Supplementary Material

for

Modeling the Sustainability of a Ceramic Water Filter Intervention

by

Jonathan Mellor, Lydia Abebe, Beeta Ehdaie, Rebecca Dillingham and James Smith

Figure S1: Flow chart of Collect Water Sub-Routine of original model which was used in this study. This flow chart is repeated for each household for each day of the simulation. Square brackets indicate values that are stochastically varied between minimum and maximum values. SW - surface water, CP - community piped, MT - municipal tap, WQ_i daily water quality of ith household. All input data was taken from field measurements (Mellor et al., 2012, 2013) (Reprinted with permission from (Mellor et al., 2012). Copyright 2012 American Chemical Society.)

Figure S2: Flow chart of Basic CWF Routine. WQ_i is obtained for each household on each day from the Collect Water Routine (Figure S1). Default values for filter prevalence, breakage percent and compliance are 100%, 20% (over two years) and 90% respectively and are based on field measurements. LRVs are obtained from the piecewise linear fits of Figure ?? or user input. The WQ_i output is then sent to the ECD Calculation Routine as is given in Figure S4.

Table S1: Basic CWF Routine default values and the ranges used in the behavior space analysis. The default values were based on field measurements and represent the baseline scenario.

Parameter	Default Value	Range of Values in Behavior Space Analysis
Filter Prevalence	100%	0 - 100%
Filter Compliance	90%	0 - 100%
Breakage Percent	20%	0 - 100%

Table S2: Other parameter values used in additional behavior space analyses. All parameter ranges are based on values typically found in this study or by previous researchers.

Parameter	Range of Values in Behavior Space Analysis
Filter LRV	$10^{-5}, 5 \times 10^{-5}, 10^{-4}, 5 \times 10^{-4}, 10^{-3},$
	$5 \times 10^{-3}, 10^{-2}, 5 \times 10^{-2}, 10^{-1}$
Cleaning Interval	Every 0 - 730 days
Yearly Compliance Decline	0 - 100%
Breakage Date	Day 0 to 730
Threshold Water Quality	0, 0.5, 1, 5, 10, 50, 100,
	500, 1000, 2000 CFU/100ml
Willingness to Pay	20, 30, 50, 70, 80, 100, 150,
	200, 250, 300, 500 South African Rand

Figure S3: Flow chart of Additional CWF Routines. WQ_i is obtained for each household on each day from the Collect Water Routine (Figure S1). The probability of then having and using a water filter on a given day is based on whether a household has a working filter or decides to purchase one. If a household has a working filter they can clean it. When cleaned, a filter reverts to it's day 0 microbial effectiveness. If a household's filter breaks, it can purchase a new filter if their WTP is greater than the purchase price. WTP is based on the field data shown in Figure S6. The probability of a household using a filter is also based on the threshold water quality above which a household is 2.05 times as likely to use their filter. It is finally based on compliance rates which are a function of the days the model has been run and user input based on field data. LRVs are obtained from the piecewise linear fits of Figure ?? or user input. The WQ_i output is then sent to the ECD Calculation Routine as is given in Figure S4. This is the basic flow chart used to generate the multi-parameter analysis of Figure 5. Relevant portions of this routine were also used to study the cleaning interval and compliance decrease experiments shown in Figure 2. In addition, the two parameter analyses shown in Figure 3 were conducted as described in the Additional Routines Tested section. In both of these cases, the unrelated portions of the code were bypassed.

Figure S4: ECD calculation subroutine. The Households portion occurs for each household for each day while the Children portion occurs for each child each day. The children live within households and drink the household's water. Curly brackets indicate a variable that is stochastically varied according to a normal distribution with mean and standard deviations indicated. Square brackets indicate values that are stochastically varied between minimum and maximum values. Parentheses indicate a functional relationship, i.e. the probability of getting ECD is a function of WQ_i . (Adapted with permission from (Mellor et al., 2012). Copyright 2012 American Chemical Society.)

Figure S5: Willingness-to-pay field survey data. \$1 ≈ 8.9 South African Rand

versus less salient parameters. Plots are normalized histograms which indicate the percent of runs with a Figure S6: Eight parameter behavior space analyses indicating the relative importance of the more salient given parameter value leading to ECD rates in a given range. Results indicate that compliance, prevalence and compliance declines were the most important parameters.

Table S3: First Multiple Parameter Behavior Space Analysis

Parameter	Range of Values in Behavior Space Analysis
Filter LRV	$10^{-5}, 5 \times 10^{-5}, 10^{-4}, 5 \times 10^{-4}, 10^{-3},$
	$5 \times 10^{-3}, 10^{-2}, 5 \times 10^{-1}, 10^{-1}$
Filter Compliance	0 - 100% (10% increments)
Filter Prevalence	0 - 100% (10% increments)
Yearly Linear Compliance Decline	0 - 100% (10% increments)

Table S4: Second Multiple Parameter Behavior Space Analysis. WTP = willingness to pay. CWF = ceramic water filter.

