Supplemental Material

Genetic Reduction of VEGFR2 Rescues Aberrant Angiogenesis Caused by Epsin Deficiency

Kandice L. Tessneer,^{1*} Satish Pasula,^{1*} Xiaofeng Cai,¹ Yunzhou Dong,¹ John McManus,¹ Xiaolei Liu,^{1,2} Lili Yu,¹ Scott Hahn,¹ Baojun Chang,¹ Yiyuan Chen,¹ Courtney Griffin,^{1,3} Lijun Xia,^{1,2} Ralf H. Adams⁴ and Hong Chen^{1,2}

¹ Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA

² Biochemistry and Molecular Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA

³ Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA

⁴ Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Münster, Germany

*Contributed equal authorship

Running Title: Reducing VEGFR2 Corrects Abnormal Angiogenesis

Correspondence should be addressed to:

Hong Chen Cardiovascular Biology Research Program, MS 45 Oklahoma Medical Research Foundation 825 NE 13th Street Oklahoma City, OK 73104 Office: 405-271-2750 Fax: 405-271-3137 hong-chen@omrf.org

Keywords: Epsin, VEGFR2, Angiogenesis

Total Supplemental Figures: 5

Supplemental Figure Legend

Supplemental Figure I. Generation of EC-DKO, EC-iDKO and EC-iDKO-Flk^{fl/+} **mice. A**, Diagram shows homologous recombination of the floxed gene-targeting vector at the *Epn1* locus. **B**, Strategy to generate constitutive endothelial cell-specific epsin DKO (EC-DKO) mice by crossing *Epn1*^{fl/fl;} *Epn2*-/- mice with *Tie2 Cre deleter* mice. **C**, Strategy to generate tamoxifen inducible endothelial cell-specific epsin DKO (EC-iDKO) mice by crossing *Epn1*^{fl/fl;} *Epn2*-/- mice with *iCDH5 Cre deleter* mice. **D**, Strategy to generate *Epn1*^{fl/fl;} *Epn2*-/- mice with *iCDH5 Cre deleter* mice. **D**, Strategy to generate *Epn1*^{fl/fl;} *Epn2*-/- mice with *iCDH5 Cre deleter* mice. **D**, Strategy to generate inducible endothelial cell-specific epsin DKO (EC-iDKO) mice by crossing *Epn1*^{fl/fl;} *Epn2*-/- mice with *Flk*^{fl/+} mice. **E**, Strategy to generate inducible endothelial cell-specific epsin DKO, VEGFR2 heterozygous (EC-DKO-Flk^{fl/+}) mice by crossing the *Epn1*^{fl/fl;} *Epn2*-/-; *Flk*^{fl/+} mice with *iCDH5 Cre deleter* mice.

Supplemental Figure II. Epsin deficiency promotes VEGF-dependent *in vivo* angiogenesis. A, CD31 immunostaining of intestine of E18 WT or EC-iDKO embryos. Scale bars:100 μ m. B, CD31-positive surface area in A was quantified by SlideBook software. Error bars indicate the mean \pm s.e.m. n > 5, *p < 0.05.

Supplemental Figure III. Epsin deficiency impairs internalization and colocalization of phosphorylated VEGFR2 to EEA1 endosomes. WT or DKO MECs stimulated with 50 ng/mL VEGF-A for 0, 1 and 10 min were fixed and stained using the specified antibodies. Scale bar: 10 μm.

Supplemental Figure IV. Genetic reduction of VEGFR2 expression rescues proliferation caused by epsin deletion. Quantification of *in vivo* BrdU incorporation in intestines isolated from BrdU injected WT, EC-iDKO, or EC-iDKO-Flk^{fl/+} mice shown in Figure 3E. Error bars indicate the mean <u>+</u> s.e.m. n > 5, *p <0.05.

Supplemental Figure V. Genetic reduction of VEGFR2 expression rescues *in vitro* angiogenesis caused by epsin deletion. Quantification of specified immunoblots of whole cell lysates from WT, DKO or DKO-Flk^{fl/+} MECs stimulated with 50 ng/mL VEGF-A shown in Figure 4A. Error bars indicate the mean <u>+</u> s.e.m. n > 5, *p <0.05.

Supplemental Figure I

Supplemental Figure II

Supplemental Figure III

