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1 The Genomic Risk Score

The model that produces the genomic risk score [1] is given in Supplementary Table 1∗. Also
provided is the intercept β0. The intercept is not required if we are only interested in ranking
patients according to their risk, and do not wish to compare the cutoffs with the results in
the main manuscript. The final score for an individual is

ŷi = β0 +
228∑
j=1

xijβj , (1)

where xij is the genotype for the jth SNP in the ith sample.
The easiest way to produce a risk score for a dataset is using PLINK, as it will take

care to use the correct minor allele. Assuming that the data are called DATA and are in
BED/BIM/FAM format:

plink --noweb --score grs.txt --bfile DATA

which will produce a file named DATA.profile.
The profile file can be read into R, and the predictions written back to the file profile.txt:

d <- read.table("DATA.profile", header=TRUE)

intercept <- -0.757226

d$GRS <- d$SCORE * d$CNT + intercept

write.table(d[, c("FID", "IID", "GRS")],

file="profile.txt", row.names=FALSE, col.names=FALSE)

Note that PLINK divides the profile score by the number of alleles, which we undo by mul-
tiplying by CNT.

∗A PLINK-compatible text file grs.txt is available at http://dx.doi.org/10.6084/m9.figshare.154193.
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2 Estimating Diagnostic Performance of HLA Typing

2.1 Population Estimates

We can estimate sensitivity (sens), specificity (spec), PPV, and NPV from the confusion
matrix tabulating the true positives (TP), false positives (FP), true negatives (TN), and true
positives (TP), as follows: Sens = TP / (TP + FN); Spec = TN / (TN + FP); PPV = TP /
(TP + FP); NPV = TN / (TN + FN). For PPV and NPV, we use the observed prevalence
in the data, hence PPV=precision here.

In the 1% of the population setting, assuming conservatively that 30% of the population
are HLA positive, and that 99.6% of CD-positive individuals are positive for HLA (= 0.996×
0.01 = 0.00996 of the population are true positives), we derive the confusion matrix:

HLA+ HLA−

CD+ TP = 0.00996 FN = 0.00004 True = 0.01
CD− FP = 0.29 TN = 0.7 False = 0.99

Pos = 0.3 Neg = 0.7 Total = 1.00

From this matrix we estimate Sens = 0.996, Spec = 0.707, PPV = 0.033, and NPV = 1.
In the 10% prevalence setting, it has estimated that 73% of 1st-degree family members of

an index case with celiac disease had HLA DQ2 [74], which we use as a proxy for overall HLA
status due to the lack of individuals with DQ8 in that study and the fact that DQ2 carries
most of the CD risk. Celiac disease was diagnosed in 11%, of which all had HLA DQ2. This
leads to the confusion matrix:

DQ2+ DQ2−

CD+ TP = 0.11 FN = 0.00 True = 0.11
CD− FP = 0.62 TN = 0.27 False = 0.89

Pos = 0.73 Neg = 0.27 Total = 1.00

From this matrix we estimate Sens = 1, Spec = 0.3, PPV = 0.151, and NPV = 1.

2.2 HLA Imputation

HLA type information was not available for our data. To compare the estimates of PPV/NPV
from the literature with our data, we used the R package HIBAG v1.2.0.1 [35] to impute the
HLA type, based on SNPs in chr6. HIBAG uses ensemble classifiers to predict HLA haplotypes
from genotypes, after having been trained on data with known haplotypes.

The output from HIBAG is in the form of two DQA1 haplotypes and two DQB2 haplotypes
(alleles). Note that allele 1 and allele 2 are not phased, that is, allele 1 for DQA1 is not
necessarily on the same chromosome as allele 1 for DQB1. We then combined the alleles
using the following rules to derive the imputed HLA-DQ2/DQ8/DQ2.5 heterodimers for each
sample:
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• DQ2.2: DQA1*02:01 / DQB1*02:02

• DQ8: DQA1*03:01, X / DQB1*03:02, Y

• DQ2.5 homozygous: DQA1*05, 05 / DQB1*02, 02

• DQ2.5 heterozygous: DQA1*05, X / DQB1*02, Y, where X and Y are any alleles
(except for X=05 and Y=02 that would make the type DQ2.5 homozygous)

Note that for each rule, there may be several allele configurations that need to be tested
due to missing phase information. For example, for DQ2.2 there are four configurations that
could lead to the same observed heterodimer:

• DQA1 allele 1 = 02:01, DQB1 allele 1 = 02:02

• DQA1 allele 2 = 02:01, DQB1 allele 1 = 02:02

• DQA1 allele 1 = 02:01, DQB1 allele 2 = 02:02

• DQA1 allele 2 = 02:01, DQB1 allele 2 = 02:02

2.2.1 Presence/Absence of Imputed CD Risk Heterodimers

Current clinical practice in CD diagnosis is the use of DQ2.2 / DQ8 / DQ2.5 heterodimer sta-
tus as a binary variable (presence/absence), for exclusion of CD in individuals with suspected
CD. Applying the same logic as in Supplementary Section 2.1, we derived the confusion tables
for the UK1 and UK2 datasets:

UK1 UK2

Pheno. HLA+ HLA− HLA+ HLA−

CD+ TP = 0.3514 FN = 0.0023 True = 0.3536 TP = 0.2648 FN = 0.0077 True = 0.2725
CD- FP = 0.3718 TN = 0.2745 False = 0.6464 FP = 0.4217 TN = 0.3058 False = 0.7275

Pos = 0.7232 Neg = 0.2768 Total = 1 Pos = 0.6865 Neg = 0.3135 Total = 1

Assuming a prevalence of K = 1%, we obtain PPV of 0.017 for both UK1 and UK2, and
an NPV of 0.9998 and 0.9993 for UK1 and UK2, respectively. For prevalence of K = 10%,
PPV=16% and NPV=99% for both UK1 and UK2, largely in agreement with literature-based
estimates (Supplementary Section 2.1)

3 Analysis of CD Predictive Performance

We compared the predictive performance of several methods based on SNPs, haplotypes, and
combinations of SNPs and haplotypes (Supplementary Figure 2):

• SparSNP (`1-penalized SVM) on all autosomal SNPs (denoted GRS All).

