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ABSTRACT An introductory analysis is provided for the
two-phase macroscopic kinetic model of the end of a microtu-
bule. Some general relations are derived for one end of a very
long microtubule in solution but the main results refer to the
steady-state properties of microtubules grown on nucleated
sites, as in the experiments of Mitchison and Kirschner
[Mitchison, T. & Kirschner, M. W. (1984) Nature (London),
in press]. The two-phase model makes it possible to under-
stand qualitatively how long microtubules can grow well below
the critical concentration and also how grown microtubules
can rapidly disappear from a nucleated site by shortening fol-
lowing a phase change.

This paper presents some introductory analytical results re-
lating to the existence of two different "phases" on the end
of a microtubule (MT) (or actin filament): the MT end may
be capped with GTP (the growing phase) or not capped (the
shortening phase). An introduction to this subject is provid-
ed by ref. 1, which in turn is related to the recent experimen-
tal work of Mitchison and Kirschner (2, 3). For background
and comparison, we begin with a few results from the much
simpler theory, some of it well known, for an equilibrium or
conventional steady-state (4) polymer.

Aggregation of a Conventional Polymer on a Nucleated Site

Consider the simple kinetic scheme in Fig. la for the aggre-
gation of a polymer onto a nucleated site (Fig. lb). The poly-
mer size is m and Pm is the probability of size m; PO is the
probability of an empty site. Both X and A' are first-order
rate constants; A = X*c, where c is the free monomer con-
centration. In an equilibrium polymer, the X,X' processes are
true inverses of each other; in a steady-state polymer (4), for
example Fig. 1c, the on (A) and off (A') processes are not
inverses of each other. However, the same kinetic scheme
can be used for both cases. There is no problem in making
the first on rate constant (for 0 -O 1) different from the other
on constants (5), but we do not bother with this complication
here. At steady state (or equilibrium), from Fig. la,

P1 = (X/X')P0, P2 = (X/X')2Po, etc. [1]

There is a finite attached polymer when A < A'. When A =
K', the polymer becomes infinitely long. When K > A', the
polymer grows at the rate J = A - A'. The concentration at
which A becomes equal to A' is the critical concentration c.:
X*co = K'. Hence, K/K' in Eq. 1 is c/c,. From Eq. 1, we find
that
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FIG. 1. (a and b) Models for aggregation of a simple polymer on
a nucleated site. (c) Details of NTPase activity at the tip of a steady-
state polymer.

where m- is the mean size of polymers with m ¢ 1. The mean
polymer size becomes large only when c/co is very close to
unity; m -X when c -* co.

If we define Pocc as the probability that the site is occupied
by a polymer of size larger than mo (i.e., m > mo), then, from
Eq. 2,

Po.c = (c/coY)°"1. [3]

This quantity is of interest if, for example, it takes a polymer
of size greater than mo to be detected visually (by electron
microscope, say). A numerical example is shown in the low-
er right-hand corner of Fig. 2, where we have chosen (see
below) co = 2.432 gM and mo = 100. Both m and Pocc rise
very steeply near c = co but are very small otherwise. These
conventional curves, together with the c/co line in the fig-
ure, are very different from the corresponding two-phase
curves discussed below.

Transient at c Near c.. If, at t = 0, we start with a large
ensemble of attached polymers (as in Fig. lb), all with m =
m*, and if c is held constant and close to co (c < co) so that
large values of m predominate in the steady-state finally
reached, then how does P(m), treated as a continuous vari-
able, evolve with time (starting from the 8 function at m =
m*)? There is diffusion in the space of Fig. la, with "reflec-
tion" at the origin. The differential equation in P is

ap a2p aP
-= D --J [4]at am2 am

D--(A + K')/2, J=A-XI =K*c-X',

Abbreviation: MT, microtubule.
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FIG. 2. The two curves in the lower-right corner and the c/co line relate to Eqs. 2 and 3 for a simple polymer (Fig. 1), with mo = 100 and co =
2.432 AM. The remaining curves in the figure relate to a numerical example of a two-phase attached polymer, cases I and II (Eqs. 35-54).

where D is the diffusion coefficient and J < 0 is the mean
subunit flux. The solution is (6)

P(M, t; m*) = 2( D-)l/2texP[- M*- j)2

polymers have m 2. The two polymer ends are designated
a and f3; the off rate constants at the two ends are Xa and Xj3.
At the critical concentration, the total on rate is equal to the
total off rate, X,, + MX3. The diffusion equation in this case
(with zero net subunit flux) is

+ xp
4m*Jt 4Dt+ m* jt)2}J)p4Dt ]

-D ( (2Dt) 1/2 )e mX

where

sp(x) (2zf)1/2 f eY2/2dy.

