variation, but this has opposite phase on the
two sides of the bilayer. See figure 3 of ref. 4. The nearly
pure cosine-like variation of membrane fluidity required for
validity of the latter picture is consistent with our calcula-
tions but may be the result of our specially simple choice of
the curvature energy G1.

In view of the observed 4.2-A x-ray reflection (8, 9), there

is no doubt that some of the hydrocarbon chains in the P,
phase are packed in crystalline arrays. The main question
concerning the validity of the model is the degree to which
some of the lipids in the P, phase are in a fluid-like state. We
would consider the model as not applicable to the P,3 phase
if all the hydrocarbon chains in this bilayer phase were trans
and extended perpendicular to the bilayer plane, as is pro-
posed in most models of the P, phase (9, 11-15). At the pres-
ent time neither the x-ray diffraction data nor the magnetic
resonance data appear to us to prove or disprove our model.
Raman spectroscopic determinations of the proportion of
gauche vs. trans bonds may provide a critical test of the
model. The available Raman data do indicate that gauche
bonds are present in the P13 phase with about 1 gauche con-

former per chain on the average (16-18). This could be inter-
preted as 2 gauche conformers on some chains, and no

gauche conformers per chain on other chains. This is cer-

tainly the right order of magnitude expected for our model.
For a recent review of relevant physical data on bilayers, see
Marsh (19).

In conclusion, it is interesting to consider the temperature
at which the phases Pp and La coexist. On the basis of the
Gibbs phase rule one would not expect the fluid La to "in-
vade" or mix with the putative fluid regions of the P13 phase.
However, there is compelling evidence that a two-dimen-
sional liquid mixture of cholesterol and phosphatidylcholine
does invade the P13 phase, separating the crystalline 200-A
domains into parallel regions separated in a regular way by
larger regions of the fluid mixture (20, 21). This interesting

phenomenon demonstrates that narrow 200-A strips (ripples)
of crystalline phospholipid can coexist with the fluid state of
lipids.
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