Parameter	Range of Values in Behavior Space Analysis
Breakage Date	Day 1 to 730 by 60 day increments
Breakage Percent	0, 20, 40, 60, 80 and 99%
Threshold Water Quality	0, 0.5, 1, 5, 10, 50, 100,
	500, 1000 and 2000 CFU/100ml
Cleaning Interval	1 to 730 by 60 day increments
WTP for New CWF	20, 30, 50, 70, 80, 100, 150,
	200, 250, 300, 500 South African Rand

```
extensions [array table]
breed [ households household]
breed [ children child ]
\begin{array}{c} undirected-link-breed \ [\ housetokids\ \ housetokid\ ] \\ link \ from \ child \ to \ HH \end{array}
                                                                                                                 ;; directed
households-own [
       holds-own [
water-source ; A households primary water source. 1 =
River, 2 = Community Piped, 3 = Municipal Tap, 4 = Hose (CP system in Tshibvumo
where pipes come from the river, but don't go through any kind of treatment)
water-source ; A households secondary water source. 1 =
River, 2 = Community Piped, 3 = Municipal Tap, 4 = Hose (CP system in Tshibvumo
where pipes come from the river, but don't go through any kind of treatment)
y-wq ; The main water household quality parameter
 pri-water-source
 daily-wq ; Ine main wave. ....
that changes every day according to the water chain model.
; Storage container type. 1 = Wide necked, 2
        = narrow neck
                                                               ; Number of days keep water, used for
 days-keep-water
        biological regrowth
 hh-days-can-wait
                                                               ; The maximum number of days a household can
       wait until they must get water
 today-source ;The source a household is using today, is
usually equal to pri-water-source except when that source isn't working
river-rand-number ;Random number used to determine which
        biological regrowth regime to use.
 pipe-rand-number
                                                               :Random number used to determine which
       biological regrowth regime to use.
 hand-wash-number
                                                               ; Number \ used \ in \ hand-washing \ effectiveness
       calculation
 tap-min
                                                               ; Minimum number of days between water
        \verb|collection||
                                                               :Maximum number of days between water
 tap-max
       collection
 days-waiting
                                                               ; Days waiting for water to start working
        again after checked for the first time
 has-filter
 jc_total
                                                               ; Amount of total coliform bacteria associated
         with the sidewalls of the storage containers
                                                               ; Amount of total coliform bacteria associated
  cup_total
        with the water transfer devices used for wide mounth containers
-min ; Minimum number of days between container
 clean-min
        cleanings
 clean-max
                                                               :Maximum number of days between container
       cleanings
 boil-max
                                                               ; Maximum number of days between water
       boilings
 \operatorname{boil}-\min
                                                               ; Minimum number of days between water
       boilings
                                                               ; Maximum number of times wash hands per day
 _{\rm hw-max}
                                                               ; Minimum number of times wash hands per day
; Total coliform bacteria associated with
 hw-min
 bhw\_total
       hands before washing hands.
 filrannum
                                                               ; Random number that determines what linear
       filter deterioriation track a household will take ;WIP for a CWF
 days-have-filter
                                                               ; Days have had this CWF
                                                               ; A daily compliance variable
 hh-cf-usage
\mathrm{children-}\mathrm{own}\,[
                                                               ;1 = male, 2 = female; 0 to 730 days
 sex
 age
                                                               ; Does have ecd or not
 ecd
 ecd-cases
                                                                Total number of ecd cases per child
                                                               ; Height
 height
                                                               ; Days with stunted growth
; Daily incremental increase in height when
 stuntday
 growthdelta
       have acute case of ECD
                                                               ; Did a kid have a prolonged case of ECD
 pastgot
        during their first year
```

```
have-had-diarrhea
                                                                          ; Total cases of prolonged ECD
  vaccinated
                                                                          ; Vaccinated against rotavirus?
 growth-factor
globals [xmin xmax ymin ymax height-array
                                                                          ; Parameters for Interface
                                                                          ; Parameters for Interface
; Standard curve array for boys
; Standard curve array for girls
; Array of boys heights at age 2
; Array of girls heights at age 2
; Array of piped WQ measurements
; Array of MT WQ measurements
    feight-array
   bheight730
   gheight730
   pipewq
   mtwa
                                                                          ; Total number of ECD cases
; Total of all kid's days-with-ecd
   \verb|all-ecd-cases|
   grand-total-days-with-ecd
   nostuntdays ; Total number of stunted growth days nostuntdays ; Total number of days without stunting haz0 haz60 haz120 haz180 haz240 haz300 haz360 haz420 haz480 haz540 haz600 haz660
   haz730 ; Array of HAZs at each age in days
haz30 haz90 haz150 haz210 haz270 haz330 haz390 haz450 haz510 haz570 haz630 haz690
                                                                          ;The 'tick' when the piped system last worked;The 'tick' when the MT system last worked;The 'tick' when the hose system last worked;Arrays of the standard deviations of both
   last-day-pipe-work
   last-day-MT-work
   last-day-hose-work
   BSD GSD
          boys and girls heights
   pre-pro-haz
   rannum1000 rannum100 rannum10 rannum1
                                                                          ; Variables for different col-ecd scenarios
   for the ranges of coliform levels mean-daily-wq-list
                                                                          ; Daily mean water qualities.; Sums up all double ECD cases
   all-double-cases
                                                                          Sums up all single ECD cases
   all-single-cases
malheight-array malfeight-array
                                                                          ; make and efmail height arays
; Counts total number of times houses collect
   collection -times
          water
   water-usage-array
                                                                          ; Array of probabilities of a child drinking
          water on a given day
                                                                          ; List of days-keep-water; Counter for number of times houses boil
   days-keep-water-list
   boil-events
   their water daily1000 daily100 daily10 daily1 daily0 ;Counters to show percent of houses with
           water quality of a given quality
   median-daily-wq-list
                                                                           ; Median daily WQ
                                                                           ; Total days waiting ; child stunting tables ; child stunting table for "double" cases ; ages of ECD incidences in the communities
   total-days-waiting
   haz-table
   haz-table-double
   ecdage-list
   \stackrel{\smile}{\operatorname{ecdage-list}} - \operatorname{double}
                                                                           ; ages of double ECD incidences in the
          communities
   broken
                                                                           ; number of broken filters ; total number of ECD cases oveall
   \mathtt{grand}\!-\!\mathtt{total}\!-\!\mathtt{ecd}\!-\!\mathtt{cases}
to setup
   set-current-directory "/Users/jem3w/Documents/limpopo/abm/"
   set xmin 30.4336
   set xmax 30.4630
   set ymin -22.790
set ymax -22.7718
   set-default-shape households "house" set bheight730 []
   set gheight730
   set gneignt/30 [] set haz60 [] set haz120 [] set haz180 [] set haz240 [] set haz300 [] set haz360 [] set haz420 [] set haz420 [] set haz540 [] set haz600 [] set haz600 [] set haz600 [] set haz730 [] set haz730 [] set haz90 [] set haz150 [] set haz210 [] set haz270 [] set haz330 [] set haz390 [] set haz450 [] set haz510 [] set haz570 [] set haz630 [] set haz690 [] set grand-total-days-with-ecd []
   set grand-total-days-with-ecd []
   set all-double-cases [] set all-single-cases []
   set mean-daily-wq-list []
```

```
\mathtt{set} \hspace{0.2cm} \mathtt{median} \hspace{-0.05cm} - \mathtt{daily} \hspace{-0.05cm} - \hspace{-0.05cm} \mathtt{wq} \hspace{-0.05cm} - \hspace{-0.05cm} \mathtt{list} \hspace{0.2cm} \hspace{0.2cm}
             set pre-pro-haz []
              set totalstuntdays 0
              set nostuntdays 0
              set days-keep-water-list [1]
              set mtwq []