At steady state (t -> xc),

P(m, oa; m*) = -(J/D)eJmID.

ap 82p
= D D=Xf + XI3.at am2' ~ a [9]

This is one-dimensional diffusion with "absorption" essen-
[6] tially at the origin m = 0 (m is generally large). Polymer mol-

ecules that shorten to disappearance put monomers into so-
lution that contribute to the lengthening of the surviving
polymers; the free monomer concentration remains constant
at the critical concentration (see below).

[7] The length distribution at t is (see equation 24 in ref. 7)

P(M, t;m*)f (M M*)2 1
P~mt; m) =2(7TDt)/2~eP 4Dt

[8]

This agrees with Eq. 2 when c is close to co (mi large).
If there is a distribution in m* at t = 0, Eq. 6 is simply

averaged over this distribution at any t. Note that Eq. 8 is
independent of m*. Equations 4-8 are related to dilution ex-
periments (already grown polymers are suddenly switched to
a free monomer concentration c).

Rearrangement of Length Distribution in Solution

Suppose, at t = 0, we have an ensemble of equilibrium or
conventional steady-state (4) polymer molecules of length
m* in solution at the critical concentration for the two-ended
polymer molecules. As time passes, the polymer length dis-
tribution P(m) spreads from the 8 function at m = m*. Some
polymers will shorten until disappearance. We assume no
homogeneous nucleation of new polymers on the time scale
considered here. The kinetic scheme is shown in Fig. 3;

[ (m + m*)2
-exp 4Dt [10]

The fraction of surviving polymer molecules at t is then
found to be

Px m*/(2Dr)l'

p(t; m*) = Pdm = 1 |L -x22Dd
o(2r -m*/(2Dt)l- [11]

This function starts (t = 0) at unity and, after a lag period

XIy+X'1 X',+X,c- 2 :e::AO-OF~~ 4

Xa+-/3 X4 +Xo
4 . ...

&aY+);:

FIG. 3. Model for a two-ended (a and /3) simple polymer in solu-
tion at the critical concentration. The polymer disappears as a con-
sequence of the final transition on the left.
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that depends on m*, falls eventually to zero as t .oo The
total amount of polymer (and hence free monomer) remains
constant:

J mPdm = m*. [12]

If there is a distribution in m* (which can have the effect of
reducing the lag), one simply averages p, above, over this
distribution. For example, for a flat initial distribution in the
range 0 < m* < mmax,

p(t; m*)dm*. [13]~()= 1 IMimax
Mnmax0

The above equations have been applied by Carlier et al. (8)
to sonicated actin polymers.
While it is appropriate to use rate constants in Fig. la that

are independent of m, this is an approximation for small m
(9, 10) in the case of free polymers in solution (Fig. 3).

One End of a Very Long Two-Phase Polymer

We turn now to the two-phase model introduced in the previ-
ous paper (figure 2 of ref. 1). In this section, some general
introductory relations for one end (either a or f3) of a very
long polymer molecule in solution are derived. The kinetic
scheme is shown in Fig. 4. The variable m counts subunits
added to or lost from only the one end (e.g., we might start,
at t = 0, with m = 0; m can be negative here). The states in
phase 1 (or 2) have probabilities Pm (or Rm). We define fi =
YPm and f2 = YRm, with fi + f2 = 1. Thus, f1 is the fraction
of polymer ends in phase 1, etc. From Fig. 4,

dPm/dt = XPm-i + X'Pm+l + k'Rm- ( + A' + k)Pm [14]

dRm/dt = IARm-i + /.L'Rm+l + kPm- (u + tk' + k')Rm. [15]

Because of the large range in m in cases of interest, the con-
tinuous version of Eqs. 14 and 15 is important:

aP a2P aP- = D1jc - Ji- + k'R - kP
at am2 am

aR a2R aR
at = D2 - J2- + kP - k'R,

R distribution moves to the left (J2 < 0) and spreads (D2); but
this behavior is perturbed by the two distributions leaking
into each other (k, k').
We return now to the more general Eqs. 14 and 15. By

summing these equations over m as they stand, or summing
after multiplying by m or m2, a number of relations are easy
to derive. Direct summation gives

df /dt = k'f2 - kf1, df2/dt = kf1 - k'f2. [19]

The solution, if c is held constant, is

f1(t) = f " + (f g - fT )e-(k+k')t
Jl = k'/(k + k'), f2 = 1 - fl, [20]

where f? and f are the initial and final values of fi.
We define the mean values of m:

