Eur. J. Org. Chem. 2012 · © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012 · ISSN 1434–193X

SUPPORTING INFORMATION

DOI: 10.1002/ejoc.201200695 <u>**Title:**</u> Single-Step Radiosynthesis of "¹⁸F-Labeled Click Synthons" from Azide-Functionalized Diaryliodonium Salts <u>**Author(s):**</u> Joong-Hyun Chun, Victor W. Pike*

Table of Contents:

Synthesis of halobenzyl azides

Synthesis of azidohaloarenes

References

- Appendix 1. ¹H and ¹³C spectra of azide-functionalized diaryliodonium salts
- Appendix 2. Selected radio-HPLC chromatogram of radiofluorination of the reaction mixture of radiofluorination of diaryliodonium salt precursor

Synthesis of halobenzyl azides

Reference iodobenzyl azides and fluorobenzyl azides were prepared by known procedures. Analytical data obtained for these compounds agreed with those previously reported in the literature.^[1,2]

4-Iodobenzyl azide.^[3] NaN₃ (1.37 g, 21 mmol) was added to a stirred solution of 4-iodobenzyl bromide (2.08g, 7 mmol) in DMF (10 mL) at r.t. The reaction mixture was stirred at r.t. for 3 h. Water (20 mL) was added to quench the reaction, and product was extracted with CH₂Cl₂ (20 mL × 3). Combined organic layers were washed with water (50 mL × 3), dried over MgSO₄, then concentrated to an oil. Column chromatogrphy of crude product (silica using 10% EtOAc/hexane; $R_f = 0.57$) gave the 4-iodobenzyl azide as a white solid (1.59 g, 87%). mp = 29–30 °C; ¹H-NMR (CDCl₃) δ 7.71 (dd, J = 1.6, 8 Hz, 2H), 7.06 (d, J = 8 Hz, 2H), 4.29 (s, 2H); ¹³C-NMR (CDCl₃) δ 137.9, 135.0, 130.0, 93.9, 54.2.

The following compounds were prepared similarly. Fluoroarenes were obtained from corresponding fluorobenzyl bromides.

3-Iodobenzyl azide.^[4] Colorless oil (2.46 g, 94%), $R_f = 0.55$ (10% EtOAc/hexane); ¹H-NMR (CDCl₃) δ 7.66–7.64 (m, 2H), 7.26 (d, J = 7.6 Hz, 1H), 7.10 (t, J = 9.6 Hz, 1H), 4.27 (s, 2H); ¹³C-NMR (CDCl₃) δ 137.6, 137.2, 136.9, 130.4, 127.2, 94.5, 53.8.

2-Iodobenzyl azide.^[5] Pale yellow oil (0.52 g, 96%), $R_f = 0.50$ (10% EtOAc/hexane); ¹H-NMR (CDCl₃) δ 7.86 (d, J = 7.6 Hz, 1H), 7.36 (d, J = 4 Hz, 2H), 7.04–6.98 (m, 1H), 4.43 (s, 2H); ¹³C-NMR (CDCl₃) δ 139.6, 138.0, 129.8, 129.4, 128.5, 98.9, 58.9.

4-Fluorobenzyl azide.^[2] Colorless oil (0.10 g, 32%, volatile), $R_f = 0.5$ (10% EtOAc/hexane); ¹H-NMR (CDCl₃) δ 7.31–7.25 (m, 2H), 7.09–7.05 (m, 2H), 4.31 (s, 2H); ¹³C-NMR (CDCl₃) δ 162.6 (d, $J_{C-F} = 246$ Hz), 131.2 (d, $J_{C-F} = 3$ Hz), 130.0 (d, $J_{C-F} = 8$ Hz), 115.8 (d, $J_{C-F} = 21$ Hz), 54.0; ¹⁹F-NMR (CDCl₃) δ –113.5.

3-Fluorobenzyl azide.^[6] Colorless oil (0.27 g, 72%, volatile), $R_f = 0.52$ (10% EtOAc/hexane); ¹H-NMR (CDCl₃) δ 7.38–7.33 (m, 1H), 7.11–7.09 (m, 1H), 7.06–7.02 (m, 2H), 4.35 (s, 2H); ¹³C-NMR (CDCl₃) δ 163.1 (d, $J_{C-F} = 246$ Hz), 137.8, 130.4 (d, $J_{C-F} = 8$ Hz), 123.6 (d, $J_{C-F} = 3$ Hz), 115.2 (d, $J_{C-F} = 21$ Hz), 114.9, 54.2; ¹⁹F-NMR (CDCl₃) δ –112.3.

2-Fluorobenzyl azide.^[7] Colorless oil (0.39 g, 65%, volatile), $R_f = 0.2$ (hexane); ¹H-NMR (CDCl₃) δ 7.37–7.31 (m, 2H), 7.19–7.08 (m, 2H), 4.41 (s, 2H); ¹³C-NMR (CDCl₃) δ 163.1 (d, $J_{C-F} = 247$ Hz), 130.4 (d, $J_{C-F} = 4$ Hz), 130.3 (d, $J_{C-F} = 8$ Hz), 124.4 (d, $J_{C-F} = 3$ Hz), 122.7 (d, $J_{C-F} = 15$ Hz), 115.7 (d, $J_{C-F} = 22$ Hz), 48.5 (d, $J_{C-F} = 4$ Hz); ¹⁹F-NMR (CDCl₃) δ –118.0.

