Supplementary Information

Study	EB	Tag	EB nM	Tubulin	Tubulin μM	MgCl₂ mM	Temp °C	Growth	Shrinkage	Cat	Res
Vitre et al ³⁹	EB1 (Mm)	His	500 - 2000	mammalian brain	10	1	36	<mark>2x</mark>	<mark>-2x</mark>	<mark>2x</mark>	<mark>8x</mark>
Manna et al ⁵⁶	EB1 (Hs)	cleaved	500 - 2000	mammalian brain	20	1.4	30	<mark>1.2x</mark>	<mark>-2x</mark>	<mark>-2x</mark>	<mark>1.5x</mark>
Dixit et al ⁵⁷	EB1 (Hs)	cleaved	250	mammalian brain	22	2	22	~	<mark>1.1x</mark>	۱	~
Li et al ⁵⁸	EB1 (Dm)	cleaved	100 - 800	mammalian brain	15	4	25	<mark>1.3x</mark>	~	*	~
Komarova et al ⁴⁵	EB3 (Hs)	cleaved	200 - 1000	mammalian brain	15	4	25	<mark>5x</mark>	<mark>1.5x</mark>	<mark>9x</mark>	<mark>3x</mark>
Bieling et al47	Mal3 (Sp)	cleaved	200	mammalian brain	10	6	30	~	~	<mark>3x</mark>	~**
Katsuki et al ³⁷	Mal3 (Sp)	His	50 -500	S. pombe	4.5	1	25	~	<mark>-3x</mark>	~	<mark>6x</mark>
This study	Mal3 (Sp)	His	2 - 200	S. pombe	4.5	1	25	<mark>1.2x</mark>	<mark>-2x</mark>	~	<mark>15x</mark>

Supplementary Table 1 EB protein effects on microtubule dynamics in vitro

A summary of published observations on the effect of EB family proteins on microtubule dynamics in vitro. All significant changes in rates relative to tubulin only controls are given (p < 0.05).

*No change in catastrophe frequency was found when all data was averaged. However Li et al⁵⁸ report that if the increase in catastrophe frequency of tubulin plus EB1 compared to tubulin alone is calculated in individual experiments and then averaged they found a 1.5x increase in catastrophe frequency.

**No rescue events were observed in any conditions.

~: no significant change compared to tubulin only (p > 0.05). Mm: *Mus musculus*, Hs: *Homo sapiens*, Sp: *Schizosaccharomyces pombe*.

<mark>increase</mark>, <mark>decrease</mark> in rate (slower growth or shrinkage). The largest change relative to the control is given.

Supplementary references

- 56. Manna, T., Honnappa, S., Steinmetz, M.O. & Wilson, L. Suppression of microtubule dynamic instability by the +TIP protein EB1 and its modulation by the CAP-Gly domain of p150glued. *Biochemistry* **47**, 779-86 (2008).
- 57. Dixit, R. et al. Microtubule plus-end tracking by CLIP-170 requires EB1. *Proc Natl Acad Sci U S A* **106**, 492-7 (2009).
- 58. Li, W. et al. Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin. *J Cell Biol* **199**, 849-62 (2012).