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ABSTRACT Nonlinear data smoothers provide a practical
method of finding smooth traces for data confounded with
possibly long-tailed or occasionally “spikey” noise. While they
are natural tools for analyzing time-series data, they can be
applied to any data set for which a sequencing order can be
established. Their resistance to the effects of unsupported ex-
treme observations and their ability to respond rapidly to
well-supported patterns make them valuable as tools for finding
patterns not constrained to specific parametric form and as
versatile data-cleaning algorithms. 'lgl?s paper defines some
robust nonlinear smoothers that have performed well in
Monte-Carlo trials and makes brief recommepdations based
upon that study.

Much of data analysis, and practically all of exploratory data
analysis, consists of looking for patterns in data. Frequently the
underlying pattern is obscured by measurement error and other
“noise.” Extracting the pattern can be difficult, especially when
this noise has a long-tailed distribution. Data patterns are fre-
quently expected to be smooth; i.e., each data point well sup-
ported by the points in its vicinity. This can happen in several
ways. A point can be at about the same level as its neighbors,
or it can be consistent with changes at a steady or steadily
changing rate. If there is a jump, the points on either side of it
can be supported on one side. Peaks can be supported by a
consistent trend up to and down from the top. However, a small
number of extreme data points not otherwise supported will
often be best considered not to be part of the pattern.

These deliberately vague definitions implicitly define noise
as the extent of any excursion insufficiently supported in its
vicinity, and suggest seeking data smoothers resistant to influ-
ence by noise with occasional “spikes” or a long-tailed distri-
bution. Such smoothers must be nonlinear in the sense that, for
arbitrary sequences {x;} and {y;}, and smoother Sin, it need not
be true that Smix; + y,} = Smix,} + Sm{y.} (otherwise the low
frequency component of noise spikes cannot be removed).
Consequently, they cannot be analyzed precisely within the
classical transfer function framework of linear filter theory. We
do not yet have a deep mathematical understanding of the
smoothers presented in this paper, but we have empirical evi-
dence of their good performance from both computer simu-
lation studies and practical data analysis experience. In some
situations—especially when finding smooth traces for data
confounded with long-tailed or spikey noise—these smoothers
out-perform linear methods. In general application, they are
effective tools for finding patterns not constrained to specific
forms and can be used as versatile data-cleaning algorithms.

Invariances and symmetries

All the smoothers considered here commute with the simplest
modifications of data sequences. For input sequence {y;} and
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constants a or c,
Smiy, + a} =Smiy:} + a
Smicy,} = cSmly,}, all ¢ including ¢ < 0 and ¢ = 0.

The smoothers described here are invariant to choice of ¢-axis
origin and direction.

Definitions and notation

For a data sequence, {y,}, the ¢t dimension can be any se-
quencing variable, not necessarily time. For simplicity, ¢ is
treated as if equispaced, but the smoothers seem to perform well
when spacing is somewhat uneven. Any data smoother produces
two sequences, the Smooth, {z;} = Sm{y,} and the Rough, {r,}
= {y, — z;}. Compound smoothers can be constructed by re-
smoothing the Smooth, {z;} = SmafSmfy.}}, or by its dual op-
eration, reroughing, {z;} = Smily:} + Smofy, — Smily,}}, which
could be written Sm{y,} + Smgfr;}. Resmoothing is denoted
by juxtaposing the smoother names: Sm;Sm.

Reroughing attempts to recover pattern from the residual
of the first smoothing by applying a second smoother and
adding the smoothed Rough to the first Smooth sequence.
Reroughing of smoother Sm; with smoother Sm is denoted
Sm) + Smy. If the second smoother is identical to the first, then
we speak of “Sm, twice.” Reroughing is associative but not
commutative.

Elementary data-smoothing units

The simplest nonlinear smoothing procedure is the running
median of length v. It is defined as follows:
For odd length, v = 2u + 1

z=med {Yi—u, ..., Yt .- ., Yt4u}

For even length, v = 2u, the median falls naturally at a point
halfway between two values of ¢. For equispaced ¢ this can be
remedied by resmoothing with a running mean of length 2 to
produce a smoothing unit which is properly centered in ¢, and
can be thought of as:

z = Yhmed {ij—, . .

. yb v !lt+u—l}
+ lémed ‘yt—u-{-l: ceey yt, ceey yt+u}'

Note that this smoother in fact employs 2u + 1 data values, but
gives only half weight to the outer ones.

At the ends of a finite sequence, the length of the median,
v, must decrease by 2 for each step toward the end. The end-
points themselves can be copied or estimated with a special
algorithm.

0Odd-length running medians do not modify monotone se-
quences. A running median of length v will annihilate unsup-
ported excursions of length [(v + 1)/2] — 1, where [x] is the
greatest integer not exceeding x. Running medians are named
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with their lengths and denoted by the numeral of their length.
Once an application of running medians has removed outliers,
it is safe to apply linear smoothers. These are usually weighted
running means: They are defined, for v = 2u + 1, by

0 0
% 2 WiYt-uts-1, W= j;l w;.