             set pipewq [] set surfwq []
              ; Pipe, MT, and SURF water quality lists. Each element of the list represents a field
           measurement.

set pipewq [440 585 420 460 0 0 540 120 1220 1160 40 40 80 680 0 0 640 200 180 120 480 560 0 40]

set mtwq [300 0 380 195 20 35 0 180 0 0 0 0 0 40 0 280 200 300 0 0 80 60 20 500 0 0 0 60 0 0]

set surfwq [880 680 1150 1330 1210 1120 2120 1260 2120 1220 160 3000 1240 1160 1280 1020 20 300 715 500 930 860 640 990 480 870 120 140 820 1200 1565 1280 200 305 100 160 200 4120 200 900 560 500 100 140 600 540 3020 3020 860 740 720 600 240 120 200 380 1060 720 0 0 60 160 780 1020 640 420 700 580 1300 1460 100 140]

;If performing water quality tests then take water quality values from Interface input if pipe-wq-test = TRUE [set pipewq [] set pipewq fput pipe-quality-test pipewq] if surf-wq-test = TRUE [set surfwq [] set surfwq fput surf-quality-test surfwq] if mt-wq-test = TRUE [set mtwq [] set mtwq fput mt-quality-test mtwq]
                                          measurement.
            ;SD from http://www.cdc.gov/growthcharts/who_charts.htm also Mei 2007 set BSD array:from—list [1.90 1.95 2.01 2.05 2.09 2.12 2.15 2.18 2.21 2.25 2.29 2.34 2.38 2.43 2.49 2.54 2.59 2.65 2.70 2.76 2.82 2.88 2.94 3.00 3.06 3.12 3.18 3.24 3.3 3.36 3.42] ;3.12 and after are approximations set GSD array:from—list [1.86 1.95 2.03 2.10 2.16 2.22 2.26 2.31 2.37 2.41 2.47 2.52 2.57 2.63 2.68 2.74 2.79 2.85 2.90 2.96 3.01 3.07 3.12 3.17 3.22 3.27 3.32 3.37 3.42 3.47 3.52]
            make-height-array setup-households 0 0
              setup-hh-water-sources
             setup-containers
             setup-collect-freq
             setup-boil
            setup-hw
            setup-initial-children
             \mathtt{setup}\!-\!\mathtt{haz}
end
to go
      \verb|collect-water2|
     treat-water
kids-drink
       calculate-height4
       child-old
     do-plots
      if ticks > totaldays [
                         stop ]
end
to setup-initial-children
; Set up 410 initial child - an average of 1 per household
  while [ j <= 410 ]
ask household random 410
                          hatch-children 1 [ set color green set size 1
```

```
set ecd 0
      set ecd-cases 0
      set doublecases U
ifelse (random 100 > 50); sex ratio from https://www.cia.gov/library/publications/
the-world-factbook/geos/sf.html
[set sex true]
[set sex false]
      set doublecases 0
      \dot{c}reate-houseto\dot{k}id-with\ myself \quad ; creates\ link\ between\ households\ and\ children\ born
           there
      set age 0
            ; Sets initial height equal to CDC norms and standard deviations for newborns
           ; sets initial neight equal to CDC norms and standard deviations for newborns ifelse (sex = TRUE)
[set height random-normal 48.14 1.9019] ; SD Using R and http://www.cdc.gov/growthcharts/who/boys_length_weight.htm
[set height random-normal 47.72 1.8584] ; SD Using R and http://www.cdc.gov/growthcharts/who/girls_length_weight.htm
]
\operatorname{set} j j + 1
end
                                                     ; Reports mean of the median-daily-wq-list
to-report wq-report
   report mean median-daily-wq-list
end
to\_report \ wq\_report2
                                                     ; Reports mean of the mean-daily-wq-list
  report mean mean-daily-wq-list
end
to-report keep-water-report
                                                     ; Reports how many days keep water on average
   report mean days-keep-water-list
{\tt to-report\ child-number}
                                                     : Total number of children
   report count children
to-report ave-height
                                                     ; Average height of 2 year olds
  report mean bheight730
{\tt to-report \ ave-height2}
  report mean gheight730
to-report girl-length
report length gheight730
                                                   ; Number of girls and boys
to\!-\!report\ boy\!-\!length
   report length bheight730
end
to-report total-single
   o-report total-single ; Total single ECD cases report mean all-ecd-cases - mean all-double-cases
end
to\!-\!report\ total\!-\!double
                                               : Total double ECD cases
   report mean all-double-cases
end
                                                   ; Mean ALL ECD cases
to-report ecd-all
    \stackrel{-}{\text{report mean all-ecd-cases}}
end
                                                    ; Median ALL ECD cases
to-report ecd-all2
   report median all-ecd-cases
to-report total-stunt-days ; Calculates the percental report total stunt days / (total stunt days + no stunt days) * 100 \,
                                                     ; Calculates the percentage of stunting days
  o-report percent-boil-days ; Percent of days that folks boil their water report boil-events / (ticks * 410) * 100
to\!-\!report\ percent\!-\!boil\!-\!days
to-report daily -1000
                                                       ; Percent of households with the following water
  report daily1000 / (daily1000 + daily100 + daily10 + daily1 + daily1 + daily0) * 100
end
```

```
to-report daily -100
  report daily100 / (daily1000 + daily100 + daily10 + daily1 + daily1 + daily0) * 100
to-report daily -10
   report daily10 / (daily1000 + daily100 + daily10 + daily1 + daily0) * 100
to-report daily-1
  report daily1 / (daily1000 + daily100 + daily10 + daily1 + daily0) * 100
end
to-report daily -0
   {\tt report\ daily0\ /\ (daily1000\ +\ daily100\ +\ daily10\ +\ daily1\ +\ daily0\ )\ *\ 100}
 \begin{array}{c} {\rm to-report\ totaldayswwaiting} & ; {\rm days} \\ {\rm report\ total-days-waiting} \ / \ {\rm collection-times} \end{array} 
                                                              ; days waiting for water source to work
to collect-water2
; First decide which sources are working (pipe, MT and hose) Data from average of
       reported how_freq_sorce_work for each.
; That data is in terms of how many days per week each source works. 1 = \text{everday}, 7 =
       once a week
    once a week

if random-float 7 > 3.18 [set last-day-pipe-work ticks]

if random-float 7 > 4.79 [set last-day-MT-work ticks]

if random-float 7 > 2.3 [set last-day-hose-work ticks]

if pipe-rel-test = TRUE [if random-float 7 > pipe-test [set last-day-pipe-work ticks]

] ;Can adjust the frequency of each source working by adjusting source-test
    in puts in Interface

if MT-rel-test = TRUE [if random-float 7 > MT-test [set last-day-MT-work ticks]]

if hose-rel-test = TRUE [if random-float 7 > hose-test [set last-day-hose-work ticks]]
    ask households
       set days-keep-water days-keep-water + 1 ; Increment days keep water for incubation
              experiment and cleaning
        \texttt{let collect-freq (random (tap-max - tap-min) + tap-min)}
                                                                                                ; Calculate collection
               frequency as a random number bewteen tap-min and tap-max, in terms of every 1,
              2, 3 days...
        if collect-test = TRUE
                                                                                                  ; If performing the
              water collection frequency test
        [set collect-freq collect-level
the collect-level (which is input on the Interface)
set last-day-pipe-work ticks
                                                                                                   ; Make each source work
                 everyday so that you can study the collection frequency without the
                 confounding
          set last-day-MT-work ticks
                                                                                                   ; question of deciding
          whether or not the source is working set last-day-hose-work ticks
        ; print today-source
        if remainder ticks collect-freq = 0 or days-waiting > 0 [; If today is a multiple of the collection-frequency or they are waiting for source to start working again then we'll look to collect today
           \begin{array}{ll} \mbox{if today-source} &= 2 \ [ \\ \mbox{ifelse} & (\mbox{ticks} - \mbox{last-day-pipe-work} = 0) \\ \mbox{working today then collect water} \end{array}
                                                                                                  ; For piped water system
                                                                                                  ; If the piped system is
                set today-source pri-water-source ; Reset to p source if had to go to secondary source during previous day.
                                                                                                  ; Reset to primary water
                _{\rm set~days-waiting~0}
                                                                                                  ; Set days-waiting to
                       zero
                zero
set daily-wq item random length pipewq pipewq ;Set daily-wq as rand
choice from water quality data
set total-days-waiting days-keep-water + total-days-waiting ;Add to the
                                                                                                  ; Set daily-wq as random
                       total days waiting
                set collection-times collection-times + 1 collection-times
                                                                                                                :Increment
```

```
if (sand-filter-on = TRUE)
                                                                                 : If the sand-filter is
          set daily-wq daily-wq * (random 10 + 1) / 100 Filter to have 1-2 log removal (90-99\%)
