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Extended Experimental Procedures

Generation of tumors using RCAS/TVA

Df-1 cells were purchased from ATCC. Cells were grown at 39 �C according
to ATCC instructions. Transfections with RCAS-PDGF-B-HA or RCAS-
PDGF-B-HA-SV40-eGFPwas performed using Fugene 6 transfection kit (Roche
# 11814443001) according to manufactures instructions. To generate gliomas
we injected 1µl of transfected DF-1 cells (4 ⇥ 104) into the cortex area.
Mice were monitored carefully for symptoms of tumor development (hydro-
cephalus, lethargy, head tilt).

Bioluminescence Radiation dose response

Tumor bearing Nestin-tv-a;E2F1-Luc mice were anesthetized with 3% isolflu-
rane before retroorbital injection with 75mg/kg body weight D-luciferin (Xenogen).
One minute after injection of the luciferin, images were acquired for 2 min
with the IVIS 100 (Xenogen). A photographic image was taken onto which
the pseudocolor image representing the spatial distribution of photon count
is projected. We defined a circular region between the ears and used it as a
standard in all experiments. From this region, photon counts are compared
between di↵erent mice. Mice were imaged before and 24h post di↵erent doses
of radiation. Total body irradiation (TBI) was delivered with a 137Cs irra-
diator (Shepherd Mark-I, model 68, SN 643) at a dose rate of 2.12Gy/min.
Mice were sacrificed at 24h post radiation.

Survival Analysis

Adult Nestin-tv-a, Ink4a-Arf�
/

� mice were anesthetized with isoflurane.
One microliter of RCAS transfected DF1 cells (4⇥104 cells/µl) was delivered
using a 30-gauge needle attached to a Hamilton syringe and stereotactic
fixation device (Stoelting, Wood Dale, IL). Cells were injected to the right
frontal cortex: coordinates anterior to bregma 1.5 mm, lateral 0.5 mm, and
a depth 1.5 mm. Mice were monitored carefully and treatment began when
they displayed neurological symptoms, such as lethargy or head tilt due to
tumor burden. Following development of symptoms, mice were sedated with
isoflurane and irradiation of the head was done using a X-RAD 320 from
Precision X-Ray at 115 cGy/min. The rest of the mouse was shielded with
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a lead jig to minimize radiation toxicity to normal tissues. The various
10 Gy dosing schemes are outlined in Table 2. For the 20 Gy treatment,
radiation was dosed at 2 Gy/day for five days followed by 2 days o↵ and
again dosed for another 5 days. Animals were sacrificed upon recurrence of
neurological symptoms, as defined by the Institutional Animal Care and Use
Committee. Each survival arm was su�ciently powered to account for any
baseline variability in response.

MRI Scans

MRI scans were performed on a 9.4T, 16 cm horizontal bore (Agilent Tech-
nologies, Inc., Santa Clara, CA) Direct Drive system using a mouse surface
receive coil (m2m Imaging, Corp., Cleveland, OH) actively decoupled to a
whole-body volume transmit coil (Rapid MR International, LLC., Columbus,
OH). Throughout the MRI experiments, animals were anesthetized with a
1-2% isofluorane in air mixture, and body temperature was maintained us-
ing a heated air system (Air-Therm Heather, World Precision Instruments,
Sarasota, FL). MR images were acquired prior to treatment initiation, daily
during the first seven days and every other day until the animals were sacri-
ficed or became moribund.
MRI experiments consisted of imaging mice for delineation of tumor volumes
over time in order to assess treatment e↵ects on growth rates and volumes.
Delineation of tumor from healthy brain tissue was accomplished using a
contrast-enhanced T1-weighted spin-echo images with the following param-
eters: Repetition time (TR)/echo time (TE) = 510/15 ms, field of view
(FOV) = 20 ⇥ 20 mm2, matrix size = 128 ⇥ 128, slice thickness = 0.5 mm,
25 slices and 2 averages. Total acquisition time was 2 minutes and 12 sec-
onds. Contrast-enhancement was performed by i.p. administration of 50 µl
of 0.5 M gadolinium-DTPA (Magnevist, Bayer Healthcare Pharmaceuticals,
Wayne, N.J) at 5 minutes prior to image data acquisition.

Image Reconstruction and Analysis

Volumes of interest (VOIs) were manually contoured along the enhancing
rim of the tumors on the contrast-enhanced T1-weighted images for tumor
volume measurements. All image reconstruction and digital image analysis
was accomplished using programs developed in Matlab (The Mathworks,
Natick, MA, USA).
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SP Analysis

Hoechst 33342 staining was performed as previously reported, [2]. Briefly,
glioma-bearing mice were treated with standard, hyperfractionated, optimum-
1 or optimum-2 schedules. 24 hours after the last treatment, mice were euth-
anized and tumor cells enzymatically dissociated and resuspended at 2⇥ 106

cells/ml. Cells were preincubated at 37 �C for 30 min with or without 100
mM verapamil (Sigma-Aldrich, St. Louis), to inhibit ABC transporters and
were incubated for 90 min at 37 �C with 5 mg/ml Hoechst 33342 (Sigma-
Aldrich). In order to focus the analysis on bona fide tumor cells, samples
were gated on eGFP+ cells. Hoechst dye was excited at 407 nm by trigon
violet laser, and its dual wavelengths were detected using 450/40 (Hoechst
33342-Blue) and 695/40 (Hoechst 33342-Red) filters. FITC was excited at
488 nm by an octagon blue laser, and fluorescence was detected using 530/30.
Dead cells were excluded by gating on forward and side scatter and elimi-
nating PI-positive population. The data were analyzed by FlowJo (Ashland,
OR, USA).

