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ABSTRACT The concepts of local temperature, local en-
tropy, and local free energy density'are introduced within the
framework of the ground-state density-functional theory of
many-electron systems, and a complete local thermodynamic
picture is then developed. A view emerges of the electron
cloud, as analogous to a classical inhomogeneoUs fluid moving
under gradients of temperature, pressure, and an effective po-
tential, described by a locally Maxwellian distribution.

Density functional theory (1, 2) provides a way to character-
ize a nonhomogeneous many-electron system in terms of the
electron density and through its connection with quantum
hydrodynamics (3) permits one to view an electron cloud as
a fluid in three-dimensional space. From this picture, one
can obtain much physical insight through the study of local
behavior rather than global quantities such as the total inter-
nal energy. However, although the total energy is deter-
mined uniquely by the electron density, the nonlocal nature
of the energy functional prevents the density at a particular
point from providing a complete characterization of the elec-
tron fluid at that point. To obtain a local description of a
quantum system, it therefore is necessary to introduce cer-
tain other local (ir-dependent) quantities. In the present
work, we define, within the ground-state density-functional
framework, several local quantities of thermodynamic-like
character. We thereby provide a macroscopic thermody-
namic language for describing the behavior of the microscop-
ic electron fluid. In view of the nonuniformity of the electron
cloud and the nonhomogeneity of microscopic energy func-
tionals, one-to-one correspondence with macroscopic ther-
modynamics is, however, not expected.
Completing this thermolynamic description is motivated

by various successes of sueh macroscopic concepts in pro-
viding a better understanding of microscopic chemical phe-
nomena. Thus we have the Fhemical potential (4) (as equiva-
lent with the electronegativity concept of chemistry), the
hardness of a species (5), and frontier reactivity indices (6,
7). We also have the fprmulation of density-functional ana-
logs of the Gibbs-Duhem equation (4) and Maxwell's rela-
tions (8) of classical thermodynamics.

In what follows, we introduce the concept of a local tem-
perature corresponding to the electronic motion and also an
entropy associated with the electron distribution. We then
maximize this entropy to qbtain' a unique distribution func-
tion in phase space. finally', we recover some thermodynam-
ic equations and iden'tify Gibbs free energy. This provi4es us
with a consistent loctl thermodynamic description of the mi-
croscopic system.

Theory

We consider a system ofN electrons moving under the influ-
ence of an external potential v(r). Following Kohn and Sham

(9), the ground-state energy E[p], a unique functional of the
density p(r), can be written as a sum of kinetic (noninteract-
ing) energy (Ts) and potential energy (Epot) contributions,

E[p] = T,[p] + Eot[p]. [1]

The corresponding energy densities, although not unique,
are defined so as to lead to the global quantities on integra-
tion:

e(i, p) = t,(r, p) + Epotoo p), [2]

where E[p] = f (iQ, p)dir. This picture qf the system has N
noninteracting quantum particles moving in an effective po-
tential Vks(r, p) given by vk, = 8Ept[p]/8p. It entails no ap-
proximations whatsoever.
We consider the various density functionals to be results

of ensemble averages over the dynamical variables. Hence,
to each element of the continuous probability fluid we asso-
ciate a distribution function f(ir, p) in phase space that satis-
fies the following properties:

I

p(ir) = If df(-r, p); f dip(i) = N;

t, (r, p) =f ddP) + v, ]);

Y~, p) =dpdfr p) [2 + vP~ r )

[3]

[4]

[5]

Density functional theory permits one to express vp0t(i*, p)
solely in terms of p(r) [and v(r]. The function f(r, p) should
also give the current density, j(r) = fdp p f(ir, p). This
vanishes for the ground state, but would be of interest for the
treatment of excited states and time-dependent phenomena.
The most general form of such a distribution function can

be written, following Cohen (10, 11), in terms of the Kohn-
Sham orbitals My. Thus