• SparSNP on all MHC SNPs, defined as chr6 29.7Mb–33.3Mb (denoted GRS MHC ).
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• SparSNP on all non-MHC SNPs, defined as all autosomal SNPs outside the above MHC
range (denoted GRS non-MHC ).

• Unpenalized logistic regression on the heterodimer types inferred from the HLA haplo-
types (using HIBAG), categorized into three groups: high risk (HLA-DQ2.5 homozygous
or DQ2.2/DQ2.5), low risk (HLA-DQ2/DQ8 negative), and medium risk (all others) [21]
(denoted Romanos HLA).

• The Romanos 3-level HLA approach together with a weighted risk score defined by 57
non-HLA Immunochip SNPs, with weights given in the original publication [21] (denoted
Romanos HLA+57 SNPs). This was only available for the Immunochip dataset.

• Unpenalized logistic regression on a set of individual SNPs that tag known HLA haplo-
types [36] (rs2395182, rs7775228, rs2187668, rs4639334, rs7454108, and rs4713586). For
the UK2, Finn, IT, and NL datasets, 5 out of the 6 SNPs were present or had proxies
with perfect LD (r2 = 1). One remaining SNP, rs4639334, could not be tagged, but is a
marker for HLA-DQ7, a low-risk haplotype for CD. For the UK1 dataset, three assayed
SNPs were assayed (rs2395182, rs7775228, rs2187668) and were also in the UK2 dataset.
This model was denoted Monsuur HLA SNPs.

For the comparison of the UK2→UK1 and UK2→Immunochip performance, we used the
SNPs common to each pair of datasets, respectively, and excluded related individuals (see
main Methods section). The SparSNP models were optimized using 10×10-fold validation on
the UK2 dataset, and the best model was applied to the other datasets without any further
tuning. For the Monsuur HLA SNPs and Romanos HLA methods, we used a similar approach
were the model was trained using logistic regression on the UK2 dataset (we report cross-
validation results), and externally validated on the other datasets. For the Romanos HLA
+ 57 SNPs, we used logistic regression in the Immunochip data, modeling both the HLA
type and the risk score given by the non-HLA SNPs as in the original publication, within
cross-validation.

4 Checking for Confounding by Population Stratification

We used smartpca from EIGENSOFT 4.2 [67] to estimate the top 10 principal components
for the UK2 dataset. Prior to running PCA, we further reduced the QCd UK2 data to remove
regions of known high LD or inversions [72]:

• Excluded regions: chr5: 44Mb–51.5Mb, chr6: 25Mb–33.5Mb, chr8: 8Mb–12Mb, chr11:
45Mb–57Mb.

• Thinned the SNPs by LD (r2 < 0.2) using plink --indep-pairwise 1500 150 0.2.

In smartpca, we also used the option nsnpldregress:5 to further account for LD. This
left 98,983 autosomal SNPs from which the final PCs were determined.

First, we examined whether the top 10 PCs were themselves predictive of case/control status
in cross-validation, using unpenalized logistic regression (R package rms [73]). The 10 PCs
were essentially non-predictive of case/control status (average AUC=0.52 in 200 bootstrap
replications).
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Second, we trained L1-penalized models on the original UK2 dataset (after removing the
outliers) together with the 10 PCs as covariables. The PCs were allowed to enter the model
in the training phase, however, in testing the PCs were ignored, i.e., the final predictor is
composed of SNPs only, so that any predictive information contained in the PCs will not
contribute to the final estimates of AUC, and if the PCs are highly predictive (at the expense
of the SNPs), this will manifest as low AUC, indicating strong confounding by population
structure. On the other hand, if AUC remains high, this indicates that the SNPs successfully
account for case/control status despite removing the population effects, and that population
structure is not an important factor in the predictive power of this model. After cross-
validation, we took the best SNP model, and externally validated it on the other datasets.

Supplementary Figure 5a shows the cross-validated AUC for the UK2 model accounting for
the 10 PCs, showing essentially no difference in AUC between that model and the original
model without the PCs. External validation is shown in Supplementary Figure 5b, demon-
strating that the high predictive ability for the model accounting for the 10 PCs is conserved
in the other datasets. Together, these results strongly indicate that population stratification
does not play any substantial role in the high predictive ability of these models.

References

[72] J. Fellay, D. Ge, K. Shianna, S. Colombo, B. Ledergerber, E. Cirulli, et al. Common
Genetic Variation and the Control of HIV-1 in Humans. PLoS Genet., 5:e1000791, 2009.

[73] F. E. Harrell. rms: Regression Modeling Strategies, 2013. R package version 4.0-0.

[74] A. Rubio-Tapia, C. T. Van Dyke, B. D. Lahr, A. R. Zinsmeister, M. El-Youssef, S. B.
Moore, M. Bowman, L. J. Burgart, L. J. Melton, and J. a. Murray. Predictors of family
risk for celiac disease: a population-based study. Clinical Gastroenterology and Hepatology,
6(9):983–7, September 2008.

5


	The Genomic Risk Score
	Estimating Diagnostic Performance of HLA Typing
	Population Estimates
	HLA Imputation
	Presence/Absence of Imputed CD Risk Heterodimers


	Analysis of CD Predictive Performance
	Checking for Confounding by Population Stratification