Statistics

Statistical analysis was performed using GraphPad Prism 5 (GraphPad Soft-
ware, San Diego, CA). Kaplan-Meier analysis was performed using the log-
rank (Mantel-Cox) test. For Olig2 and SP quantification, standard and opti-
mized protocols were compared using an independent sample Students t-test.
p < 0.05 - * ; p < 0.01 - **; p < 0.001 - ***, p < 0.0001 - ****, absence of
star=not significant.

PDGF Signalling

As this tumor model is catalyzed by high regional expression of PDGF, we
wanted to ensure the observed survival benefit was not due to decreased
PDGF production or signaling. To that end, we investigated the levels of
the PDGF-B ligand and its tumor cell receptor, PDGFR↵, in primary, resid-
ual, and recurrent tumors. The PDGF-B ligand has a c-terminal HA-epitope
tag, and HA immunoreactivity can be used as a surrogate for PDGF-B pro-
duction (Shih et al., 2004). Both ligand and receptor were strongly expressed
in untreated tumors (Figure S1A,E). Due to radiation-induced tumor regres-
sion, both the standard and optimum-1 treated samples had fewer tumor cells
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present on the sixth day, i.e. one day after the last dose of radiation (Figure
S1B,C,F,G). However, many of the remaining cells were still strongly PDGF-
B and PDGFR↵. The recurrent tumors showed a similar expression pattern
to the untreated tumors, suggesting that PDGF-B expression of residual
tumor cells was su�cient to drive recurrence (Figure S1D,H). We further
investigated downstream signaling events in a primary cell line derived from
our mouse model. When activated, PDGFR↵ signals via a phosphoryla-
tion cascade resulting in increased levels of phosphorylated Akt (Fomchenko
and Holland, 2007). Radiation did not inhibit the phosphorylation of either
PDGFR↵ or AKT, whereas Imatinib, a potent PDGFR↵ inhibitor, was able
to inhibit both (Figure S1I).

The mathematical model

Our model is based on the linear quadratic framework. We consider two
separate populations of cells – stem-like resistant cells (SLRC) and di↵eren-
tiated/sensitive cells (DSC). SLRC are largely radio-resistant. After exposure
to radiation, a fraction of the DSC revert to the SLRC state. The parameters
of the model are as follows:

1. The parameters ↵
s

and �

s

characterize the response of SLRC to radi-
ation.

2. The parameters ↵
d

and �

d

characterize the response of DSC to radia-
tion.

3. The parameter � denotes the fraction of DSC that revert to the SLRC
state.

4. The rate ⌫ denotes the rate at which DSC revert to the SLRC state.

5. The parameter L
d

gives the minimum time it takes for DSC to return
to cycle.

6. The parameterM
d

specifies the minimum time for a newly created DSC
to lead to clonal expansion.

7. The parameter L
s

gives the minimum time it takes for SLRC to return
to cycle.
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8. The rate ⌘
d

represents the rate at which a newly created DSC leads to
clonal expansion.

9. The rate �

d

gives the rate at which DSC exit quiescence.

10. The rate �

s

specifies the rate at which SLRC exit quiescence.

11. The rate r
d

gives the rate at which DSC reproduce once they return to
cycle.

12. The rate r
s

specifies the rate at which SLRC reproduce once they return
to cycle.

13. The parameter R denotes the initial ratio of DSC to SLRC.

14. The parameter a
s

gives the rate at which SLRC produce DSC.

15. The parameter µ gives the time of maximal radiation-induced reversion
potential after an initial radiation exposure to ionizing radiation.

16. The parameter �

2 gives the width of radiation-induced reversion po-
tential after initial radiation exposure.

For simplicity, we assume that ↵

s

= ⇢↵

d

and �

s

= ⇢�

d

for ⇢ 2 [0, 1]; this
constant characterizes the level of radiosensitivity of SLRC. If ⇢ = 0, then
they are completely immune to radiation, and if ⇢ = 1, they respond to
radiation at the same level as the DSC. Also note that µ and �

2 are not
present in the initial model.

For the remainder of the Supplementary Material, we use the following
notation: for two real numbers x, y, x _ y = max(x, y); (t � T )+ = (t �
T )1{t>T}; and

1{t>T} =

(
1, if t� T > 0

0, if t� T  0.