N

f(?, p) = A f exp[-iO*r - it p + ij-.U]g(', I )
j=l

[6]

where A is a constant and g(9, i) is any function satisfying
g(, ia) = g(6, 0) = 1. The marginal conditions of Eqs. 3-5
thus do not define f(i, p) uniquely; choice of different suit-
able g(6, i) generates different positive f(ir, p), Here selec-
tion of a convenient f(?, p) is achieved through imposing the
criterion of maximum entropy.
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We define an entropy density and entropy in terms of f(ir,

s(i) = -kf dpf[ln f - 1]; S = f drs(ir),

which can be compared with the corresponding Kohn-Sham
expression

A = vks(r, p) + vq(r, p),[7]

and obtain the most probable distribution by maximizing this
functional subject to the constraints of correct density (Eq.
3) and correct kinetic energy density (Eq. 4). Thus,

f(?, C)= ea(?fe-p()P2/2 [8]

where a(?) and 8(ir) are r-dependent Lagrange multipliers.
We now define a local temperature T(i) in terms of the kinet-
ic energy density, by equating the latter to the ideal gas
expression for kinetic energy,

where vq(i, p) (-3T,/8p) is the density-functional version
of the quantum potential introduced by Bohm (12, 13). The
term kT ln(X3p) in Eq. 17 is the intrinsic chemical potential
(14) of a system of noninteracting classical particles.
Thus we have two equally valid pictures of an interacting

quantum system of interest having chemical potential ,u and
density p: a noninteracting quantum system moving in a po-
tential vkS or a noninteracting classical system moving in the
different potential veff with the local temperature T(i). The
two potentials are related by a quantum correction,

3ts(r P) =2p-r)kTr),

where k is the Boltzmann constant.
On substituting Eq. 8 in Eqs. 3 and 4, we find

- 1-(= kT(r)

and

f(ir, p) - X(03p(i eP2/2kT(r)

[9] We now turn our attention to the local pressure. The con-
cept of a local pressure in a quantum system has been dis-
cussed by a number of authors (15-19). The definitions
mainly differ in the choice of different energy components
for the purpose. We here employ the Kohn-Sham noninter-
acting kinetic energy functional for defining a local pressure.

A1 First we introduce a stress tensor through the relation

[20]

[11]

with

and then define pressure by
1

ps = -- tr ~3 [21]

p(ir) = X(Yr)-3e-[vefTrP)-M]/ki(r), [12]

where we have the chemical potential ,u = - a(i)//3(f) +
veff(r, p) and X(r) = [2irikT(ir)] /2. Eq. 8 thus takes the more
familiar form

f(r, pi) = eglkT e-[(P2/2)+vcffIkT. [13]

Eq. 12 may be written more compactly

p(r) = pOvr)ecvff(")kT(?). [14]

The forms of the distribution functions indicate that the fluid
system is characterized by a local Maxwell-Boltzmann dis-
tribution law.

Substituting Eq. 11 into Eq. 7, we obtain the entropy den-
sity

s(r) = -kp(ln(X3p) -1) + 2 kp
2

= -kplnp + 2 kpln T + 2 kp[5 + 3 ln(27rk)]. [15]

Eq. 15 is a Sackur-Tetrode equation and can also be written
as

s(r) =
3
kp[c + ln(ts/to)], [16]

where to is the Thomas-Fermi kinetic energy density and c is
a constant.

Eq. 12 leads to the chemical potential

Employing the following form of the single-particle kinetic
energy density (20),

ts= z 8 VPiVp _ 1V28 Pi P [22]

where pi are the Kohn-Sham orbital densities, the expres-
sion for pressure becomes

Ps = pkT. [23]
This pressure can thus be called kinetic pressure and Eq. 23
is analogous to the ideal gas law.
Due to lack of simple homogeneity in them, energy density

functionals can be obtained from the corresponding poten-
tials (functional derivatives) only through a functional inte-
gration with respect to the density (and not by simple multi-
plication by it). Characterizing the ihtegration path by a sin-
gle parameter a-i.e., choosing Pa -p(r, a) = ap(r) and
varying a from 0 to 1-one can write (14, 21)

p 1

E-pot('rp) = dap(-r*)Vks(r; Pa). [24]

Using Eq. 18, this simplifies to

E,.t(r, p) = P i4pi[a]dra - vqJ,

where from Eq. 22, in terms of orbital energies Ej,

vq=_ [_ PiVPPi 1 v2p1- [z Eip - AP]
3 lV p -12F i

k
-

- __APkT~i!)ln(X~p)+v~ff~r,p2,[17] [26

[18]

Veff = VkS + (vq - kT ln(X3p)). [19]

[25]
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3 Ts17 - bp = PV 5p

p = kT('r) InWp) + V"..ff(r, A [26][17]
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The energy density E(r) can be obtained from Eqs. 2, 9, and
25. With the help of Eqs. 15 and 23, this leads to