=1

W i=1
For even length, v = 2u, the smoother uses v + 1 data points,
but the outer weights are reduced (typically by a factor of %
for symmetric weights).

Some special running means are used often enough to deserve
names. One of these is the running mean of length 3 with
weights Y, 1%, Y, called hanning (after J. von Hann, who liked
to use it) and denoted H.

A more sophisticated weighted running mean, the cosine bell
of length v, has weights

N _ i
Wio/2)+1-i = Wiy+1)/2+i = 1 + cos ((0/2) + 1)’
i=012...,[v/2]

Cosine bell running means can be used with linear smoothers
to reduce the size of the side lobes in the transfer function. They
have a similar effect when incorporated in nonlinear smoothers,
and are often used to “taper” the robust smoothers, defined

below.

Robust theory

The robust M -estimate of location, discussed in (ref. 1) and (ref.
2), suggests a general form that encompasses both the above
smoothers and a class of adaptive robust nonlinear smoothers.
These behave like linear smoothers in the presence of short-
tailed noise, but like robust nonlinear smoothers in the presence
of long-tailed noise.

The M-smoothed, T-tapered sequence {z;} would be the se-
quence of solutions at each ¢ of

2 Tob(yevi—2)=0 (1]
icV,

where i € V, is read “i is a number such that (¢ + 1) is in the
vicinity of ¢ or briefly, “i in the vicinity of ¢.” The {T;} taper
the smoother in the ¢ dimension, and Z;cv,T; = 1. The function
¥(.) is an influence function (refs. 1, 3, and 4). (If [1] were to be
solved, it would have to be by iteration—Newton-Raphson has
worked for similar location estimates, but would be expensive.
A computationally practical modification appears below.) Note
that for Y(u) = u, [1] becomes a standard linear smoother with
weights {T;}. For Y(u) = sgn(u) and T; constant, we obtain
medians of length determined by the definition of V.

We wusually use a standardized argument, u; =
(Y41 — Zt)/cS:, in Y(.), where Z; is a first approximate Smooth
(usually produced by an elementary nonlinear smoother), S,
is a measure of scale in some vicinity of ¢ (usually one including
V. as a subset), and ¢ is chosen according to the nature of S,.

Practical robust computation

A computationally practical approximation to [1] is the w-
smoother, derived by substituting

Y(u) u=0
w(u) = u’
¥ (0),u=0

Proc. Natl. Acad. Sci. USA 74 (1977) 435

in [1] to obtain

-7
W (‘th‘_i) Yt +1
i€V, csl [2]

Ye+i— Zt)
T (255
‘sz: w cst
Specific values for Z,, S;, w(.), Ty, and ¢ in [2] are discussed

below.
Testing and calibration

Smoothers were tested by applying them to zero-phase sinu-
soids, sin(27jt/N),j=1,2,...,N/2;t=0,1,..., to which
white noise of differing distribution shapes and scales had been
added. The regression of the smoother output on a noise-free
version of the signal sinusoid to obtain the regression coefficient
B; provided, in B;2, a measure of the power present at the signal
frequency. This served as one measure of smoother perfor-
mance. The power present in the smoother output at other
frequencies was also monitored to trap excessive transport of
signal power to other frequencies—modulation which can occur
with some nonlinear smoothers. Plots of log(B,2) against j serve
many of the purposes of linear-filter transfer functions, (refs.
5 and 6), although affected by the amount and type of noise
introduced.

Compound smoothers

Few of the smoothing units discussed here perform well by
themselves, so they are frequently combined. Two compound
smoothers due to Tukey have appeared in print (refs. 2, 7, and
8) and perform well in many circumstances. They are 53H and
(53H), twice. Two smoothers better in many ways, but more
difficult to compute by hand, are 4253H and (4253H), twice,
and these are recommended at this time for simple smoothing
tasks. (4253 H), twice was affected only slightly by long-tailed
noise and negligibly by Gaussian white noise. It appears to have
good low-pass transfer behavior with side lobes down 30 dB,
and modulation no worse than —20dB at any frequency.
For more sensitive smoothing tasks, the w-smoother using

Z, = Smooth when 4253H is applied to the original data

S = Sm(medicv,.{|y:+i — Z;|}) where Sm is 53H, (the
smoothed median absolute deviation, or SMAD)

T; = scaled cosine-bell weights for length determined by
Vi

c=6

— (1 _“2)2 |u| S l el . . ”»
w(u) [ 0 else (the “biweight”)

performed as well as the best simple nonlinear compound
smoothers in any single situation but exhibited more consistent
performance for signals contaminated with Gaussian noise and
better robustness against long-tailed noise.
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