Supporting Information for DiME: A scalable disease module identification algorithm with application to glioma progression Yunpeng Liu¹, Daniel A. Tennant², Zexuan Zhu⁴, John K. Heath³, Xin Yao¹, Shan He^{1,3*} 1 School of Computer Science, University of Birmingham, Birmingham, UK

2 School of Cancer Sciences, University of Birmingham, Birmingham, UK

3 Centre for Systems Biology, School of Biological Sciences, University of Birmingham, Birmingham, UK

4 College of Computer Science and Software Engineering, Shenzhen University, China

* E-mail: s.he@cs.bham.ac.uk

The B-score Algorithm Pseudo-code

```
Algorithm 1 The B-score Algorithm
```

```
1: function BSCORE(module C)
          t \leftarrow 0, C_0 \leftarrow C, B_0 \leftarrow \emptyset, n_C \leftarrow |C|
 2:
          while t < n_C - 1 do
 3:
               for each i \in C_t do
 4:
                    Calculate p_i as p_i = \sum_{q=k^{int}}^{k_i} f(q|C)
 5:
 6:
               end for
               w_{t+1} \leftarrow vertex in C_t with highest p_i
 7:
               w_{t+2} \leftarrow vertex in C_t with second highest p_i
 8:
               B_{t+1} \leftarrow B_t \bigcup \{w_{t+1}\}, C_{t+1} \leftarrow C_t \setminus \{w_{t+1}\}
 9:
               Recalculate p values for all nodes currently in B_{t+1}
10:
               p_l \leftarrow \text{lowest } p \text{ value of vertices in } B_{t+1}
11:
12:
               if p_{w_{t+2}} > p_l then
                    \operatorname{swap}(p_{w_{t+2}}, p_l)
13:
               end if
14:
               Compute Pr(\langle S_{t+1} | C_{t+1}, B_{t+1}, p_{w_{t+2}}), where S_{t+1} = \sum_{i \in B_{t+1}} p_i
15:
               t \leftarrow t + 1
16:
17:
          end while
          Return \min_t Pr(\langle S_t | C_t, B_t, p_{w_{t+1}})
18:
19: end function
```

The B-score measure assumes a null model where edges within the module (community) of interest is held unchanged while the remaining connections in the network are randomly shuffled. A probabilistic measure based on hypergeometric distribution is then calculated for each module member to evaluate the likelihood that the observed number of within-module edges would arise from the null model. Such a probability is then summed over the number of possible within-module connections (from the observed value to the maximum possible value - the total degree of the node) to give a cumulative probability p_i of observing an intra-module degree equal to or larger than the observed value under the null model.

The above p_i is calculated for all nodes in the module and sorted to identify the "worst" node in the module - the node with the highest p_i . The B-score algorithm assumes that, for a truly non-random module, the probability of observing such a worst p_i value as the *minimum* among all nodes currently not belonging to the module is expected to be very low under the null model for its calculation. The original B-score algorithm also incorporated a stochastic element into the calculation of p_i , took into consideration a list of k worst nodes in the module and utilized the probability that the sum of the scores of these worst nodes in a module obtained from a random background model is smaller than the observed value as the final statistical significance measure (the B-score) for the module. The B-score is calculated over multiple runs and the average is used for evaluation of module statistical significance. Such an additional step has been shown to act as a resampling step and guard against possible significant community structure from random graphs.

Calculation of the conservation score

We first define a reference network which can be seen as the ground true network without noise. We extract the modules from the network as reference modules: R_i $(i = 1, ..., n_r)$. We also define a set of m noisy co-expression networks by introducing m different levels of edge noise to the reference network.

We extract the modules N_{i_j} $(i = 1, ..., n_n)$ from the *j*th noisy network and repeat this for all *m* noisy networks. Then we perform the following steps to calculate the conservation score.

1. Find the best matching module N_{k_j} in the *j*th noisy network for the *k*th reference modules R_k , where k_j is obtained by:

$$k_j = \arg\max_i \frac{|R_k \bigcap N_{i_j}|}{\min(|R_k|, |N_{i_j}|)}$$

- 2. Repeat step 1 to find the best matching modules in all m noisy networks: N_{k_j} , $j = 1, \ldots, m$.
- 3. Calculate the conservation score for the reference module R_k using the following formula:

$$ConservationScore(R_k) = \frac{|R_k \bigcap_{j=1}^m N_{k_j}|}{|R_k|}$$

4. Repeat steps 1-3 to calculate conservation scores of all reference modules $ConservationScore(R_i)$, $i = 1, ..., n_r$.