The first dose of treatment

After the first dose of d Gy of radiation, the fraction of DSC that survives is
given by exp(�↵

d

d� �

d

d

2), and the fraction of SLRC that survives is given
by exp(�↵

s

d� �

s

d

2). Of those DSC that survive, a fraction � revert to the
SLRC state. Note that in the basic mathematical model, this fraction does
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not depend on the radiation dose; however, that dependence can easily be
incorporated into the model in future work. The conversion of DSC to the
SLRC state occurs at a rate of ⌫. SLRC and DSC are in a quiescent state
after a dose of radiation for a minimum of L

s

and L

d

hours, respectively.
They exit from quiescence at respective rates �

s

and �

d

. In addition, there
is a delay between the creation of a new DSC cell (i.e. progeny of a SLRC
cell) and the time at which it begins to reproduce; this delay is a minimum
of M

d

time units and cells begin reproducing at rate ⌘

d

. For clarity we will
first consider the scenario where �

s

,�

d

, ⌘

d

! 1, i.e., cells exit quiescence
and begin reproducing synchronously at times L

s

and L

d

. We will consider
the setting of finite rates in subsection .

In summary, if we start with a population of Nd DSC and N

s SLRC,
then after the first dose of d Gy, there will be Nd exp(�↵

d

d��

d

d

2) DSC and
N

s exp(�↵

s

d � �

s

d

2) SLRC. Additionally, �Nd exp(�↵

d

d � �

d

d

2) DSC are
in the process of being converted to SLRC.

Let us now consider the cell numbers once t units of time have passed
since the first treatment. At that time, the number of DSC is given by

N

d

e

�↵dd��dd
2
h
(1� �) erd(t�Ld)+ + �e

�⌫t

+ a

s

�⌫

Z
t

0

e

rd(t�s�Md)+
Z (s�Ls)+

0

e

�⌫y

e

rs(s�y�Ls)+
dyds

#

+ a

s

N

s

e

�↵sd��sd
2

Z
t_Ls

Ls

e

rs(s�Ls)
e

rd(t�s�Md)+
ds,

where the first term in the brackets refers to the number of DSC that sur-
vived and do not have the potential to revert to the SLRC state, plus any
growth that occurs if t is su�ciently large. The second term in the brackets
represents the number of cells that have begun to revert but are still DSC
at time t. The integral in the bracket represents the creation of new DSC
from the newly created SLRC population, i.e. those SLRC that were created
from the reversion of DSC. The integral outside the bracket represents the
creation of DSC from the original SLRC cell population. Note that the two
integral terms are zero unless t > L

s

, because the SLRC population can only
create DSC L

s

hours after the dose of radiation. Then the number of SLRC
is given by

N

s

e

�↵sd��sd
2
e

rs(t�Ls)+ + �N

d

e

↵dd��dd
2
⌫

Z
t

0

e

�⌫s

e

rs(t�s�Ls)+
ds.
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The first term represents the population of SLRC that survived the dose of
radiation plus any growth that has occurred since then. The second term
represents the number of DSC that have reverted to the SLRC state plus any
growth that has occurred in this population.

The ith dose of treatment

Let us now consider how treatment i � 1 a↵ects the system. Suppose we
know the number of SLRC and DSC, N

s

i

and N

d

i

, immediately prior to
treatment i. In what follows, we describe how to use the knowledge of N s

i

,
N

d

i

,t (the time between treatments i and i+1), and d

i

(the dose of treatment
i) to determine the state of the population prior to treatment i+ 1.

Immediately after a treatment of d
i

Gy, the number of DSC is given by

N

d

i

e

�↵ddi��dd
2
i

with a fraction � capable of converting to the SLRC state, and the number
of SLRC is given by

N

s

i

e

�↵sdi��sd
2
i
.

Then the populations prior to treatment i+ 1 are given by

N

d

i+1 = N

d

i

e

�↵ddi��dd
2
i

h
(1� �) erd(t�Ld)+ + �e

�⌫t (1)

+a

s

�⌫

Z
t

0

e

rd(t�s�Md)+
Z (s�Ls)+

0

e

�⌫y

e

rs(s�y�Ls)+
dyds

#

+ a

s

N

s

i

e

�↵sd��sd
2

Z
t_Ls

Ls

e

rs(s�Ls)
e

rd(t�s�Md)+
ds

N

s

i+1 = N

s

i

e

�↵sdi��sd
2
i
e

rs(t�Ls)+ + �⌫N

d

i

e

�↵ddi��dd
2
i

Z
t

0

e

�⌫s

e

rs(t�s�Ls)+
ds.