                                                                                 ; Setting up Slow Sand
     set days-keep-water 0
                                                                                  ; Set incubation days
            keep water variable to zero
     ifelse hh-days-can-wait > days-waiting ; If the source isn't working today then check to see if a house has waited as long as it can this was taken from survey data
     [set days-waiting days-waiting + 1] then increment days-waiting
                                                                                  ; If it can wait longer
     [set today-source sec-water-source]
                                                                                  ; If not, then use
            secondary source on the next day
if today-source = 3 [
ifelse (ticks - last-day-MT-work = 0)
ifelse (ticks - last-day-MT-work water
                                                                                 ; For MT water system
                                                                                 ; If the system is
       working today then collect water
     ; Reset to primary water
     set days-waiting 0
                                                                                 ; Set days-waiting to
     set days-waiting o
zero
set daily-wq item random length mtwq mtwq
random choice from water quality data
set collection-times collection-times + 1
                                                                                ; Set daily-wq as a
                                                                                 ;Increment collection
     times variable
set total-days-waiting days-keep-water + total-days-waiting
                                                                                  ; Set incubation
     set days-keep-water 0 variable to zero
                                                                                  ; If the source hasn't
      ifelse hh-days-can-wait > days-waiting
     worked recently then see if a house has waited as long as it can [set days-waiting days-waiting + 1] ; If it can wait longer
            then increment days-waiting
     [set today-source sec-water-source]
secondary source on the next day
                                                                                  ; If not, then use
  ]
if today-source = 4[ ;For Hose water system if else (ticks - last-day-hose-work = 0) ;If the system is working today then collect water :
                                                                                ; For Hose water system
     set days-waiting 0
     set today-source pri-water-source
souce if had to go to secondary source.
set daily-wq item random length pipewq pipewq
to the data
                                                                                 ; Reset to primary water
                                                                                 ; Set daily-wq according
     to the data set collection-times collection-times + 1 set total-days-waiting days-keep-water + total-days-waiting ; Set incubation
            variable to zero
     ifelse hh-days-can-wait > days-waiting ; If the source hasn't worked recently then see if a house has waited as long as it can ; If it can wait longer
     [set days-waiting days-waiting + 1]
then increment days-waiting
     [set today-source sec-water-source]
                                                                                  ; If not, then use
           secondary source on the next day
if today-source = 1 [
                                                                                  :For River System - is
       always working
  ; Reset to primary
```

```
set days-waiting 0
                                                                                                                             : Set days-waiting to
                     zero
            set daily-wq item random length surfwq surfwq
                                                                                                                             ; Set daily-wq
           according to the data set collection-times collection -times + 1
           \mathtt{set} \ \mathtt{total-days-waiting} \ \mathtt{days-keep-water} \ + \ \mathtt{total-days-waiting}
           set days-keep-water 0
                                                                                                                         ; Set incubation variable
            volume random (20-.5)+.5 ; Calculating the volume of the water in storage containers. Volumes were measured during HHB study and
    let volume random (20 - .5) + .5
               had a flat distribution from 0.5 to 20L
   let rannum (random-float (volume - .5) + .5) / .5 ; The ability of bacteri measured for the jc_total experiment to disattach itself and contaminate the ; water is unknown. To model this phonemenom we take the typical volume of stored water and assume that the dilution factor is somewhere between 1 and
                                                                                                                         ;The ability of bacteria
    ; Volume / 0.5 L where 0.5 L was the volume of the water used in the jc_total experiment.
   experiment.
; This is then used as a dilution factor in the code below.
if rannum > 39 [print rannum]
if(daily-wq < (jc_total / rannum)) [set daily-wq (jc_total / rannum)] ; WQ cannot
go below the biofilm layer amount => 108 = 9.65L / 0.1L
                          container = 2 [set daily-wq daily-wq + (cup_total + bhw_total) / (volume
   storage-container = z [set daily-wq daily-wq + (cup.total + bhw.total) / (volum / .5)]; If a household has an open style container then add in cup.total as the amount added by dipping in a cup; No dilution factor is used in this case because the experiment closely mimicked the actual way folks will do it.
if coliform-growing = TRUE[
   ask households
        ; Coliform incubation growth for River/Closed is located in position 3 in the
       following vectors under today-source = 1; Coliform incubation growth for Pipe/Closed is located in positions 2,3 in the following vectors under today-source = 2 or 4
        ; Coliform incubation growth for River/Open is located in positions 0,1,2 in the
       following vectors under today-source = 1; Coliform incubation growth for Pipe/Open is located in positions 0,1 in the
                 following vectors under today-source = 2 or 4
        if (today-source = 1) ; River
           if (days-keep-water = 1) [set daily-wq daily-wq * (item river-rand-number [0.7695 7.6905 11.0753 7.7073])]; Numbers based on incubation survey if (days-keep-water = 2) [set daily-wq daily-wq * (item river-rand-number [1.6361 1.9938 1.8913 3.1962])] if (days-keep-water = 3) [set daily-wq daily-wq * (item river-rand-number [0.6398 0.3126 0.0020534 0.3881])]
           [0.6398 0.3126 0.0020534 0.3881]]

if (days-keep-water = 4) [set daily-wq daily-wq * (item river-rand-number [1.3877 2.2384 148.2500 2.2143])]

if (days-keep-water = 5) [set daily-wq daily-wq * (item river-rand-number [0.9933 0.3299 1.7251 0.3629])]
           \begin{array}{lll} & \text{if } (\texttt{days-keep-water} = 6) & [\texttt{set daily-wq} & \texttt{daily-wq} * & (\texttt{item river-rand-number} \\ & [0.6763 & 3.3632 & 0.9932 & 1.4730]) \ ] \end{array}
        if (today-source = 2 or today-source = 4) ; Piped or Hose
           if (days-keep-water = 1) [set daily-wq daily-wq * (item pipe-rand-number [47.2800 43.9091 4.4211 23.7500])]; Numbers based on incubation survey if (days-keep-water = 2) [set daily-wq daily-wq * (item pipe-rand-number [0.1447 1.6687 3.4881 1.7474])]
           1.6687 3.4881 1.7474]) if (days-keep-water = 3) [set daily-wq daily-wq * (item pipe-rand-number [5.2632 0.6203 1.1058 0.3976])]
```

```
if (days-keep-water = 4) [set daily-wq daily-wq * (item pipe-rand-number [1.4089 1.1740 0.4167 2.3864])]
if (days-keep-water = 5) [set daily-wq daily-wq * (item pipe-rand-number [1.0174 0.2828 0.8000 0.7937])]
if (days-keep-water = 6) [set daily-wq daily-wq * (item pipe-rand-number [1.1752 1.2426 0.0401)]
              if (days-keep-water = 6) [set da
1.2560 1.3426 0.9400])]
          ]
       ]
    ask households
        {\tt let \ clean-freq \ (random \ (clean-max - clean-min) + clean-min) \ ; Calculate \ cleaning}
               frequency to be somewhere between clean min and clean max values
        if \ clean-test = TRUE
                                                       ; If in clean-test mode set clean-freq to value on
               Interface
           [set clean-freq clean-level]
        if(remainder ticks clean-freq = 0)
             let randnum random-float (.80-.73)+.73 ;0.80 is a 20% decrease seen in biofilm follow-up experiment whereby we scraped the sides of the containers and got a median 20% resuspension of bacteria. The 0.73 is the percentage difference between Good and OK bucket washers in HHB study
                                                                                                ;0.80 is a 20\% decrease
             set daily-wq daily-wq * randnum
    1
end
to treat-water
     ask households
       7 once a week etc...
       if boil-test = TRUE [set boil-freq boil-level]
mode then set boil-freq equal to that on the Interface
let filter-treat-today FALSE
                                                                                                       ; If in boil testing
                                                                                                       ; If a house had a water
        if \ has-filter = 1
                filter
