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Different approximate algorithms have been explored for the Movable Type (MT) 

matrix multiplication approach presented in the manuscript. In order for our algorithm to 

have good accuracy and computational performance we require: (1) much smaller sub-

matrices for computational convenience, (2) avoid creation of large matrices during MT 

computation, (3) inclusion of as many as possible of the significant Boltzmann factor and 

probability values in the respective sub-matrices. It is difficult to avoid a tensor product 

generating a large matrix for any large molecular system, thus we utilized a Hadamard 

(pointwise) product through fixed-size matrices for all atom pairs. This means the size of 

the final matrix is pre-determined at the beginning of the computation, and the Boltzmann 

factor and probability matrices for each atom pair should have the same size. We call 

these fixed-size matrices for all atom pairs "Standard Matrices". Obviously, sizes of the 

original atom pair vectors with tens to hundreds of elements shown in Equation 1 below 

are far from enough for the final matrix size. Construction of the "Standard Matrices" 



relies on replication and tiling of the original atom pair vectors. Wherein, the vectors for 

each individual atom pairwise Boltzmann factor and probability are replicated in the 

"Standard Matrices" through all atom pairs. In order to perform the vector-to-matrix 

conversion, randomly scrambled permutations of the original vectors are needed. By 

introducing permutations to the original vector increases the diversity of atom pair 

combinations at different discrete distance values (ra) in the MT computation, thereby 

increasing the sample size. We offer a detailed explanation in the latter paragraphs. 

Using the bond probability vector as an example, permutations were made based on a 

vector with elements in order. 
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bond

kq/  is the unscrambled probability vector of the kth atom pair with a bond constraint. t 

is the number of discrete probabilities with significant values. scram(X)i represents a 

randomly scrambled permutation of matrix X with i as the index number. The enlarged 

matrix of 
bond

kq/  is represented as follow: 
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/Qk

bond

  in Equation 2 is the "Standard Matrix" we built for the kth atom pair with a bond 

constraint. Although the sizes (the number t in Equation 1) of different vectors kq/  vary 

under different constraints (i.e. 
bond

kq/ , /qk

angle

,
torsion

kq/ ,
long range

kq
−

/ ), kQ/  for all atom pairs was 

fixed to the same size with a predetermined permutation number α and β. The size of the 

Standard Matrix (SM) e.g. g rows ×h columns, must satisfy that the row number g is 

divisible by the sizes t of all the atom pair vectors kq/ , so that each discrete probability 

( )k iq r
 has an equal number of appearance in each SM kQ/ . This definition is important to 

make sure the replication numbers for all Boltzmann factors and probabilities are 

identical in each SM, so that their relative probabilities are the same as in the original 

probability vector. Hadamard products of all the protein probability SMs (n as the total 

number of atom pairs) are then performed: 
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Similarly, SMs for the ligand and the complex are given as: 
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The Boltzmann factor SMs are obtained similarly: 
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From 
bond

kQ/ , the bond probability matrix of one specific atom pair k, through 
bond

PQ/  the 

probability matrix of all protein atom pairs with bond constraints to 
final

PLQ/  the probability 

matrix of all atom pairs in the protein-ligand system, all the matrices have the same size 

such that the size of the SMs is the sample size of the atom pair combinations of the 

protein-ligand system. The advantage of using a pointwise product instead of a tensor 

product is that the size of the final matrix can be controlled at the beginning of the 

computation.  

We use the two sp
3
 carbon -sp

3
 carbon bond terms in propane as an example to further 

explain the construction of the SMs using replication and tiling of the randomized 

vectors. The Boltzmann factor and probability vectors for each of the two bonds were 

modeled as unscrambled arrays: 
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and 
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k indicates one sp
3
 carbon-sp

3
 carbon bond in propane and the discrete distance a goes 

from 1 through t and represent the distance increments. Disordered vectors are generated 

using random scrambling of the original vectors. An example of the randomly scrambled 

vector of the Boltzmann factor with the index number i is shown in Equation 13. For a 

vector with t elements in it, the maximum number of permutation is t! (the maximum 

value of i). Each index number i in the scramble operation scram(X)i represents one 

certain arrangement order of elements in the vector.  
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With 
( )bond

k iscram z/  created, the SM for the kth sp
3
 carbon-sp

3
 carbon bond Boltzmann 

factor can be created by replication and tiling of the 
( )bond

k iscram z/ s. For instance, to 

create a SM with 20 rows and 30 columns using a vector containing 5 Boltzmann factors 

(t=5), replication of the 
( )bond

k iscram z/  in the SM would be generated as: 
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as an example of one randomly scrambled vector. 

Each vector 
bond

kz/  is assumed to contain 5 elements thus 4 scrambled vectors tiled in a 

column makes 20 as the row number thus 120 scrambled vectors assemble the SM 
bond

kZ/
 

with 600 elements. 

For the probability SM, the same scramble and replication processes are performed. 

Furthermore, a probability value and a Boltzmann factor value corresponding to the same 

discrete distance (ra) are mapped to each other in the probability and Boltzmann factor 

SMs. In other words, scrambled vectors of probabilities and Boltzmann factors scrambled 

in the same way (the same index number i) are in the same position in both the 

probability and Boltzmann factor SMs (
bond

kQ/  and 
bond

kZ/
). The mapping of probability and 

Boltzmann factor vectors in the SM 
bond

kQ/  and SM 
bond

kZ/
 is illustrated in Figure 1. 