The DSC, Nd

i+1, are comprised of those that have not yet started to revert,
the cells that started to revert but have not yet reverted to the SLRC state,
any growth that has occurred since the last treatment, and the creation of
new DSC from the SLRC population. In the formula for the SLRC, N s

i+1,
the first term represents the SLRC that survived the dose of radiation while
the second term is the result of any de-di↵erentiation events that might have
occurred.
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Instead of studying the total population of cells, let us work with the
fraction of cells that remain viable. In particular, if Nd

1 and N

s

1 are the start-
ing populations of DSC and SLRC, respectively, we examine the evolution of
F

d

i

= N

d

i

/N

d

1 and F

s

i

= N

s

i

/N

s

1 . Then, in lieu of (1), we have

F

d

i+1 = F

d

i

e

�↵ddi��dd
2
i

h
(1� �) erd(t�Ld)+ + �e

�⌫t (2)

+a

s

�⌫

Z
t

0

e

rd(t�s�Md)+
Z (s�Ls)+

0

e

�⌫y

e

rs(s�y�Ls)+
dyds

#

+ a

s

F

s

i

R

e

�↵sd��sd
2

Z
t_Ls

Ls

e

rs(s�Ls)
e

rd(t�s�Md)+
ds,

F

s

i+1 = F

s

i

e

�↵sdi��sd
2
i
e

rs(t�Ls)+ + �⌫RF

d

i

e

�↵ddi��dd
2
i

Z
t

0

e

�⌫s

e

rs(t�s�Ls)+
ds.

Recall that R = N

d

1 /N
s

1 .
For what follows it is useful to observe that

⌫

Z
t

0

e

�⌫s

e

rs(t�s�Ls)+
ds =

⌫

⌫ + r

s

e

rs(t�Ls)+ +
r

s

⌫ + r

s

e

�⌫(t�Ls)+ � e

�⌫t

, (3)

and
Z

t

0

e

rd(t�s�Md)+
Z (s�Ls)+

0

e

�⌫y

e

rs(s�y�Ls)
dyds (4)

=
1

⌫ + r

s

Z
Ls_t

Ls

e

rd(t�s�Md)+
�
e

rs(s�Ls) � e

�⌫(s�Ls)
�
ds,

and for any z,

h(z, t, L
s

,M

d

) =

Z
Ls_t

Ls

e

rd(t�s�Md)+
e

z(s�Ls)
ds (5)

=
1

z � r

d

�
e

z(t�Md�Ls) � e

rd(t�Md�Ls)
�
1{t>Ls+Md}

+
1

z

�
e

z(t�Ls) � e

z(t�Ls�Md)
�
1{t>Ls+Md} +

1

z

�
e

z(t�Ls) � 1
�
1{Ls<t<Ls+Md}

Finite rates

Until now we have assumed that exit from quiescence induced by radiation
is a synchronous phenomenon. In particular we have assumed that the rates
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�

d

,�

s

⌘

d

are infinite. However, in glioma there is no evidence to indicate
that this is in fact the case. We will now adjust our model to incorporate
the setting of finite rates, i.e., asynchronous exit from quiescence.

First define the coe�cient functions,

a(t, L
s

, L

d

,M

d

) = (1� �) erd(t�Ld)+ + �e

�⌫t (6)

+
a

s

�⌫

⌫ + r

s

(h(r
s

, t, L

s

,M

d

)� h(�⌫, t, L

s

,M

d

))

b(t, L
s

,M

d

) =
a

s

R

h(r
s

, t, L

s

,M

d

)

c(t, L
s

) = �⌫R

Z
t

0

e

�⌫s

e

rs(t�s�Ls)+
ds

d(t, L
s

) = e

rs(t�Ls)+
,

where we used (4) and (5) to simplify the expressions for a and b. Then,
in the setting of cells exiting quiescence simultaneously, equation (2) can be
written in the compressed form

F

d

i+1 = F

d

i

e

�↵ddi��dd
2
i
a(t, L

s

, L

d

,M

d

) + F

s

i

e

�↵sdi��sd
2
i
b(t, L

s

,M

d

)

F

s

i+1 = F

d

i

e

�↵ddi��dd
2
i
c(t, L

s

) + F

s

i

e

�↵sdi��sd
2
i
d(t, L

s

).

Recall that this expression gives the remaining fraction of viable cells t units
after a dose of d Gy of radiation.

In order to adapt this result to the setting of finite rate within each
coe�cient function a, b, c, d we need to replace L

s

, L

d

, and M

d

with the in-
dependent random variables with respective densities

f

Ls(x) = �

s

e

��s(x�Ls)
, x � L

s

f

Ld
(x) = �

d

e

��d(x�Ld)
, x � L

d

f

Md
(x) = ⌘

d

e

�⌘d(x�Md)
, x � M

d

.