          \begin{array}{lll} \mbox{if ticks} = \mbox{break-date and random } 100 < \mbox{break-percent} & [\mbox{set has-filter 0 set broken broken} + 1] \\ & ; \mbox{Is today the filter breaking day?} & \mbox{If so, a} \end{array}
           broken broken + 1] ; Is today the filter breaking day? If so, a percent will break if has-filter = 0 and WTP >= random-normal filter-price 25 [set has-filter 1 set
           days-have-filter 0]; If a house's filter breaks then they can purchase a new filter if the price is below their WIP if remainder ticks cf-clean-freq = 0 [set days-have-filter 0]
                                                                                            ; A house can also clean their
                  lower reservoir
           let ticks2 0
           ifelse constant-filter-effectiveness = TRUE
                                                                                                           ; ifelse to turn ON or
                   OFF the feature to have the CWF effectivenesses to remain fixed at day 0
                  levels
           [set ticks2 0]
                                                                                                           ; if OFF then this
              counter increments the filter's age set ticks2 days-have-filter
              \mathtt{set} \ \mathtt{days-have-filter} \ \mathtt{days-have-filter} + 1
           set hh-cf-usage hh-cf-usage * (year-compliance-down / 100) ^ (1 / 365)
```

```
; Compliance can decrease over time
let today-cf-usage hh-cf-usage
 \  \, \text{if threshold} \, = \, \text{TRUE} \, \, [\, \text{if daily-wq} > = \, \text{threshold-wq} \, \, [\, \text{set today-cf-usage hh-cf-usage} \, \, ] \\ 
* 2.0493819]] ; Households are more likely to treat their water if it is above a threshold if today-cf-usage > 100 [set today-cf-usage 100] if hh-cf-usage > 100 [set hh-cf-usage 100]
{\tt ifelse \ effectiveness-pre-set = TRUE}
      Effectiveness is pre-set by user
      if \ random-float \ 100 < today-cf-usage \ [set \ daily-wq \ daily-wq * \ effectiveness]
         based on the field measurements for < 1 year or the 2-3 year timeframe.
            if ticks2 >= 0 and ticks2 <= 365 and random-float 100 < today-cf-usage
               \mathtt{set} \quad \mathtt{filter-treat-today} \  \, \mathtt{TRUE}
               if filrannum = 0 [set daily-wq daily-wq * 10 ^{\circ} ( - (ticks2 *
                       -0.006670276 + 4.025715384))]
               -0.000070210 7 4.025713384))]
if filrannum = 1 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.005830596 + 3.556302501))]
               -0.00430399 + 3.33032301)]
if filrannum = 2 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.004302276 + 3.877946952))]
               if filrannum = 3 [set daily-wq daily-wq * 10 ^
                                                                                      ( - (ticks2 *
               0.002408141 + 3.579326204))]
if filrannum = 4 [set daily-wq daily-wq * 10 ^ -0.002920785 + 3.496583734))]
                                                                                     ( - (ticks2 *
               \begin{array}{lll} \text{if filrannum} = 5 & [\text{set daily-wq daily-wq * 10} \\ -0.001556412 & + & 3.073240317))] \end{array}
               if filrannum = 6 [set daily-wq daily-wq * 10 ^
               -0.000659039 + 2.416640507)] if filrannum = 7 [set daily-wq daily-wq * 10 ^ (- (ticks2 *
                       -0.003028795 + 1.939519253))]
               if filrannum = 8 [set daily-wq daily-wq * 10 ^ (- (ticks2 * 0.002205166 + 2.62324929))]
               -0.006788884 + 3.042236765))]
if filrannum = 22 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.003020307 + 3.327358934))]
               -0.00320307 + 3.321338934))]
if filrannum = 23 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.005111595 + 2.937016107))]
if filrannum = 24 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.001438865 + 2.667452953))]
if filrannum = 25 [set daily my daily mg * 10 ^ (* (ticks2 * -0.001438865 + 2.667452953)]]
               -0.001436005 + 2.00(432953))]
if filrannum = 25 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.004212457 + 1.113943352))]
if filrannum = 26 [set daily-wq daily-wq * 10 ^ (- (ticks2 * 0.000419865 + 2.867938651))]
```

```
if filrannum = 27 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.004259082 + 2.411619706))]
if filrannum = 28 [set daily-wq daily-wq * 10 ^ (- (ticks2 *
   -0.004623036 + 3.350248018))]
if filrannum = 29 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.004813594 + 3.90308987))]
if filrannum = 30 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.000362068 + 0.698970004))]
   -0.000502004 + 0.03370004))]
if filrannum = 31 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.006941793 + 2.983626287))]
if filrannum = 32 [set daily-wq daily-wq * 10 ^ (- (ticks2 *
   \begin{array}{l} 0.000135645 \, + \, 3.025305865))] \\ \text{if filrannum} \, = \, 33 \, \left[ \text{set daily-wq daily-wq} \, * \, 10 \, \right] \\ & (- \, (\text{ticks2} \, * \, 10 \, )) \end{array}
            0.003439103 + 2))]
if ticks2 > 365 and ticks2 <= 1095 and random-float 100 < {
m today-cf-usage}
 set filter-treat-today TRUE
   if filrannum = 0 [set daily-wq daily-wq * 10 ^{\circ} ( - (ticks2 *
              -0.00532072 + 3.533127444)
   -0.00532072 + 3.333127444)]
if filrannum = 1 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.00484736 + 3.197421108))]
if filrannum = 2 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.003238484 + 3.489662744))]
   if filrannum = 3 [set daily-wq daily-wq * 10 ^
                                                                                             ( - (ticks2 *
             -0.001890193 + 5.148218289)
   if filrannum = 4 [set daily-wq daily-wq * 10 ^ -0.000707785 + 2.688838788))]
                                                                                             (-(ticks2)*
   if filrannum = 5 [set daily-wq daily-wq * 10 ^ -0.002590313 + 3.450614356))]
if filrannum = 6 [set daily-wq daily-wq * 10 ^
   0.00061272 + 1.952448326))]
if filrannum = 7 [set daily-wq daily-wq * 10 ^
-0.000921538 + 1.170370477))]
                                                                                            ( - (ticks2 *
   \begin{array}{lll} \text{if filrannum} = 8 & [\text{set daily-wq daily-wq * 10} \\ -0.000129325 & + & 3.475338485))] \end{array}
   if filrannum = 9 [set daily-wq daily-wq * 10 ^
   -0.002071592 + 0.572604641))]
if filrannum = 10 [set daily-wq daily-wq * 10 ^ (- (ticks2 *
   if filrannum = 12 [set daily-wq daily-wq * 10 ^ (- (ticks2 * 0.001150044 + 0.725646383))]
   if filrannum = 13 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.002268672 + 2.714555866))]
if filrannum = 14 [set daily-wq daily-wq * 10 ^ (- (ticks2 *
   0.002508349 + 0.170003494))]

if filrannum = 16 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.00162379 + 2.295416071))]

if filrannum = 17 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.002531632 + 2.069198777))]

if filrannum = 18 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.00261323 + 1.949441972))]
   -0.00201323 + 1.34341312))]

if filrannum = 19 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.000483276 + 0.734901482))]

if filrannum = 20 [set daily-wq daily-wq * 10 ^ (- (ticks2 * -0.00123372 + 3.392315737))]

if filrannum = 21 [set daily-wq daily-wq * 10 ^ (- (ticks2 *
   -0.001744233 + 1.200939389))]
if filrannum = 22 [set daily-wq d
0.000671232 + 1.979947251))]
                                                              \dot{d}aily-wq * 10 \hat{} ( - (ticks2 *
    \begin{array}{l} -0.001138927 + 2.557975412))] \\ \text{if filrannum} = 25 \ [\text{set daily-wq daily-wq} * 10 \ (-\text{(ticks2} * -0.00011201 + -0.382720071))}] \end{array} 
   if filrannum = 26 [set daily-wq daily-wq * 10 ^{\circ} ( - (ticks2 *
   if filrannum = 28 [set daily-wq daily-wq * 10 ^{\circ} ( - (ticks2 *
```

```
\begin{array}{c} 0.000181124 \,+\, 1.596729609))] \\ \text{if filrannum} \,=\, 29 \, \left[ \, \text{set daily-wq daily-wq} \, *\, 10 \, \right] \\ -0.001903897 \,+\, 2.841050617))] \\ \text{if filrannum} \,=\, 30 \, \left[ \, \text{set daily-wq daily-wq} \, *\, 10 \, \right] \\ -0.000939514 \,+\, 0.909737541))] \\ \text{if filrannum} \,=\, 31 \, \left[ \, \text{set daily-wq} \, \, \text{daily-wq} \, *\, 10 \, \right] \\ -0.003296797 \,+\, 1.65320293))] \\ \text{if filrannum} \,=\, 32 \, \left[ \, \text{set daily-wq} \, \, \text{daily-wq} \, *\, 10 \, \right] \\ -0.00175884 \,+\, 3.504013918))] \\ \text{if filrannum} \,=\, 33 \, \left[ \, \text{set daily-wq} \, \, \, \text{daily-wq} \, *\, 10 \, \right] \\ -0.004240837 \,+\, 4.803177866))] \end{array}
                                   if daily-wq < 0 [set daily-wq 0]
                             ]
                  inter-treat-today = FALSE [ ; If not use filter then houses are assumed to occasionally revert to their old boiling practices if remainder ticks boil-freq = 0 ; From Clasen Papers ( Guatemala 2010, India 2008, Vietnam 2007) Used normal dist calc to get SDs from Cls (http://onlinestatbook.com/chapter8/mean.html) [ set boil-events boil-events + 1 ; Counts number of boilevents
              \  \, \text{if} \  \, \text{filter-treat-today} \, = \, \text{FALSE} \  \, [
                        let boil-effectiveness random-normal 0.01431\ 0.001109 if (boil-effectiveness < 0) [set boil-effectiveness 0]; Just in case get a
                       negative number (very rare)
set daily-wq boil-effectiveness * daily-wq ;Mean, SD, N Guat: .88 .075 206
:: India: 2.1 .025 1088 :: Viet: 1.52 0.046 245 Took weighted average by N for means and SDs to get these values
 ]
end
to kids-drink
            ; probabilities of getting ECD based on WQi. Numbers taken from the best available literature on the subject set rannum1000 random-float (3.29-1.08)+1.08 set rannum100 random-float (3.71-0.94)+0.94 set rannum10 random-float (3-0.87)+0.87 set rannum1 random-float (2-0.75)+0.75