Derivation of $\Delta \tilde{W}$

Let x_i be the boolean variable indicating whether the *i*th node is selected as a community member. Denote the entire set of nodes as V, and N as the total number of nodes in V. Let **A** be the adjacency matrix of the entire network. Following the denotations used by Zhao et al. (2011), we have

$$\tilde{W}_{S} = O_{S} \cdot \frac{|S_{c}|}{|S|} + O_{S} - (O_{S} + B_{S}) = \sum_{i,j \in S} A_{ij} x_{i} x_{j} \left(\frac{|S_{c}|}{|S|} + 1\right) - \sum_{i \in S, j \in V} A_{ij} x_{i}$$
(1)

If node k is in S, the only move that will change \tilde{W} is to move it from S to S_c . The new \tilde{W} after moving will be:

$$\tilde{W}_{S'} = \left(\sum_{i,j\in S} A_{ij}x_ix_j - 2\sum_{j\in S} A_{kj}x_j\right) \left(\frac{|S_c| + 1}{|S| - 1} + 1\right) - \left(\sum_{i\in S, j\in V} A_{ij}x_i - \sum_{j\in V} A_{kj}\right);$$
(2)

and if node k is in S_c , the only move that will change \tilde{W} is to move it from S_c to S. The new \tilde{W} after moving will be:

$$\tilde{W}_{S'} = \left(\sum_{i,j\in S} A_{ij}x_ix_j + 2\sum_{j\in S} A_{kj}x_j\right) \left(\frac{|S_c| - 1}{|S| + 1} + 1\right) - \left(\sum_{i\in S, j\in V} A_{ij}x_i + \sum_{j\in V} A_{kj}\right)$$
(3)

Therefore, we can calculate the change in the value of \tilde{W} when node k is in S:

$$\Delta \tilde{W}_k = \tilde{W}_{S'} - \tilde{W}$$

$$= \left(O_S - 2\sum_{j \in S} A_{k_j} x_j\right) \left(\frac{|S_c| + 1}{|S| - 1}\right) - O_S \cdot \frac{|S_c|}{|S|} - \sum_{j \in S} A_{k_j} x_j + \sum_{j \in S} A_{k_j}$$

$$(4)$$

$$= O_S \cdot \frac{N}{|S|(|S|-1)} - 2\frac{N}{|S|-1} \sum_{j \in S} A_{k_j} x_j + \sum_{j \in S} A_{k_j},$$
(5)

Similarly, we can obtain $\Delta \tilde{W}$ when node k is in S_c

$$\Delta \tilde{W}_k = \tilde{W}_{S'} - \tilde{W}$$

$$= \left(O_S + 2\sum_{j \in S} A_{k_j} x_j \right) \left(\frac{|S_c| - 1}{|S| + 1} \right) - O_S \cdot \frac{|S_c|}{|S|} + \sum_{j \in S} A_{k_j} x_j - \sum_{j \in S} A_{k_j}$$

$$(6)$$

$$= -O_S \cdot \frac{N}{|S|(|S|+1)} + 2\frac{N}{|S|+1} \sum_{j \in S} A_{k_j} x_j - \sum_{j \in S} A_{k_j},$$
(7)

Combine the above two equations, we finally derive the equation for $\Delta \tilde{W}$:

$$\Delta \tilde{W}_k = \begin{cases} O_S \cdot \frac{N}{|S|(|S|-1)} - 2\frac{N}{|S|-1} \sum_{j \in S} A_{k_j} x_j + \sum_{j \in S} A_{k_j} & \text{if } k \in S \\ \\ -O_S \cdot \frac{N}{|S|(|S|+1)} + 2\frac{N}{|S|+1} \sum_{j \in S} A_{k_j} x_j - \sum_{j \in S} A_{k_j} & \text{if } k \in S_c \end{cases}$$

where $O_S = \sum_{i,j \in S} A_{ij} x_i x_j$.

It is easy to observe from (9) and (10) that the change in \tilde{W} for any flipping of node membership can be calculated in linear time (O_S itself can be updated in linear time for each flip too).

Two Unique DiME Modules in the Grade II and IV Glioma Coexpression Networks

Figure Legends

Tables

	Technique									
	DiME				MCODE		Modularity			
B-score Cutoff	0.05 0.001 1×10^{-5}		0.05	0.001	1×10^{-5}	0.05	0.001	1×10^{-5}		
Rembrandt Data (GBM)	32.97% (574 / 1741)	50.09% (872 / 1741)	54.68% (952 / 1741)	58.09% (452 / 778)	81.36% (633 / 778)	83.03% (646 / 778)	41.16% (1073 / 2607)	49.33% (1286 / 2607)	99.04% (2582 / 2607)	
TCGA Data (GBM)	30.19% (358 / 1186)	42.50% (504 / 1186)	51.85% (615 / 1186)	33.75% (188 / 557)	39.14% (218 / 557)	45.60% (254 / 557)	2.14% (36 / 1681)	45.63% (767 / 1681)	90.78% (1526 / 1681)	
Rembrandt Data (grade II Glioma)	47.27% (1230 / 2602)	62.95% (1638 / 2602)	68.14% (1773 / 2602)	61.96% (728 / 1175)	65.79% (773 / 1175)	69.96% (822 / 1175)	94.97% (3546 / 3734)	98.23% (3668 / 3734)	98.93% (3694 / 3734)	
GEO Data (grade II Glioma)	42.46% (1106 / 2605)	66.64% (1736 / 2605)	71.48% (1862 / 2605)	56.59% (466 / 822)	67.76% (557 / 822)	74.70% (614 / 822)	94.76% (3255 / 3435)	99.33% (3412 / 3435)	99.71% (3425 / 3435)	

