Supplementary Information

Tuning chelation by the surfactant-like peptide A₆H

using predetermined pH values

V. Castelletto,* I. W. Hamley, M. D. Segarra-Maset, C. Berdugo Gumbau,

J. F. Miravet, B. Escuder, J. Seitsonen and J. Ruokolainen.

Results and Discussion

Table S1. SAXS parameters extracted from the fits of the experimental data shown

Sample	l_T	Δ_H	$ ho_{\scriptscriptstyle H}$	ρ_{c}	σ_{c}	C_{I}	C_2	C_3
	[Å]	[Å]	Irel.	[rel_units]	۲Å٦	[rel.	[rel.	
			units]		6.7	units]	units]	
18 wt% A ₆ H	33	10	6.4x10 ⁻⁵	-3x10⁻⁵	2.9	3x10 ⁻³	1x10 ⁻³	1.6
18 wt% A ₆ H (1:1)	19.7	5.5	1.6x10 ⁻⁴	-3.1x10 ⁻⁵	2.7	0	0	0
0.25 wt% A ₆ H ; pH 7	24	10	6.4x10 ⁻³	-3x10 ⁻³	3	0	9	4.2
0.25 wt% A ₆ H (1:1); pH 7	139	57	3.6x10 ⁻³	-1.1x10 ⁻³	4.2	35	0	0

in Fig. S2 and Fig. S8.

Fig. S1. CD spectra for 1 wt% A₆H dissolved (*i*) in water and (*ii*) in a ZnCl₂ solution (1:1).

Fig. S2. SAXS data for 18 wt% solution A_6H diluted (a) in water and (b) in $ZnCl_2$ solution (1:1). The full lines are the fitting according to a Gaussian bilayer model. The inset shows the model for the Gaussian bilayer.

Fig. S3. Raman spectra for a stalk dried from 1 wt% A_6H dissolved in (a),(c) water or (b),(d) in a ZnCl₂ solution (1:1).

Fig. S4. XRD profile measured for a stalk dried from 1 wt% A_6H dissolved in *(i)* water or *(ii)* in a ZnCl₂ solution (1:1).

Fig. S5. Solubility vs. temperature of 1 wt% A_6H solution without and with $ZnCl_2$ (1:3.5)

Fig. S6. Variation of chemical shift of an imidazole signal with temperature, measured for 1 wt% A_6H .

Fig. S7. Dependence of the chemical shift of an imidazole signal on the $ZnCl_2:A_6H$ ratio, measured at 30 °C for a 1 wt% A_6H in solution.

Fig. S8. SAXS data for 0.25 wt% solution A_6H at pH 7 in *(i)* water and *(ii)* in a ZnCl₂ solution (1:1). The full lines are the fitting according to Gaussian bilayer model shown in the inset of Fig. S2.

Fig. S9. XRD measured for stalks dried from 4 wt% A_6H at pH 7 in (i) water and (ii) a ZnCl₂ solution (1:1).