             set rannum1000 rannum1000
             set rannum100 rannum100
             set rannum10 rannum10
             set rannum1 rannum1
     let daily-wq-list2 []
     ask households [
           \begin{array}{l} \mbox{if (daily-wq > random-normal 4000 250)[set \ daily-wq \ random-normal 4000 250]} \\ \mbox{was the highest recorded during Dec-July 2010-11 household testing, 250 is} \end{array}
                                                                                                                                                                                                                      :4000
                       arbitrary
           \mathtt{set} \hspace{0.2cm} \mathtt{daily-wq-list2} \hspace{0.2cm} \mathtt{fput} \hspace{0.2cm} \mathtt{daily-wq} \hspace{0.2cm} \mathtt{daily-wq-list2}
                                                                                                                                                                                                                         : Take
                       each household's daily WQ value and put it into daily-wq-list2
           let hw-freq (random (hw-max - hw-min) + hw-min) / 32 ; hw-freq is a number between 0 and 1 that signifies the percent of 32 that people wash their hands see below for meaning of 32
           if hw-test = TRUE [set hw-freq hw-level / 32] ; If in HW testing mode then set all
                      hw-freq to a hw-level input on Interface
           set hand-wash-number 100 * ( ((hw-freq) * abs(random-normal .43 .0695))); + 100; From Curtis 2000 paper (Domestic hygiene and diarrhoea pinpointing the problem),
```

```
washing at all critical times would mean 32 total times per day
                                                                                                               So, taking linear approximation. Also, using Aiello 2008, hand-washing decreases diarrheal diseases by 31% (95% CI, 19-42%).
                                                                                                                Calculated 6.95 using
                                                                                                               NORMINV in
let increase-risk-number 0.518
          if (daily-wq>=1000)
                                                                        ; Worst case senario
    ask housetokid-neighbors
       let rannum random-float 100 ;(item 0 [hand-wash-number] of housetokid-neighbors); Calculating a random number between 0 and something less than or equal to 100 depending on the hand-washing behavior of the households. This is used
                to slighly increase the probability that someone might get diarrhea if they
        drink poor water.
if pastgot = 1 [set ra
       drink poor water.

if pastgot = 1 [set rannum rannum * increase-risk-number]; Ave of 15.5%/29.9%
and 1.91/3.12 = 0.565 is from Moore 2010 paper - kids who get Prolonged
diarrhea before age 1 are twice as likely to get persistent later in life
if (rannum <= rannum1000) [ifelse ecd = 1 [set ecd 2][set ecd 1 set stuntdays
0]]; Based on Brown 2008 Escherichia coli in household drinking water and
diarrheal disease risk: evidence from Cambodia
        set daily1000 daily1000 + 1
                                                                ; Incrementing incidences of daily-wq of this
                quality
if (daily-wq >= 100) and (daily-wq < 1000)
                                                                                       ;; extreme risk population
    [ ask housetokid-neighbors [
        let rannum random-float 100; (item 0 [hand-wash-number] of housetokid-neighbors)
       if pastgot = 1 [set rannum rannum * increase-risk-number]; Ave of 15.5%/29.9%
and 1.91/3.12 = 0.565 is from Moore 2010 paper - kids who get Prolonged
diarrhea before age 1 are twice as likely to get persistent later in life
if (rannum <= rannum100) [ifelse ecd = 1 [set ecd 2][set ecd 1 set stuntdays 0]]
;Based on Brown 2008 Escherichia coli in household drinking water and
       diarrheal disease risk: evidence from Cambodia set daily 100 daily 100 + 1; Incrementing incidences of daily -wq of this
                quality
    if (daily-wq >= 10) and (daily-wq < 100) ;; high risk population
   [ask housetokid-neighbors [
            let rannum random-float 100; (item 0 [hand-wash-number] of housetokid-neighbors
             \  \, \text{if pastgot} = 1 \  \, [\, \text{set rannum rannum} \, * \, \text{increase-risk-number} \,] \  \, ; \  \, \text{Ave of} \, \, 15.5\%/29.9\% 
           and 1.91/3.12 = 0.565 is from Moore 2010 paper - kids who get Prolonged diarrhea before age 1 are twice as likely to get persistent later in life if (rannum <= rannum10)[ifelse ecd = 1 [set ecd 2][set ecd 1 set stuntdays 0]]; Based on Brown 2008 Escherichia coli in household drinking water and
           diarrheal disease risk: evidence from Cambodia set daily10 daily10 + 1 ; Incrementing incidences of daily-wq of this
                    quality
    if (daily-wq < 10 \text{ and } daily-wq >= 1)
                                                                              ;;low risk population
    [ask housetokid-neighbors [
        let rannum random-float 100; (item 0 [hand-wash-number] of housetokid-neighbors)
       iet rannum random-float 100;(item 0 [hand-wash-number] of housetokid-neighbors if pastgot = 1 [set rannum rannum * increase-risk-number]; Ave of 15.5%/29.9% and 1.91/3.12 = 0.565 is from Moore 2010 paper - kids who get Prolonged diarrhea before age 1 are twice as likely to get persistent later in life if (rannum <= rannum1) [ifelse ecd = 1 [set ecd 2][set ecd 1 set stuntdays 0]]; Based on Brown 2008 Escherichia coli in household drinking water and diarrheal disease risk: evidence from Cambodia
                                                                ; Incrementing incidences of daily-wq of this
       set daily1 daily1 + 1
                quality
```

```
if (daily-wq < 1) [ set daily0 daily0 + 1] ; Incrementing incidences of daily-wq of this quality
      ask children[
              if((stuntdays = 0 and ecd = 1) or ecd = 2)
                            \begin{array}{lll} \hbox{if (random-float 100 >= array:item water-usage-array age)} & [ & ; Decide whether or not kids are drinking water based on MAL-ED data about child drinking water based on the control of the 
                                  if (ecd = 1 and stuntdays = 0)[set ecd 0] if (ecd = 2)[set ecd 1]
                           \begin{array}{lll} \mbox{if (random-float 100 < item 0 [hand-wash-number] of housetokid-neighbors) [} & \mbox{ Reduces ECD for kids whose households washing their hands} \end{array} \label{eq:controller}
                                 if (ecd = 1 and stuntdays = 0)[set ecd 0] if (ecd = 2)[set ecd 1]
      ]
; Put mean and median daily WQ values into their respective lists. set mean-daily-wq-list fput mean daily-wq-list2 mean-daily-wq-list set median-daily-wq-list fput median daily-wq-list2 median-daily-wq-list
end
to calculate-height4
      ask children[
                 if ((ecd = 1 and stuntdays = 0) or ecd = 2) [ ; If got ECD this time
                       if age <= 365 [set pastgot 1] year?
                                                                                                                                                                    ; did the kid get ECD in their first
                       set ecd-cases ecd-cases + 1
                       ifelse ecd = 1 ; if have single case then look up field data to find the child of most similar age who got ECD and find out what their growth stunting rate was
                             let \mbox{match-list sort-by } [abs(?1-age) < abs(?2-age)] ecdage-list set growth-factor (- (table:get haz-table first $match-list) / 240)
                                                                                                                                                                      :Same as above except for double cases
                             let \mbox{smatch-list sort-by } [abs(?1-age) < abs(?2-age)] ecdage-list-double set growth-factor (- (table:get haz-table-double first $match-list) / 240)
```

```
set doublecases doublecases + 1
            set ecd 1
            set stuntdays 0
         ]
                                          ; If have ECD now then grow at a slowed rate
       ifelse(ecd = 1)
           Felse (sex = TRUE) ; Boys and girls grow differently \
[set growthdelta (((array:item height-array (age + 1)) - (array:item BSD floor ((age + 1) / 30)) * (growth-factor - (height - array:item height-array age) / (array:item BSD floor (age / 30)) - height))]
[set growthdelta (((array:item feight-array (age + 1)) - (array:item GSD floor (age + 1) / 30)) * (growth-factor - (height - array:item feight-array age) / (array:item GSD floor (age / 30)) ) - height))]
         ifelse(sex = TRUE)
         set height height + growthdelta
                                                                         :Set height
         set stuntdays stuntdays + 1
growth days from now for 180 days
                                                                         ; Count the number of stunted
         set totalstuntdays totalstuntdays + 1
                                                                         ; stuntdays
         if (stuntdays > 240) [set ecd 0 set stuntdays 0] ;growth is always stunting for
               240 days
       ; If healthy
           ifelse (sex = TRUE)
                 array age))]
            [set height (height + (array:item feight-array (age + 1) - array:item feight-