We then integrate the resulting random variables with respect to these den-
sities. Specifically the viable fraction of SLRC and DSC t units of time after
d Gy of radiation in the setting of asynchronous exit from quiescence can be
written as

F

d

i+1 = F

d

i

e

�↵ddi��dd
2
i
ā(t, L

s

, L

d

,M

d

) + F

s

i

e

�↵sdi��sd
2
i
b̄(t, L

s

,M

d

) (7)

F

s

i+1 = F

d

i

e

�↵ddi��dd
2
i
c̄(t, L

s

) + F

s

i

e

�↵sdi��sd
2
i
d̄(t, L

s

),
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where

ā(t, L
s

, L

d

,M

d

) = �e

�⌫t + �

d

(1� �)

Z 1

Ld

e

rd(t�x)+
e

��d(x�Ld)
dx

+
a

s

�⌫⌘

d

�

s

r

s

+ ⌫

Z 1

Md

Z 1

Ls

h(r
s

, t, x, y)e�⌘d(y�Md)
e

��s(x�Ls)
dxdy

� a

s

�⌫⌘

d

�

s

r

s

+ ⌫

Z 1

Md

Z 1

Ls

h(�⌫, t, x, y)e�⌘d(y�Md)
e

��s(x�Ls)
dxdy

b̄(t, L
s

, L

d

) =
a

s

R

Z 1

Md

Z 1

Ls

h(r
s

, t, x, y)e��s(x�Ls)
e

�⌘d(y�Md)
dxdy

c̄(t, L
s

) = �⌫R

Z 1

Ls

✓Z
t

0

e

�⌫s

e

rs(t�s�x)+
ds

◆
e

��s(x�Ls)
dx

d̄(t, L
s

) =

Z 1

Ls

e

rs(t�x)+
e

��s(x�Ls)
dx. (8)

Explicit formulas for these integrals are provided in Section .

Second iteration of the mathematical model

In order to better fit the observed mouse survival data, we introduce an iter-
ated version of our mathematical model. The basic idea of the new version of
the model is to assume that when a population of glioma cells is irradiated,
the fraction of cells capable of reversion, �, depends on how many doses of
radiation have been administered and the time elapsed since the previous ad-
ministration of radiation. The fraction of cells capable of reversion following
the initial dose of radiation is given by �0. Subsequent doses of radiation will
induce a di↵erent behavior. Specifically, if it has been t0 time units since the
last dose of radiation, then the fraction of cells capable of reversion following
a dose of radiation is given by

�(t0) = �0 exp
⇥
�(t0 � µ)2/�2

⇤
,

where �0, µ and � are system parameters. The parameter 0 < �0 < 1
represents the fraction of cells capable of reversion in response to the first dose
of radiation, and thereafter represents a maximal possible fraction available
for reversion. The parameters µ and �

2 reflect the time dynamics of the
reversion process. In particular, µ represents the dose spacing that leads to
the maximal amount of cell reversion to the SLRC state, and � represents
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how sensitive this maximum is to changes in the spacing. For example, a
larger value of �2 would mean that �(t0) is less sensitive to the value of t0,
while smaller values of �2 mean an increased sensitivity to the value of t0.

Based on this discussion, we can write the following expressions for the
population of DSC and SLRC t units of time after the initial dose of d Gy of
radiation as

N

d

e

�↵dd��dd
2
h
(1� �0) e

rd(t�Ld)+ + �0e
�⌫t

+ a

s

�0⌫

Z
t

0

e

rd(t�s�Md)+
Z (s�Ls)+

0

e

�⌫y

e

rs(s�y�Ls)+
dyds

#

+ a

s

N

s

e

�↵sd��sd
2

Z
t_Ls

Ls

e

rs(s�Ls)
e

rd(t�s�Md)+
ds,

and

N

s

e

�↵sd��sd
2
e

rs(t�Ls)+ + �0N
d

e

↵dd��dd
2
⌫

Z
t

0

e

�⌫s

e

rs(t�s�Ls)+
ds.

Analogous to (2) we report the fraction of viable cells immediately prior to
the i + 1 dose; however, we now stipulate that i > 1 and that there are t0

time units between dose i� 1 and i. We then get that

F

d

i+1 = F

d

i

e

�↵ddi��dd
2
i

h
(1� �(t0)) e

rd(t�Ld)+ + �(t0)e
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Similar to the original model we can incorporate asynchronous exit by treat-
ing the constants L

d

, L

s

,M

d

as random variables and then integrating the
previous display over the respective densities of these random variables. Do-
ing so gives the formula
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where

ā(t, L
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d
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✓Z
t

0

e

�⌫s

e

rs(t�s�x)+
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◆
e
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d̄(t, L
s
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Ls

e

rs(t�x)+
e

��s(x�Ls)
dx. (11)

Explicit formulas for these integrals are provided in the section below, ”Ex-
plicit formulas for asynchronous exit”.

A simplified version of the model

The formulas in (9) and (10) are unwieldy and di�cult to analyze and opti-
mize. We therefore now simplify them by considering realistic values of some
of the parameters. We will focus on simplifying (9), any resulting formulae
can then be integrated to give a simplified version of (10).