Synthesis of azidohaloarenes

Azidohaloarenes were prepared by known procedures. Analytical data for these compounds have been reported in the literature.^[1,2]

1-Azido-3-iodobenzene.^[8]

NaNO₂ (0.69 g, 10 mmol) in H₂O (10 mL) was added dropwise with vigrous stirring to an ice-cold solution of 3-iodoaniline (1.53 g, 7 mmol) and *conc*. HCl (5 mL) in H₂O (5 mL) and held at 0 °C for 1 h. NaN₃ (1.04 g, 16 mmol) in H₂O (10 mL) was then added dropwise. The reaction mixture was kept below 5 °C and after 1 h product was extracted with CH₂Cl₂ (20 mL × 3). The combined organic layers were washed with water (50 mL × 3). The organic layer was dried over MgSO₄ and concentrated to a yellow crude oil. Column chromatogrphy of this crude oil (silica, hexane; $R_f = 0.52$) gave the product as a pale yellow oil (1.37 g, 80%); ¹H-NMR (CDCl₃) δ 7.43 (dt, J = 1.2, 5.2 Hz, 1H), 7.36 (t, J = 2 Hz, 1H), 7.02 (t, J = 8 Hz, 1H), 6.96-6.93 (m, 1H); ¹³C-NMR (CDCl₃) δ 141.2, 133.8, 130.9, 127.8, 118.3, 94.6.

The following compounds were prepared similarly. Fluoro compounds were prepared from the corresponding fluoroanilines.

1-Azido-4-iodobenzene.^[1] Pale yellow solid (1.83 g, 75%), $R_f = 0.53$ (hexane), mp = 31–32 °C; ¹H-NMR (CDCl₃) δ 7.64 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H); ¹³C-NMR (CDCl₃) δ 140.0, 138.7, 121.0, 88.2.

1-Azido-3-fluorobenzene.^[9] Pale yellow solid (0.45 g, 66%), $R_f = 0.5$ (hexane); ¹H-NMR (CDCl₃) δ 7.32–7.26 (m, 1H), 6.86–6.80 (m, 2H), 6.72 (dt, J = 2, 5.2 Hz, 1H); ¹³C-NMR (CDCl₃) δ 163.5 (d, $J_{C-F} =$ 247 Hz), 141.9 (d, $J_{C-F} = 10$ Hz), 130.9 (d, $J_{C-F} = 10$ Hz), 114.7 (d, $J_{C-F} = 3$ Hz), 111.8 (d, $J_{C-F} = 21$ Hz), 106.7 (d, $J_{C-F} = 24$ Hz); ¹⁹F-NMR (CDCl₃) δ –110.8.

1-Azido-4-fluorobenzene.^[9] Yellow oil (0.25 g, 45%, volatile), $R_f = 0.45$ (hexane); ¹H-NMR (CDCl₃) δ 7.07-7.026 (m, 2H), 6.99–6.96 (m, 2H); ¹³C-NMR (CDCl₃) δ 160.0 (d, $J_{C-F} = 244$ Hz), 135.8 (d, $J_{C-F} = 3$ Hz), 120.3 (d, $J_{C-F} = 9$ Hz), 116.6 (d, $J_{C-F} = 23$ Hz); ¹⁹F-NMR (CDCl₃) δ –117.7.

References

- [1] W. Qu, M.-P. Kung, C. Hou, S. Oya, H. F. Kung, J. Med. Chem. 2007, 50, 3380-3387.
- [2] L. Verduyn-Campbell, P. H. Elsinga, L. Mirfeizi, R. A. Dierckx, B. L. Feringa, *Org. Biomol. Chem.* 2007, 50, 3461–3463.
- [3] K. D. Park, P. Morieux, C. Salomé, S. W. Cotten, O. Reamtong, C. Eyers, S. J. Gaskell, J. P. Stables,
 R. Liu, H. Kohn, *J. Med. Chem.* 2009, *52*, 6897–6911.
- [4] L. Díaz, J. Cases, J. Bujons, A. Llebaria, A. Delgado, J. Med. Chem. 2011, 54, 2069–2079.
- [5] F. Shi, J. P. Waldo, Y. Chen, R. C. Larock, Org. Lett. 2008, 10, 2409–2412.
- [6] L. Hu, S. Zhang, X. He, Z. Luo, X. Wang, W. Liu, X. Qin, Bioorg. Med. Chem. 2012, 20, 177–182.
- [7] X. Wang, T.-S. Mei, J.-Q. Yu, J. Am. Chem. Soc. 2009, 131, 7520-7521.
- [8] N. Faucher, Y. Ambroise, J.-C. Cintrat, E. Doris, F. Pillon, B. Rousseau, J. Org. Chem. 2002, 67, 932–934.
- [9] E. Leyva, D. Munoz, M. S. Platz, J. Org. Chem. 1989, 54, 5938-5945.

Appendix 1. ¹H and ¹³C spectra of azide-functionalized diaryliodonium salts

Appendix 2. Selected radio-HPLC chromatograms from analyses of reaction products from the radiofluorination of diaryliodonium salts.

Figure S1. Radiochromatogram from the HPLC analysis of the products from the reaction of $[^{18}F]$ fluoride ion with compound **8** at 180 °C for 188 s in DMF.

Figure S2. Radiochromatogram from the HPLC analysis of the products from the reaction of $[^{18}F]$ fluoride ion with compound **8** at 200 °C for 188 s in DMF.

Figure S3. Radiochromatogram from the HPLC analysis of the products from the reaction of $[^{18}F]$ fluoride ion with compound **8** at 180 °C for 94 s in MeCN.