                  array age))]
         set nostuntdays nostuntdays + 1
  ]
end
to child-old
   ask children
    set age age + 1
    if (age > 730)
       ; Save boy and girls heights
      ifelse (sex = TRUE)
[set bheight730 fput height bheight730]
[set gheight730 fput height gheight730]
       set all-ecd-cases fput ecd-cases all-ecd-cases
                                                                                  ; Put number of cases of ECD
             into all-ecd-cases vector
       set all-double-cases fput doublecases all-double-cases
      die
   ]
   ; Save HAZ scores every 60 days for all kids. Don't save scores every day because of
   memory problems.
ifelse(sex = TRUE)[
      if (age = 1) [set \ haz0 \ fput \ ((height - array:item \ height - array \ age) \ / \ array:item \ BSD
             0) haz0 ]
       if (age = 30)[set haz30 fput ((height - array:item height-array age) / array:item BSD 1) haz30]
```

```
if (age = 90) [set haz90 fput ((height - array:item height-array age) / array:item
     BSD 3) haz90]
           150) [set
                     haz150 fput ((height - array:item height-array age) / array:item
      BSD 5) haz150]
  (age = 210)[set haz210 fput ((height - array:item height-array age) / array:item BSD 7) haz210]
(age = 270)[set haz270 fput ((height - array:item height-array age) / array:item
      BSD 9) haz270]
if (age = 330)[set haz330 fput ((height - array:item height-array age) / array:item
      BSD 11) haz330]
if (age = 390)[set haz390 fput ((height - array:item height-array age) / array:item BSD 13) haz390]
  (age = 450)[set haz450 fput ((height - array:item height-array age) / array:item
      BSD 15) haz450]
if (age = 510)[set ha
BSD 17) haz510]
           510)[set haz510 fput ((height - array:item height-array age) / array:item
if (age = 570)[set haz570 fput ((height - array:item height-array age) / array:item BSD 19) haz570]
   (age = 630)[set haz630 fput ((height - array:item height-array age) / array:item
      BSD 21) haz630]
if (age = 690) set haz690 fput ((height - array:item height-array age) / array:item
      BSD 23) haz690]
 \text{if } (\text{age} = 60) \, [\, \text{set haz} \, 60 \, \, \text{fput } \, ((\, \text{height-array:item height-array age}) \, \, / \, \, \text{array:item} \\ 
     BSD 2) haz60]
  (age = 120) [set BSD 4) haz120]
           120)[set haz120 fput ((height - array:item height-array age) / array:item
if (age =
           180) [set haz180 fput ((height - array:item height-array age) / array:item
      BSD 6) haz180]
if (age = 240)[set haz240 fput ((height - array:item height-array age) / array:item
      BSD 8) haz240]
if (age = 300)[set haz300 fput ((height - array:item height-array age) / array:item BSD 10) haz300]
   (age
           360)[set haz360 fput ((height - array:item height-array age) / array:item
if (age = 420)[set haz420 fput ((height - array:item height-array age) / array:item BSD 14) haz420]
if (age = 480)[set haz480 fput ((height - array:item height-array age) / array:item BSD 16) haz480]
           540) [set haz540 fput ((height - array:item height-array age) / array:item
   (age =
      BSD 18) haz540]
if (age = 600)[set haz600 fput ((height - array:item height-array age) / array:item
      BSD 20) haz6001
if (age = 660)[set haz660 fput ((height - array:item height-array age) / array:item
      BSD 22) haz660]
if (age = 730) [set ha
BSD 24) haz730]
          730)[set haz730 fput ((height - array:item height-array age) / array:item
if (age = 30)[set haz30 fput ((height - array:item feight-array age) / array:item
GSD 1) haz30]
if (age = 90)[set haz90 fput ((height - array:item feight-array age) / array:item
     GSD 3) haz90]
  (age = 150)[set haz150 fput ((height - array:item feight-array age) / array:item GSD 5) haz150]
if (age = 210)[set haz210 fput ((height - array:item feight-array age) / array:item GSD 7) haz210]
if (age = 270)[set haz270 fput ((height - array:item feight-array age) / array:item
if (age = 270) [set l
GSD 9) haz270]
  (age = 330) [set haz330 fput ((height - array:item feight-array age) / array:item GSD 11) haz330]
if (age = 390) [set ha GSD 13) haz390]
           390)[set haz390 fput ((height - array:item feight-array age) / array:item
if (age = 450)[set haz450 fput ((height - array:item feight-array age) / array:item
   GSD 15) haz450] (age = 510)[set haz510 fput ((height - array:item feight-array age) / array:item
      GSD 17) haz510]
if (age = 570)[set haz570 fput ((height - array:item feight-array age) / array:item GSD 19) haz570]
if (age = 630)[set haz630 fput ((height - array:item feight-array age) / array:item GSD 21) haz630]
      ge = 690)[set haz690 fput ((height - array:item feight-array age) / array:item GSD 23) haz690]
if (age
if (age = 1) [set haz0 fput ((height - array:item feight-array age) / array:item
     GSD 0) haz0 ]
```

```
 if \ (age = 60) [set \ haz 60 \ fput \ ((height - array:item \ feight - array \ age) \ / \ array:item \\ 
          GSD 2) haz60]
        (age = 120) [set l
GSD 4) haz120]
                          haz120 fput ((height - array:item feight-array age) / array:item
     if (age = 180)[set haz180 fput ((height - array:item feight-array age) / array:item GSD 6) haz180]
if (age = 240)[set haz240 fput ((height - array:item feight-array age) / array:item
           GSD 8) haz240]
     if (age = 300) [set haz300 fput ((height - array:item feight-array age) / array:item GSD 10) haz300]
     if (age = 360)[set haz360 fput ((height - array:item feight-array age) / array:item GSD 12) haz360]
     if (age = 420) [set haz420 fput ((height - array:item feight-array age) / array:item
           GSD 14) haz420]
     if (age = 480)[set haz480 fput ((height - array:item feight-array age) / array:item GSD 16) haz480]
     if (age = 540) [set haz540 fput ((height - array:item feight-array age) / array:item GSD 18) haz540]
     if (age = 600)[set haz600 fput ((height - array:item feight-array age) / array:item
           GSD 20) haz600]
     if (age = 660) [set haz660 fput ((height - array:item feight-array age) / array:item
           GSD 22) haz660]
     (height - array:item feight-array age) / array:item GSD 24) haz730
end
to setup-collect-freq
  ; Sets up collection frequency list using data from HHB study. Tap-Min is the minimum
  number of days between collections, tap-max is the maximum days and hh-days can ;wait is the max number of days a HH can wait. tap-min and tap-max were the min and
      max number of days reported by respondents during multiple types of questions
  ; during HHB.
  ;; Data is in terms of collects every X days
  let collect-freq-list []
  while [not file-at-end?]
   set collect-freq-list lput file-read collect-freq-list]
  file - close
  let a array:from-list n-values 196 [item ? collect-freq-list]
  ask households[
    set tap-min 99
    set tap-max 99
set hh-days-can-wait 99
    if who < 49
      set tap-min array:item a (who * 4)
set tap-max array:item a ((who * 4) + 1)
      set hh-days-can-wait array:item a ((who * 4) + 3)
 ]
  ask households
    if tap-min = 99 [
                           ; Basically, if no tap-min has yet to be assigned
          iii 0
      let found-nearby-house 0
                                    : Tags to specificy whether or not a nearby house has
           been found.
      while [found-nearby-house = 0]
                                           ; while no nearby HHB house has been found keep
           searching outward radially
         [
           let near-quantity 999
                                    ;re-setting the "near" sources to 999
```

```
ask households in-radius iii
                if (tap-min != 99 and who < 49); If nearby HHB house has legit storage container tag use that data to set near-storage
                 set near-quantity tap-min set found-nearby-house 1
           set iii iii + 1
if tap-min = 99 and found-nearby-house = 1 ;Break out of the previo
search and set the formally unspecified house to be a nearby house
                                                                   ; Break out of the previous
             [set tap-min near-quantity]
       ]
  ]
 ask households [
                           ; Basically, if no storage-countainer has yet to be assigned
   if tap-max = 99 [
     let iii 0
     let found-nearby-house 0 ; Tags to specificy whether or not a nearby house has
           been found.
      while [found-nearby-house = 0] ; while no nearby HHB house has been found keep
           searching outward radially
           let near-quantity 999
                                       ;re-setting the "near" sources to 999
           ask households in-radius iii
               if (tap-max != 99 and who < 49); If nearby HHB house has legit storage container tag use that data to set near-storage
                 set near-quantity tap-max
set found-nearby-house 1
           set iii iii + 1
           if tap-max = 99 and found-nearby-house = 1 ; Break out of the previous
                search and set the formally unspecified house to be a nearby house
             [set tap-max near-quantity]
]
 ask households [
   if hh-days-can-wait = 99 [
                                     ; Basically, if no storage-countainer has yet to be
        assigned
      let iii 0
     let found-nearby-house 0
                                      ; Tags to specificy whether or not a nearby house has
           been found.
      while [found-nearby-house = 0]
                                             ; while no nearby HHB house has been found keep
           searching outward radially
           let near-quantity 999 ; re-setting the "near" sources to 999
           ask households in-radius iii
                if (hh-days-can-wait != 99 and who < 49); If nearby HHB house has legit storage container tag use that data to set near-storage