We can numerically evaluate our model and learn that if we assume L
s

>

200 and M

d

< 1, our model still provides a good fit to the survival data. To
further simplify that model we then replace M

d

with 0. Another observation
is that the model essentially gives the same prediction for all values of ⌫ larger
than 2 or 3, and furthermore these predictions match well with experimental
results. We therefore simplify our model by taking the limit ⌫ ! 1. The
version of the model after sending ⌫ ! 1 (without assumptions on L

s

) is
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Next if we assume that L
s

is greater than the spacing between any two doses
during the course of therapy, then the two integrals in the previous display
will vanish for all but the final dose of radiation. Therefore if we have K total
doses of radiation administered then for i < K we have the much simplified
form

F

d

i+1 = (1� �(t0)) e
rd(t�Ld)+

F

d

i

e

�↵ddi��dd
2
i (12)
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e
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e
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2
i
.

If we denote the fraction of viable cells x days after conclusion of therapy
by (F d

K+x

, F

s

K+x

) then we have (assume 24x � L

s

), using the substitution
t = 24x,
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.

Explicit formulas for asynchronous exit

In this section, we evaluate the integrals from (8).
We begin by calculating ā(t), where we first will need the following

J

d

1 (t, z) = �

d

Z 1

Ld

e

z(t�td)+
e

��d(td�Ld)
dt

d

(13)
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d
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��d(t�Ld)

◆
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for z + �

d

6= 0. If z + �
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e

zt+�dLd(t� L

d

) + e

��d(t�Ld)
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Looking at the next term in ā we see that we will need to calculate
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⌘

d

Z 1
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h(z, t, x, y)e��s(x�Ls)
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for arbitrary z. Looking at the definition of h in (5) we see that it will be
necessary to know the following integral for arbitrary z,
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In addition we need the following
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With these formulas in place we can now write down an explicit expression
for the integral of the function h,

�
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d

Z 1

Ls

Z 1

Md

h(z, t, x, y)e��s(x�Ls)
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Combining the formula for ā from (8) with the previous display displays
(13),(14),(15),(16) we arrive at
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Moving onto b̄ we combine (8) with (17) to get
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In order to write down an expression for c̄(t) and d̄(t) we need to define
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Then from (8) and (3) we know that
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Finally we have that
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Initial parameter estimate

Parameter values

In order to estimate net growth rate of the tumor bulk, we utilized the data
displayed in Supplementary Table 1. The images this data is based on can
be seen in Supplementary Figure S1.

Parameters used for schedule search

We then determined parameter values (see Supplementary Table 2) to iden-
tify optimized and alternative treatment schedules.

Optimization techniques

We assume that the quality of a given dosing regime is determined by measur-
ing the population of tumor cells x days after treatment is concluded. There
are of course multiple methods by which we can search for the optimal sched-
ule. However, since this problem can be viewed as an integer programming
problem it is an NP hard problem and it is therefore in general not feasi-
ble to find the absolute optimal therapy. Therefore, we settled for finding
schedules that are near optimal, or at least significantly outperform a stan-
dard schedule. There are many approaches to solving such a problem, e.g.,
discretized dynamic programming, solving the problem without the integer
constraints, and lastly a stochastic search method. Due to speed of compu-
tation, we chose the approach of a stochastic search algorithm, specifically
the simulated annealing algorithm.

In order to carry out our optimization procedure it is necessary to specify
the constraints on the radiation schedules we are considering. As mentioned
earlier we are considering schedules implemented over a continuous five day
period. Furthermore each dose of radiation can only be administered at 10
hourly appointments between 8am and 5pm. For simplicity we assume that
the hourly appointments are on the hour. An additional constraint is that
the total amount of radiation administered over the course of the schedule
must be less than 10Gy. This amount is chosen because it has been shown
that additional radiation provides little benefit in additional tumor reduction
in the mouse model under consideration. In addition we do not consider the
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e↵ects of BED because the observed value of �
d

is so negligible, and since this
is a survival study we are not interested in long term e↵ects of the schedule.
The last constraint that we impose on our schedules is that we only allow a
maximum of three treatments per day. This constraint was chosen to recreate
conditions in the clinic whereby a schedule with over 3 treatments in a day
would be judged as too onerous for a patient.

Before describing the algorithm, it is important to point out that simply
finding an ‘optimal’ schedule is not su�cient for the problem at hand. In
any animal population, the animals’ response to radiation therapy will vary
significantly from individual to individual. In the context of the mathemat-
ical model we have developed, this means that each individual will have its
own unique set of parameters for the model. Thus simply finding the opti-
mal schedule for the ‘normal’ parameters will not deliver the best possible
schedule to every patient. However, it is possible to improve survival results
by finding schedules that significantly outperform commonly used schedules
across a wide region of parameter space. A direction for future research will
be to develop methodologies that enable the estimation of parameters for in-
dividual patients based on the dynamic process of how their tumor responds
to radiation therapy.

As mentioned above, the quality of a schedule is judged by the fraction of
original cells that are present x days after K days of therapy. If the number
of viable SLRC and DSC at the end of the course of treatment is given by
N

s

1,K+x

and N

d

1,K+x

, respectively, then we would be interested in
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1
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.