R = Lm(Pm + Rm) = film + f2mi2
m

m2 = Z mRm/f2.
m

[21]

[22]

The latter are the means in the separate phases. On multiply-
ing Eqs. 14 and 15 by m and summing, we find

dI/dt = f1J, + f2J2-J [23]
dini1/dt = J1 + (k'f2/f1)(m2 - ml) [24]
dmii2/dt = J2 + (kf1/f2)WR1 - in2). [25]

If f1 and f2 have reached their steady-state values (Eq.
20), Eq. 23 becomes

dt k'1 + kJ2 [26]

as in equations 4 and 5 of ref. 1. J is now a constant and m =
Jt + Oi. Also, in Eqs. 24 and 25,

[16]
k'f2/f1 -> k, kf1/f2 ---k'. [27]

[17] At large t, both Th and Wi2 behave like m (above) and main-
tain a constant difference:

where ml - M2 --> (J - J2)1(k + k'). [28]

J1= A-A', J2 = A-1 A- D1 = (A + K')/2, The variance in m, and related quantities, is defined by
D2 = (ju + /')/2. [18]

Eqs. 16 and 17 (compare Eq. 4) are one-dimensional diffu-
sion equations in P and R with added terms arising from
phase changes (k, k'). The center of the P distribution moves
to the right in Fig. 4 (J1 > 0) and spreads as it moves (D1); the

(Pm)

Phase 1 (cap) ... * m-1 < m ± m+ii

k k' K k tk' k'kk' K

Phase 2(no cap) ... rn-i M'1A At Al

(Rm)

FIG. 4. Kinetic scheme for one end of a very long two-phase
polymer in solution.

2 = 2 -2inm i, a2 = 2 2m2= m - i1,

1 = Zm2Pm/fi,
m

2 I2 -20,2 = in2 - in2

2= Z Pm2Rm/f2
m [29]

m' = flmjl + f2m2

a2 = f102 + f2c2 + flf2(Rl - mi2).

Then, on multiplying Eqs. 14 and 15 by mi2 and summing
over m, we derive

do,2/dt - 2[flD1 + f2D2 + flf2(J1 - J2)(!R1 - in2)] [30]
dao/dt = 21J1 + (k'f2/f1)[4(r -21 + (ml - 7Mi2)] [31]

do2/dt = 2D2 + (kf1/f2)[O 1- O2 + (mil - mi2)]. [32]
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Two-Phase Polymer on a Nucleated Site

A centrosome or axoneme presents nucleated sites on which
MTs can grow (2, 3). The two-phase model applied to any
one of these MTs has the kinetic diagram (figure 5 of ref. 1)
shown in Fig. 5. State 0 is the empty site. The polymer size is
m, with probabilities Pm (phase 1) and Rm (phase 2). Growth
can be initiated (m = 0 -- 1) only in the growing phase
(capped; phase 1). Eq. 14 still applies for m - 1 and Eq. 15
applies for m : 2. The other needed relations for the analysis
of Fig. 5 are

J1 1 -
1 2 -1 Phase 1

0 kktk'

>J 1 * 2 - Phase 2
-J2 J2

J1=X-X, J2=-A'
FIG. 6. Simplified version of Fig. 5 in which composite Js are

used. This is referred to as case I in the text.

dPo/dt = X'Pi + ATR1 - XPo [33]
dR1/dt = u'R2 + kPj - (.t + i' + k')Rl. [34]

The differential equations 16 and 17 are also pertinent for
large nucleated polymers; there is reflection into phase 1 at
the origin (m = 0). However, we confine ourselves in this
paper to a discussion of the steady-state (t = 00) solution of
Eqs. 14, 15, 33, and 34; that is, we put all dPm/dt = 0 and
dRm/dt = 0. The subunit flux is zero.
Because k and k' in Fig. 5, in cases of interest here, are

small compared with the other rate constants (1), the steady-
state solution is hardly affected (see below) if we replace
X,X' by the unidirectional composite J1 and/or ,u,,' by the
composite -J2, as shown in Fig. 6. Both J1 and -J2 are posi-
tive. The model in Fig. 6 is especially useful because its
mathematical properties are so simple. (In practice, it may
not be possible to decompose J2 into au and ,u' in any case.)
We discuss and compare four cases below (the first three
prove to be slight approximations to the fourth):

I. In Fig. 5, A' 0, ,u 0, X A*J1, ' J2 (Fig. 6).
II.In Fig. 5, ,uA 0, 4' -J2-

III. In Fig. 5, X' -0, X J1.
IV. Fig. 5, unchanged.
We consider case I first (Fig. 6) and in most detail. The

steady-state solution of Eqs. 14, 15, 33, and 34 is easily
found to be

Pm = POxt, Rm = JiPoxm-l/-J2 [35]