 

Figure 1. An example of the SM
bond

kZ/
 and its corresponding SM 

bond

kQ/ . The scramble 

operator index numbers with red circles connected by blue arrows indicate that scrambled 

vectors with the same scramble manner (the same index number i) in both 
bond

kZ/
 and 

bond

kQ/  are tiled in the same position in both SMs. 

Due to the mapping of 
( )bond

k iscram z/  and 
( )bond

k i
scram q/

 in 
bond

kZ/
 and 

bond

kQ/ , 

probabilities and Boltzmann factors of the same discrete distance (ra) encounter each 

other in the pointwise product, because each index number i in the
( )

i
scram X

operation 

indicates a certain arrangement order of the elements in vector X. So that in the final SM, 

probabilities for each discrete distance (ra) are assigned to the corresponding Boltzmann 

factors for the same (ra). 

Since the SM for the kth sp
3
 carbon-sp

3
 carbon bond Boltzmann factor is designed as in 

Equation 14, correspondingly, the probability SM is modeled as: 
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Thus Boltzmann factor and probability SMs for the kth (one of the three) sp
3
 carbon-sp

3
 

carbon bond in propane are modeled. In 
bond

kZ/
 and 

bond

kQ/ , 120 scrambled vectors represent 

120 different scrambled permutations of vector 
bond

kz/  and 
bond

kq/  tiled in a pattern from 1 

through 120. SMs for lth (1≤l≤2, l∈N, l≠k) are modeled in a similar way while with 

different tiling sequences for the 
( )

i
scram X

 vectors in both SMs. For 
bond

lZ/
 and 

bond

lQ/ , 

tiling of the 
( )

i
scram X

 should use a different pattern. For instance a possible 
bond

lQ/  with 

120 scrambled vectors could be: 
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As we have mentioned, the maximum permutation number for a vector with t elements 

is t!. So there are around 10
30

 scrambled permutations with a bond vector containing 

about 30 elements, with which we could easily design thousands of 
bond

lZ/
and 

bond

lQ/  of a 

certain atom type pair using different tiling patterns. Using different tiling patterns for 

different atom type pairs increases the mix and match diversity of atom pairs at different 

discrete distance values (ra) in the MT computation, and maximizes the degrees of 



freedom of the elements (shown in Equation 18) in the pointwise product of the SMs of 

these two atom pairs (k and l). 
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Using this replication and tiling scheme, the chance of element duplication in the final 

SM is extremely small due to the pointwise product of all atom pairwise SMs, thus 

maximizing the sampling size with a predetermined SM size. However, the size of the 

SMs is not arbitrary. Probability and Boltzmann factor vectors in each SM are randomly 

permutated and tiled, so that each element in the final matrices (i.e. 
final

LQ/ , 
final

PQ/ , 
final

PLQ/ , 

final

LZ/
, 

final

PZ/
, 

final

PLZ/
 in the equations above) is a probability or Boltzmann factor of one 

energy state in the protein-ligand system from a random combination of the chosen atom 

pairwise probabilities and Boltzmann factors. This indicates that with a fixed SM size, 

each time the pointwise product calculation is carried out it would generate different free 

energy values due to the random combination employed. Hence a SM size that ensures 

the convergence of the final free energy values is necessary for this pointwise 

approximation computation scheme to work effectively. 

With the SM row number g fixed at 700 in order to be divisible by all vectors, 1, 1000, 

10
8
, 10

13
 were selected as the SM column number h in order to generate 700, 7×10

5
, 

7×10
10 

and 7×10
15 

 sampling sizes for the final SMs. In order to test the convergence of 



the free energy calculation using the SM pointwise product with different sizes, the 

binding free energy of one protein-ligand complex was calculated 100 times for each SM 

size, and RMSDs of the resultant binding free energies were collected for the four SM 

sizes. The protein-ligand complex with PDB ID 1LI2 was chosen for the test calculation. 

Binding affinity (pKd) RMSDs for the four SM sizes are listed in Table 1. 

 

Table 1. pKd RMSDs for 100 rounds binding affinity calculations against the protein-

ligand complex 1LI2 using the SM pointwise product with four different SM sizes.  

SM sizes 700 7×10
5
 7×10

10
 7×10

15
 

pKd RMSD 0.059 0.012 0.011 0.011 

 

The test result shows that the pKd RMSD for SM sizes of 7×10
5
, 7×10

10 
and 7×10

15 

only differ by 0.001 and they all generate very low RMSDs (0.012, 0.011 and 0.011). We 

concluded that MT calculations with sample sizes of 7×10
5 

is sufficient to ensure free 

energy convergence. 

Using the pointwise product approximation, a protein-ligand complex would create 

several thousand SMs on average. For a laptop with a Intel(R) Core(TM) i7 CPU with 8 

cores at 1.73GHz and 8Gb of RAM, it takes 6 seconds to calculate the pose and binding 

affinity for the protein-ligand complex 1LI2 and on average less than a minute to 

calculate the pose and binding free energy of one of the 795 protein-ligand complexes 

studied herein. If the SM size is increased to 7×10
10

, the computation time required for 

1LI2 increases to 8 minutes and on average it increases to around 20 minutes using the 

same laptop. Hence, this approach is faster than using MD or MC simulations to collect 



the energies of 7×10
5 

to7×10
10 

protein-ligand poses. Future speed-ups are clearly possible 

using state of the art CPUs and GPUs and this is work that is underway.  

 

 