For any fixed schedule s we can easily find c(s) = f

�
F

s

1,K+x

, F

d

1,K+x

�
, but

of course one needs to find an optimal (or in our case an improved) schedule.
This is carried out via the method of simulated annealing (SA). Note that
when using this optimization approach it is impossible to know whether the
returned schedule is in fact the optimal schedule. However, one does know
that the returned schedule satisfies some criteria such as a minimum level
of improvement over a standard schedule. In fact we use this as a stopping
criteria in our algorithm. We start the algorithm with the standard schedule
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of 2 Gy once per day 5 days a week for w weeks, denote this schedule by s0,
and the ‘cost’ incurred by this schedule as c0.

The intuitive idea of the algorithm is that one performs a random walk
on the space of feasible schedules, but does not always accept random walk
steps that result in a poorer performing schedule. Specifically, the random
walk always accepts changes that improve the performance and only accepts
those that diminish the performance with a probability (defined below). This
probability starts high and shrinks to zero as the system runs for longer
periods of time, see e.g. [5]. In order to describe the SA we need to define
an acceptance probability and how we choose ‘neighboring’ schedules in our
random walk. The probability of accepting a schedule with cost c0 given the
state of the current schedule is c on step k of the algorithm is given by

P (c, c0, k,�) =

(
1, c

0
< c

e

(c�c

0)k�
, , c

0
> c,

where � is a small positive constant.
Any implementation of simulated annealing depends closely on the gen-

eration of neighboring states. Here the state space is the space of feasible
schedules. Given a feasible schedule x we generate a neighboring schedule
x

0 as follows. We randomly select one of the time slots where radiation is
administered and remove a single Gy of radiation from that slot. We then
search over all feasible slots and choose one of those slots to move this Gy
of radiation. Slots that are closer to the slot that we removed the Gy from
are given a heavier weight. Therefore, the neighbor algorithm can be de-
composed into two steps, choosing a ‘donor’ slot and a ‘recipient’ slot. The
algorithm we use is described as follows
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Data: Initial Schedule, nday, nslot,k
Result: Neighboring Schedule
Create vector day; (where day(i) is total Gy administered on day i)
Renormalize day into probability vector ! pday ;
Choose donor day at random according to pday ;
Create vector slot ; (where slot(i) is Gy given during slot i on day
donor day)
Renormalize slot into probability vector ! pslot ;
Choose donor slot at random according to pslot ;
Set j⇤ =donor day �5floor(donor day/5); (That is j⇤ corresponds to
the day of the week that donor day lies on).
Create 5 dimensional vector rec day as

dayw(i) =

(
k

0.4
, i = j⇤

1/|i� j⇤|, i 6= j⇤

Renormalize dayw into probability vector ! prec day ;
Choose i⇤ at random according to prec day ;
Set rec day= i⇤ + 5floor(donor day/5);
Create vector cslot with nslot entries as

cslot(i) =

(
k

.125
, i = donor slot

1/|i� donor slot|, i 6= donor slot

Renormalize clsot into probability vector ! prec slot ;
Choose s⇤ at random according to prec slot ;
If s⇤ = donor slot and rec day = donor day redraw s⇤;

Sensitivity analysis

In order to identify important parameters and parameters that can be ig-
nored, we performed a sensitivity analysis of the model. Specifically for all
parameters we plotted model predictions as we varied a parameter. The re-
sult of this is shown in Figure S4. In order to ensure that we performed
our sensitivity analysis in a physically meaningful regime, we adjusted the
remaining 16 parameters as we varied the parameter of interest to ensure
that the model predictions still matched the experimental observations.
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In order to do this we had to develop a mathematical framework for
studying the discrepancy between our model predictions and the experiment
observations. For any given parameter set x = (x1, . . . , x17), define the func-
tion E1(x) to be the discrepancy between the model prediction based on
parameter set x and the time series observation data. Specifically, if we de-
note our time series data by f1, . . . , fn and our corresponding predictions of
fractional population change under parameter set x and two weeks of stan-
dard therapy by f1(x), . . . , fn(x), then we define

E1(x) =
nX

i=1

(f
i

� f

i

(x))2 .

In addition we need to incorporate the survival studies into the error associ-
ated with a parameter set x. Thus for any schedule s, denote the observed
median survival date by m

s

, and denote the predicted fractional population
change on day m

s

after exposure to schedule s under parameter set x by
m

s

(x). Then define the function

E2(x) =
X

s2S

(1.75�m

s

(x))4 ,

where S is the set of schedules considered. Note that we used S = {hyperfractionated,
optimum-1, standard, single dose, and scramble}. We did not include optimum-
2 because we did not have the data at the time of the analysis, and we did
not include hypofractionated because it caused di�culties with our optimiza-
tion algorithm. We assume that 1.75 is the fractional change associated with
onset of recurrence induced sacrifice of the mouse. Note that we have used
the fourth power in this formula to add further weight to the survival studies
since |S| ⌧ n, i.e., there are fewer data points in the survival studies than
in the time series. We then define the total discrepancy associated with the
parameter set x as