E(r) - T(o)s(i) + PS(r) = P f

+ p(i)[kT In (X3p) - Vq]. [27]

The whole right-hand side of Eq. 27 is the Gibbs free energy
density g(ir).
As in corresponding macroscopic cases (21-23), the local

thermodynamics that characterizes nonuniform microscopic
electronic systems is thus described in terms of the field
quantities T(F), psr), Veff(iQ) [or vq(f)], and ,u.
As an example, consider the ground state of the hydrogen

atom. Eq. 22 becomes

ts(r, p) = VpVp - 1 V2p [28]8 p 8

and one readily finds from Eq. 9

T(r) = Z/3kr. [29]

The local temperature is very high near the nucleus, consist-
ent with the requirement of very high velocity to prevent
collapse to the nucleus.

Discussion

Definitions of the local quantities are not always unique. In
particular, there is a certain arbitrariness in the choice of the
coefficient in the Laplacian term in Eq. 22. Although this
term does not contribute to the total kinetic energy, it is this
term that brings interesting quantum effects to the kinetic
energy density (24) and hence the local temperature. We
strongly prefer the coefficient 1/8, however, which corre-
sponds to the definition (20)

ts = -2 spi r 2; r [30

The resulting kinetic energy density, Eq. 22, corresponds to
the ideal gas law, Eq. 23, satisfies the local virial theorem for
the hydrogen atom, and leads to a local temperature that
vanishes at large distance for any atom (25). And, very im-
portantly, it appears to give a local temperature that is every-
where positive for every atom, which we have not rigorously
proved but which we have verified by numerical tests with
Hartree-Fock densities for many atoms.
Reminescent of the kinetic temperature earlier defined by

Born and Green (26) and Mazo and Kirkwood (27) for liq-
uids, the local temperature we have here defined is an inter-
nal, microscopic, kinetic, or quantum temperature. It is dif-
ferent from the external temperature, which is zero for the
ground state. The finite-temperature density-functional the-
ory proposed by Mermin (28), in contrast, corresponds to
nonzero external temperature.
The total global entropy, as determined by summing over

the whole system of the entropy density of Eq. 15, does not
have the value zero one usually associates with a quantum-
mechanical pure state. Our entropy is not the entropy associ-
ated with the energy distribution, however, but the micro-
scopic entropy associated with the density distribution p.
Eq. 16 shows an interesting connection of the entropy densi-
ty with the ratio of the kinetic energy density to its Thomas-
Fermi value.
While we have obtained the basic formulas for T(M), s(f),

and veff(i) by starting from a distribution function f(r, p), one
could omit all considerations of f(ir, p) and merely postulate
Eqs. 9, 15, and 19.

This description is analogous to that of an inhomogeneous
fluid (gas) of noninteracting classical particles moving in an
effective potential veff (not the Kohn-Sham potential). The
distribution of particles at any point is locally Maxwellian,
characterized by a local temperature. There is no net current
density-a result of movement in all directions. However,
the thermal (kinetic) energy is a result of this motion. The
temperature, pressure, and effective potential gradients
maintained by the density distribution itself generate the
steady motion.
Our dynamic picture of stability can be compared with the

corresponding static picture of Bohm (12, 13), who explains
the stability by a balance of the classical electrostatic forces
and a force of quantum origin determined by the density dis-
tribution. However, both our local temperature and the
Bohm potential are manifestations of an imaginary velocity
field defined by Hirschfelder et al. (29). There is neither ex-
ternal heat bath to maintain the temperature gradient nor ex-
ternal source to provide the quantum potential-in either
picture they are maintained by the density distribution itself.
The local thermodynamic description here developed of

an electron fluid may provide new insights into various phys-
ical and chemical phenomena. One immediate application is
to the problem of chemical binding. The study of chemical
binding has traditionally proceeded through the consider-
ation of changes in electron density, kinetic energy density,
or forces (30) during molecule formation. However, one can

hope that the considerations of free energy density (and oth-
er local quantities) would lead to better understanding of the
phenomena of chemical binding. The redistribution of elec-
tron density during molecule formation may be thought of as
the merging of two inhomogeneous fluid drops to form a new

inhomogeneous fluid drop. A joint attack using density func-
tional and quantum hydrodynamic considerations may be
helpful to develop this picture of chemical binding.
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