

SUPPLEMENTARY ONLINE DATA

Complex between $\alpha\text{-bungarotoxin}$ and an $\alpha7$ nicotinic receptor ligand-binding domain chimaera

Sun HUANG*1, Shu-Xing LI†1, Nina BREN*, Kevin CHENG†, Ryan GOMOTO†, Lin CHEN†‡2,3 and Steven M. SINE*§2,3

*Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55902, U.S.A., †Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089-2910, U.S.A., ‡Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, U.S.A., and §Department of Neurology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55902, U.S.A.

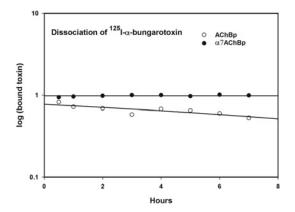


Figure S1 Dissociation of 125 l-labelled α -btx from the α 7/AChBP chimaera and AChBP

Dissociation of 125 l-labelled α -btx bound to either the α 7/AChBP chimaera or AChBP bound to an anti-FLAG M2 agarose affinity gel as described in the Experimental section of the main text.

Table S1 Inter-residue contacts between α -btx and the α 7/AChBP chimaera

Inter-residue contacts were calculated using CNS with a 4.5 Å distance cut-off.

(a) Interacting residue pairs between α -btx and the α 7/AChBP chimaera principal subunit

lpha7/AChBP principal subunit	lpha-btx	
Tyr ⁹¹	Phe ³²	
Tyr ⁹¹	Arg ³⁶	
Trp ¹⁴⁵	Phe ³²	
Arg ¹⁵⁰	Ser ⁹	
Arg ¹⁵⁰	Pro ¹⁰	
Glu ¹⁸¹	Ser ⁹	
Arg ¹⁸²	Asp ³⁰	
Arg ¹⁸²	Val ³⁹	
Phe ¹⁸³	Thr6	
Phe ¹⁸³	Ser ⁹	
Phe ¹⁸³	lle ¹¹	
Phe ¹⁸³	Val ⁴⁰	
Tvr ¹⁸⁴	Asp ³⁰	
Tvr ¹⁸⁴	Phe ³²	
Tyr ¹⁸⁴	Arg ³⁶	
Tvr ¹⁸⁴	Val ³⁹	
Glu ¹⁸⁵	Met ²⁷	
Glu ¹⁸⁵	Lys ³⁸	
Glu ¹⁸⁵	Val ⁴⁰	
Glu ¹⁸⁵	Pro ⁶⁹	
Cys ¹⁸⁶	Lys ⁷⁰	
Lvs ¹⁸⁸	Ile ¹¹	
Lys ¹⁸⁸	His ⁶⁸	
Lvs ¹⁸⁸	Lys ⁷⁰	
Lys ¹⁸⁸	Gln ⁷¹	
Pro ¹⁹⁰	Ser ⁹	
Tyr ¹⁹¹	Arg ³⁶	

(b) Interacting residue pairs between α -btx and the α 7/AChBP chimaera complementary subunit

lpha7/AChBP complementary subunit	lpha-btx
Ser ³²	Ser ³⁴
Ser ³⁴	Ser ³⁴
Leu ³⁶	Val ³¹
Trp ⁵³	Val ³¹
Trp ⁵³	Phe ³²
Gĺn ⁵⁵	Ser ³⁵
GIn ¹¹⁴	Ser ³⁵
Leu ¹¹⁶	Ser ³⁴
Leu ¹¹⁶	Ser ³⁵
Asp ¹⁶⁰	Cys ²⁹
Asp ¹⁶⁰	Ser ³⁴

The structural co-ordinates reported will appear in the PDB under accession code 4HQP.

¹ These authors contributed equally to this work.

² These authors are co-senior authors.

³ Correspondence may be addressed to either of these authors (email linchen@usc.edu or sine@mayo.edu).

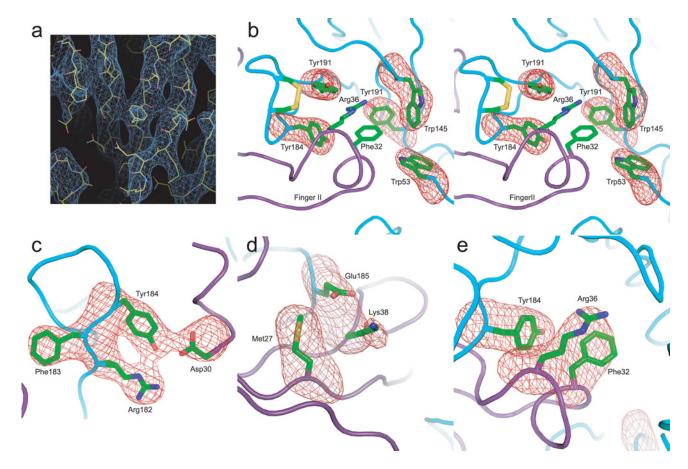


Figure S2 Representative regions of the α 7/AChBP chimaera- α -btx structure showing well-defined electron density

(a) Part of the $2F_0-F_c$ electron density map. (b) Stereo view of the simulated annealing omit map calculated for the ligand-binding site residues contoured at the $4.0~\sigma$ level. (c) Simulated annealing omit map calculated for Arg¹⁸², Phe¹⁸³ and Tyr¹⁸⁴ from the α 7/AChBP chimaera and Asp³⁰ from α -btx contoured at the $4.0~\sigma$ level. (d) Simulated annealing omit map calculated for Glu¹⁸⁵ from the α 7/AChBP chimaera and Met²⁷ and Lys³⁸ from α -btx contoured at the $4.0~\sigma$ level. (e) Simulated annealing omit map calculated for Tyr¹⁸⁴ from the α 7/AChBP chimaera and Phe³² and Arg³⁶ from α -btx contoured at the $4.0~\sigma$ level.

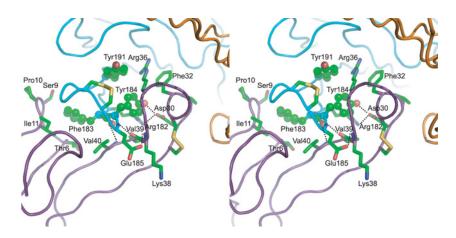


Figure S3 Stereo view of the interaction network surrounding loop C (cyan)

 α -btx is in purple, the principal subunit in cyan and the complementary subunit in orange. Residues Phe¹⁸³, Tyr¹⁸⁴ and Tyr¹⁹¹ are shown as spheres, and hydrogen bonds as dotted lines.

Received 7 May 2013/24 June 2013; accepted 26 June 2013 Published as BJ Immediate Publication 26 June 2013, doi:10.1042/BJ20130636