E(x) = E1(x) + k ⇤ E2(x),

where k > 0 is chosen to add further weight to the survival data. This
function can be minimized over the vector x to obtain a minimal amount of
discrepancy, we denote this as

E = min
x

E(x),
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and denote the minimizing parameter set by x⇤. We are further interested
in the following minimal values for 1  j  17,

Ê

j

(x) = min{E(x) : x
j

= x},

that is the the minimal error when we constrain our parameter set so that
parameter j takes the value of x. Denote the minimizing vector by x̂⇤

j

(x).
With this mathematical framework in place it is now possible to perform a
sensitivity analysis of our parameter set while ensuring that we only consider
parameter regimes that give predictions that are su�ciently close to our
experimental observations. In particular, we generate a sensitivity plot as
the jth parameter varies over the interval [a

j

, b

j

] as follows.

1. For each value x 2 [a
j

, b

j

], create the vector x⇤
j

(x) by replacing the jth
coordinate of x⇤ with x.

2. If E(x⇤
j

(x)) < 2 ⇤ E, then we say that the parameter set x⇤
j

(x) is
acceptable. If not we test x̂⇤

j

(x). Specifically, if E(x̂⇤
j

(x)) < 2 ⇤ E then
we use the parameter set x̂⇤

j

(x). If E(x̂⇤
j

(x)) > 2 ⇤ E then we declare
the value x as infeasible.

3. For each feasible value x 2 [a
j

, b

j

], we generate model predictions based
on the acceptable parameter set.

Parameter Ranges

Based on our sensitivity analysis procedure we were able to identify feasi-
ble ranges for several of our model parameters. However, the parameters
⌘

d

,�

d

, L

s

and M

d

gave feasible answers for all values tested. This was a par-
tial motivation for excluding these parameters in the simplified model. The
relevant ranges for the remaining parameters are reported in Supplementary
Table 3.

We then investigated which parameters in the model most sensitively
a↵ect its predictions (Figure 5C, Figure S4, Supplemental Information). To
this end, we investigated the relative e�cacy of standard therapy to optimum-
1 as we varied each parameter. Predictably, the top two most important
parameters are the initial radiosensitivity (↵) and the proliferation rate (r

d

)
of DSCs, as they control the surviving fraction and rate of tumor regrowth,
respectively. However, the next three most sensitive parameters are novel
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components of our model: the fraction of cells capable of reversion, �0, the
time of maximal reversion after radiation, µ, and the width of the window of
reversion after radiation, �2. These parameters are vital for incorporating the
dynamic nature of rapidly acquired resistance, and are essential to defining
the relative e↵ectiveness of the various schedules tested (Figure 5C, S4).

In panels (C) and (D) of figure S4 we observe important constraints on the
parameters µ and �

2. If the peak occurs too quickly after radiation (less than
roughly 1.6 hours), then the model predicts that the scrambled control will
outperform the optimum-1 schedule. Similarly, if the peak reversion occurs
too long after radiation (roughly 4 hours), then the model predicts that
hyperfractionated therapy will outperform the optimum-1 schedule. Since
these predictions contradict our experimental observations, we conclude that
a reasonable range for peak reversion (µ) is 1.6 to 4 hours. In addition, if
the width of the window for reversion, �2, is too large (roughly 2), then the
model predicts that the scrambled control will outperform the optimum-1
schedule. We therefore obtain an upper bound on reasonable values for �2.
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Mouse Day 1 Volume (mm3) Day 2 Volume (mm3) Day 3 Volume (mm3)
M1 8.3 21.7 93.8
M2 9.2 30.5 125.9

Table S1. Growth Results for Mouse Gliomas. Related to Figure 1.

Parameter Value Justification
↵d = .0987 Fit from figure 1B

�d = 1.14 ⇤ 10�7 Fit from figure 1B
⇢ = 0.4 Previous lab experience, model is robust, e.g., figure S4.
⌫ = 1.15 [3]
rd = .0088 Fit from Supplementary Table 1

rs = as = 0.0001 Di�cult to measure, model is robust, e.g., figure S4.
Ld = 24, Ls = 36 Estimate from previous experience, [4]
�d = 0.5, Md = 24 Estimate from previous experience, [4]
⌘d = 0.5, �s = 0.35 Estimate from previous experience, [4]

R = 20 [2] and [1]
� = 0.15 Not known how to measure, used a conservative estimate.

Table S2. Parameters Used for Schedule Search. Related to Figure 2.
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Parameter Value Range Units
↵d [0.005, 0.22] 1/Gy
�d [0, 0.0025] 1/Gy2

⇢ [0, 1] Non-dimensional ratio
� [0.15, 1] Non-dimensional ratio
⌫ [0.015,1) 1/hour
rd [0.0028, .0045] 1/hour
rs [0, 0.0015] 1/hour
as [0, 0.0025] 1/hour
Ld [0, 160] hour
�d [0.023,1) 1/hour
µ [1.6, 4] hour
�2 [0, 2] hour

Table S3. Parameter Ranges. Related to Figure 5.
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