 Table S1. Relative loss of genes under different B-score cutoffs

Table S2.	Module	Members in	Α	Unique	DiME	Module	(Grade	Π	Glioma)	Larger	than	10	Genes

Module Name	Gene Symbol	Gene Product						
	MEX3A	Mex-3 RNA Binding Family Member A						
	EBF4	Early B-Cell Factor 4						
	HEY1	Hairy/Enhancer-Of-Split Related With YRPW Motif 1						
	KCNQ2	Potassium Voltage-Gated Channel, KQT-Like Subfam-						
	-	ily, Member 2						
	SLC13A3	Solute Carrier Family 13 Member 3						
	SLC22A15	Solute Carrier Family 22, Member 15						
	ABCA5	ATP-Binding Cassette, Sub-Family A (ABC1), Member						
		5						
	CAMKMT	Calmodulin-Lysine N-Methyltransferase						
	PNPLA4	Patatin-Like Phospholipase Domain Containing 4						
	RGN	Regucalcin						
	ECHDC2	Enoyl CoA Hydratase Domain Containing 2						
	PRMT5	Protein Arginine Methyltransferase 5						
Mesenchyme morphogenesis	MAML2	Mastermind-Like 2						
and cell division $/$	ZNF22	Zinc Finger Protein 22						
differentiation	C16 orf 89	(Chromosome 16 Open Reading Frame 89)						
(grade II glioma)	KLHL26	Kelch-Like Family Member 26						
	CLQL1	Complement Component 1, Q						
	KLRC3	Killer Cell Lectin-Like Receptor Subfamily C, Member						
		3						
	S100A13	S100 Calcium Binding Protein A13						
	SELENBP1	Selenium Binding Protein 1						
	TPPP3	Tubulin Polymerization-Promoting Protein Family						
		Member 3						
	MYC	Proto-Oncogene C-Myc						
	FAM50B	Family With Sequence Similarity 50, Member B						
	CHST6	Carbohydrate (N-Acetylglucosamine 6-O) Sulfotrans-						
	DVDO	terase 6						
	RYR3	Ryanodine Receptor 3						
	RCAN3	Calcipressin-3						
	PHLDA1	Pleckstrin Homology-Like Domain, Family A, Member						
		Sullatase 2 Dibagamal Ductain, Langa, D0						
		Ribosomai Protein, Large, PU Cralin Dependent, Kingga Libra 9, (CDC9 Dalathal Ki						
	CDKLZ	Uyclin-Dependent Kinase-Like 2 (UDU2-Related Ki-						
	Cllemfor	(hromosomo 11 Open Booding France 06						
	C1101J90 STDC1	Chromosome 11 Open Reading Frame 90 Snorm Tail DC Dich Dopost Containing 1						
	SIPGI	Sperm-ran PG-kich kepeat Containing 1						

 Table S3. Module Members in A Unique DiME Module (Grade IV Glioma) Larger than 10 Genes

Module Name	Gene Symbol	Gene Product							
	MGAT1	Mannosyl (Alpha-1,3-)-Glycoprotein Beta-1,2-N-Acetyl-							
		glucosaminyltransferase							
	RAB32	Ras-Related Protein Rab-32							
	ANKRD13B	Ankyrin Repeat Domain-Containing Protein 13B							
	SBK1	SH3 Domain Binding Kinase 1							
Regulation of	SGMS2	Sphingomyelin Synthase 2							
vesicle-related	PLBD1	Phospholipase B Domain Containing 1							
processes	LRRTM2	Leucine Rich Repeat Transmembrane Neuronal 2							
(grade IV glioma)	FSD1	Fibronectin Type III And SPRY Domain Containing 1							
	WIPI1	WD Repeat Domain, Phosphoinositide Interacting 1							
	BICC1	Bicaudal C Homolog 1							
	SOX8	SRY (Sex Determining Region Y)-Box 8							
	RRAS	Related RAS Viral (R-Ras) Oncogene Homolog							
	LMF1	Lipase Maturation Factor 1							
	GATAD2B	GATA Zinc Finger Domain Containing 2B							