PO = -J2(1 - x)/(J1 - J2) [36]

x a Jj(k' -J2)/-J2(k + J1) [37]

The sum Pm + Rm is the probability of a polymer with m
subunits. The normalization relation is

relatively small in Eq. 37, x is near unity. To illustrate this,
we use the same numerical example (from Monte Carlo
printouts) introduced in figures 3 and 4 of ref. 1. This pro-
vides concentration dependences of all rate constants. The
curve labeled x(I) in Fig. 2 shows x(c) calculated from Eq. 37
for this example. This x is very close to unity over a consid-
erable range in c, unlike the corresponding c/co in the same
figure (for the aggregation of a conventional polymer).
Where x is near 1, Pm and Rm fall off very slowly with in-
creasing m. This was the basis of the approximate argument
in equations 8 and 9 of ref. 1, which provides a qualitative
understanding of the odd behavior of this two-phase model.
In this connection, note that Eq. 37 gives, for k and k' small,

k k'
1 - =JX --

Jl (-J2)' [39]

This is related to equation 9 of ref. 1 (see Eq. 44 below).
The probabilities Pm and Rm converge in Eq. 35 for x < 1.

At x = 1, infinite polymers are formed. This locates the criti-
cal concentration c0. On putting x = 1 in Eq. 37, we find that

k'J1 = k(-J2) at c = c0, [40]

as in ref. 1. Note, from Eq. 26, that J = 0 at c = c0 for the
end of a long polymer molecule in solution (i.e., the same
free end would have the same c0 whether the polymer is at-
tached or not).

Other properties in case I are as follows:

fi = EPm = POX/(l - x)m

f2 = JRm = JlPOl-J2( - X)
m

[41]

[42]

Po + >jPm + >Rm = Po + fl + f2 = 1-
m m

[38]

Note that both Pm and Rm resemble Pm in Eq. 2; x here is
analogous to c/c0 in Eq. 2. However, because k and k' are

fl/f2 = Pm/Rm = (k' - J2)/(k + J1)--J2/J1 [43]
m= 1/(1 -x), - 2)m =mx

POCC = (J1 - J2X)Xmol(Jl - J2) - X'0°1
(Pi) (P2)

1 x- 2 x
X' X'

(R1) (R2)

(P3)

k

x

* ** Phase 1

Ok'
* * Phase 2

i'

(R3)

J1= '-
, J2=/-!L'

FIG. 5. Kinetic scheme for a two-phase polymer aggregating on
a nucleated site. This scheme is referred to as case IV in the text.

[44]

[45]

where _m is the mean size of polymers with m ¢ 1 and Po, is
the probability that m > mo, just as in Eqs. 2 and 3. Also,
note that f 1/f2 in Eq. 43 for the free end of an attached poly-
mer is different (except at c = co) from f /f2 = k'/k for an
end of a very long polymer molecule in solution under steady
conditions (Eq. 20).
The above algebra is still simple if the first on rate con-

stant (0 -- 1) in Fig. 6 differs from the others (J1). But we
omit details.
To illustrate numerically, Fig. 2 includes (for the numeri-

cal example referred to above) m and Pocc (with mo = 100) as
functions of c (co = 2.432 ,uM, from ref. 1). POCC corresponds
to Fig. 4 of Mitchison and Kirschner (2). These curves are
strikingly different from those in the lower-right corner of
Fig. 2 for a conventional nucleated polymer with the same co
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(chosen to facilitate comparison). The two-phase behavior
(with reflection into phase 1 at the origin) allows long but
finite attached aggregates to exist in a range of c above cj(Jj
= 0) but far below c = co. Incidentally, f -1 (phase 1 domi-
nates in the time average) over the whole range of calcula-
tion in Fig. 2 for an attached steady-state polymer (Eq. 43),
because -J2 >> J1, but this is not true of f1 for the corre-
sponding end of a long polymer in solution, at steady state
with respect to the phase transition (see figure 4 of ref. 1 and
Eq. 20 here).
The resemblance of Pocc to Fig. 4 of ref. 2 would be much

closer if a much larger J1(c) had been used. Such a J1(c) was
in fact found by Mitchison and Kirschner (2). Qualitatively,
what the analysis of the model suggests is that, well above c
= c1 and well below co, a nucleated site can, at a slow rate,
grow a long capped MT because k is very small. But when
the phase change (1 -* 2) finally occurs, the uncapped MT
shortens rapidly, quite possibly to disappearance (because k'
is also small). The empty site thus formed can then start the
process over again. The equations above provide the aver-
age steady-state properties of the MT on a site.

Further comments on Fig. 2: x -1/2 when J1 = k (because
k' is very small); mo = 100 was chosen because this approxi-
mate size (for a single helix out of five) is needed for detec-
tion (2, 3); figure 4 of Mitchison and Kirschner (2) does not
reach full saturation at c = co, as Pocc does in Fig. 2, proba-
bly because a true steady state has not yet been reached.
We turn now to case II. This case is important because of

the practical difficulty of separating J2 into ,4 and tt'. Case II
is similar to case I. The main properties are found to be as
follows:

Pm = POxm, Rm = (PO/y)xm (m > 1) [46]

Po = (1 - x)y/(x + y) [47]

fi = xy/(x + y), f2 = Xy/(X + y)y [48]

fl/f2 = Pm/Rm = Y [49]

m = 1/(1 - x), ar2/i2 = x [50]
P = (1 + y)Xmo+l/(x + Y), [51]

where
X'(k' - J2) - J2(k + X) -

-2X'J2

'(k' -J2) + J2(k + X) +

2X'k

\F= [J2(k + X)2 + 2X'J2(X - k)(k' - J2)

+ X'2(k' _ J2)2]/2. [54]

The critical concentration c = co, defined at x = 1, occurs
when -J2k = (X - X')k', as expected (here also J = 0 in Eq.
26). In the numerical example in Fig. 2, the Pocc and mi
curves are unchanged (on this scale), but there is an alter-
ation in x, denoted x(II) in the figure, at low c (where k is no
longer small).

In case III, there is no simple analytical solution and there
is no x variable as above (e.g., in Eq. 46) except asymptoti-
cally for large enough m. However, the Pm and Rm are easy
to calculate successively, starting, say, with P0 1 (normal-
ization is postponed to the end).

In case IV, the successive calculation of the Pm and Rm
cannot be done directly as in case III; an iteration procedure
must be used. Again there is an asymptotic x for large m.

Cases III and IV were compared numerically with cases I
and II in a similar but different example in which empirical
analytical functions were used for all rate constants. Suffice
it to say that, for all practical numerical purposes, in the

[52]

range of c of interest (1.4 - c - co), the four models are
essentially equivalent. The conclusion is that the simple case
I (Fig. 6) is an excellent approximation to case IV (Fig. 5)
and might as well be used for steady states provided that k
and k' are small (x near 1). Case II, as well as case I, might be
important for transients.

Probability of Disappearance of Attached Polymer

If we start with an attached polymer of size m*, in case I
(Fig. 6) above and it is growing (i.e., in phase 1), what is the
probability it will disappear (reach m = 0) after v = 1, 3, 5, ...

phase changes? Omitting details for lack of space, we find
for this probability

=a (ab)e b_* (p + 1)(2o - )!(Am*)P
A A2 p=O (a + 1)!(o -p)!p! [55]

a = k/Jj, b = k'/-J2, A= a+ b, o= (t- 1)/2.

Similarly, if the initial polymer (m*) is shortening (phase 2),
the probability that the polymer will disappear after v = 2, 4,
... phase changes is

(A=( Am*e) bm*> (2o - p)!(Am*)Pp
A~ p=O (cr + 1)!(o' - )P

[56]

where o = (v/2) - 1. For v = 0, the probability is e-bm*
One (good) approximation was made in deriving Eqs. 55

and 56: the number of subunits added (or lost) in time t is
taken to be Jjt (or -J2t), not allowing for fluctuations. This
is equivalent to assuming that, in phase 1 (for example), the
probability that the phase change will occur after N subunits
have been added can be approximated by

(J1+ k)
[57]k k e-kNIJ

VJ1 + k J,
This is accurate if J1 >> k.
The special case m* = 0 in Eq. 55 is especially important:

Qaol =
a (ab' (2o+)! (m* = 0)-
AA2(0, (m*=0).

[58]

For example, in Fig. 2 at c = 1.9 ,uM (where Po,, = 0.441 and
m = 124.0), the probabilities of disappearance of a newly
started (m* = 0) aggregate after 1, 3, 5, ... phase changes are
0.9731 (=f)+), 0.0255, 0.00134, 0.00009, .... Thus, the new
polymer almost always disappears after only one phase
change (1 -- 2)-that is, in the first shortening session. The
values of W4 at c = 1.6 and 2.2 ,uM are 0.9934 and 0.8525,
respectively. At c = co (2.432 ,uM), a = b and il' = 0.50.
The probability of eventual disappearance (:5Q+) can be
shown to be unity if a , b (c - co) and a/b if b > a (c > co).
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