                  set near-quantity hh-days-can-wait set found-nearby-house 1
               iii iii + 1
               \label{eq:hh-days-can-wait} \begin{array}{lll} -\text{hh-days-can-wait} &= 99 \text{ and found-nearby-house} &= 1 & & ; \\ \text{Break out of the} \end{array}
                previous search and set the formally unspecified house to be a nearby
```

```
house
               [set hh-days-can-wait near-quantity]
          ]
    ]
end
to setup-households [x y]
  let coord-list [ ]
  file -open "hhb_abm_gps_locations2.txt"
                                                                      ;; open txt file containing lat/
        long decimal format coordinates for HHB households (50 entries)
                                                                     ;; open txt file containing lat/
long decimal format coordinates
for all households
  while [not file-at-end?]
[set coord-list lput file-read coord-list]
  file -close
  file-open "ceramic_abm_gps_locations2.txt" Filter locations 176 entries while [not file-at-end?] [set coord-list lput file-read coord-list] file-close
                                                                  ;; txt file with all the Ceramic
  file -open "remaining_abm_gps_locations2.txt"
                                                                 ;185 remaining households from Jeff
  and Census
while [not file-at-end?]
[set coord-list lput file-read coord-list]
  file -close
  let a array:from-list n-values 820 [item ? coord-list];822 is the total number of household locations (50+176+185)*2 (2 is because it includes both lat and long)
  while [ j < 820] ;822 is the total number times two of the households.
     \verb|create-ordered-households| 1
          ;; create households and place on display
       set xcor (array:item a j - xmin)/(xmax - xmin) * world-width + min-pxcor set ycor (array:item a i - ymin)/(ymax - ymin) * world-height + min-pycor
  ask households [
     setxy xcor ycor
     set color orange
set size 1.5
     ask households [
     100]
     set wtp one-of wtp-list
set hh-cf-usage cf-compliance
```

```
set filrannum random 34
end
to \ setup-boil
  ; Sets up boiling frequencies. boil-min and boil-max values taken from HHB surveys as min and max values taken from the different ways those questions were asked ; Data is in terms of boils every X days
  let boiling-list[]
file-open "boiling.txt" ; File with codes
while [not file-at-end?]
[set boiling-list lput file-read boiling-list]
                                          ; File with codes for
   file - close
   let a array:from-list n-values 98 [item ? boiling-list]
   let boil-freq-list []
   ask households
     set boil-min 99
     set boil-max 99
     if who < 49; For all of the HHB households
          set boil-min array:item a (who * 2) set boil-max array:item a ((who * 2) + 1)
  ]
  ask households [
     if boil-min = 99 [ ; Basically, if no boil-min has been defined yet let iii 0
        let found-nearby-house 0 ; Tags to specificy whether or not a nearby house has
              been found.
        while [found-nearby-house = 0]
                                                   ; while no nearby HHB house has been found keep
             searching outward radially
             let near-storage 999
                                           ;re-setting the "near" sources to 999
             let near-storage2 999
ask households in-radius iii
                   if (boil-min != 99 and who < 49); If nearby HHB house has legit boil-min
                        use that data to set near-storage
                     set near-storage boil-min
                     set near-storage2 boil-max
                     set found-nearby-house 1
             set iii iii + 1
                  boil-min=99 and found-nearby-house = 1 ; Break out of the previous search and set the formally unspecified house to be a nearby house
             if boil-min = 99 and found-nearby-house = 1
                  set boil-min near-storage
set boil-max near-storage2
              ; print who
          ] ; if storage-container = 1 [set color 86]; B, 1 or Closed Blue; if storage-container = 2 [set color 16]; C, 2 or Open Red
    ]
   ]
end
to \quad \mathtt{setup}\!-\!\mathtt{hw}
  ; Sets up hand-washing frequency as the min and max number of times a day a person
        washes their hands.
  let hw-list[]
```

```
file-open "hw.txt" ; File with codes for hw "min" and "max" times per day while [not file-at-end?]
   [set hw-list lput file-read hw-list]
   file-close
   let a array:from-list n-values 98 [item ? hw-list]
  let hw-freq-list [] ask households [
                                  ; Set all equal to 99 for now as a placeholder
     set hw-min 99
     set hw-max 99
     if who < 49; For all of the HHB households
       [
                                                                ; Extract min and max values
         set hw-min array:item a (who * 2)
         set hw-max array: item a ((who * 2) + 1)
  1
  ask households
                              ; Basically, if no hw-min/max has been defined yet
     if hw-min = 99 [
       let iii 0
       let found-nearby-house 0 ; Tags to specificy whether or not a nearby house has
             been found.
       while [found-nearby-house = 0] ; while no nearby HHB house has been found keep
            searching outward radially
                                        ;re-setting the "near" sources to 999
             let near-storage 999
             let near-storage2 999
             ask households in-radius iii
                 if (hw-min != 99 and who <49)\,; If nearby HHB house has legit storage container tag use that data to set near-storage
                    set near-storage hw-min
                    set near-storage2 hw-max
set found-nearby-house 1
             set iii iii + 1
             if hw-min = 99 and found-nearby-house = 1 ; Break out of the previous search and set the formally unspecified house to be a nearby house
                 set hw-min near-storage
                 set hw-max near-storage2
               1
         ]
    1
  ; print mean hw-freq-list
_{
m end}
to setup-containers
 ; jc-total represents the biofilm layer on the inside of water storage containers, cup-total is the bacteria associated with the cups, container_cleaning is the
  ; number of times
  file -open "hhb-storage_cont.txt" ; File with codes for the drinking water storage containers water from HHB 1=B (closed top), 2=C (open top)
  while [not file-at-end?]
[set container-list lput file-read container-list]
file-close
  let jc-total-list[]
  file -open "hhb-jc-total.txt"; File with cowhile [not file-at-end?]
[set jc-total-list lput file-read jc-total-list]
                                             ; File with codes for jc_total
  let cup-total-list[ ]
```

```
file-open "hhb_cup_total.txt" ; File with codes for cup_total
while [not file -at-end?]
[set cup-total-list lput file-read cup-total-list]
let cleaning-list[]
file-open "container_cleaning.txt" ; File w
while [not file-at-end?]
[set cleaning-list lput file-read cleaning-list]
                                                             ; File with codes for container_cleaning
file-close
let a array:from-list n-values 98 [item ? cleaning-list]
let bhw-total-list[]
file-open "bhw.txt" ; File with codes for jc-
while [not file-at-end?]
[set bhw-total-list lput file-read bhw-total-list]
                                        ; File with codes for jc_total
file -close
 ask households [
set jc_total 99
set cup_total 99
     set clean-min 99
     set clean-max 99
     set bhw_total 99
     if who < 49; For all of the HHB households
       set storage-container item who container-list ;Set storage containers to be those specified in HHB study, I am omitting Ceramic filter data because it isn't that accurate,
        set jc\_total item who jc\_total\_list
       set cup.total item who cup-total-list set clean-min array:item a (who * 2) set clean-max array:item a ((who * 2) + 1) set bhw.total item who bhw-total-list
 ask households [
     if storage-container < 1 [ ; Basically, if no storage-countainer has yet to be
           assigned
        let iii 0
       let found-nearby-house 0 been found.
                                                 ; Tags to specificy whether or not a nearby house has
        while [found-nearby-house = 0] ; while no nearby HHB house has been found keep
               searching outward radially
              let near-storage 999 ; re-setting the "near" sources to 999 ask households in-radius iii
                 \begin{array}{lll} \mbox{if (storage-container} = 1 \mbox{ or storage-container} = 2 \mbox{ and who} < 49); \mbox{If nearby} \\ \mbox{HHB house has legit storage container tag use that data to set near-} \end{array}
                    set near-storage storage-container set found-nearby-house 1
                 1
              set iii iii + 1
              if storage-container < 1 and found-nearby-house = 1 ;Break out of the previous search and set the formally unspecified house to be a nearby house
              [\,\mathtt{set}\ \mathtt{storage} - \mathtt{container}\ \mathtt{near} - \mathtt{storage}\,]
              print who
          ]
    ]
 ]
 ask households[
```

```
ifelse (storage-container = 1) ; If B or closed type storage container then this sets coliform incubation growth rate [ ;B or Closed Type Storage Containers set river-rand-number 3 ; Coliform incubation growth for River is
     ;B or Closed Type Stolage Set river-rand-number 3 ;Co located in position 3 in that vector
     set pipe-rand-number random 2+2 ; Coliform incubation growth for Pipe is located in positions 2,3 in that vector
                                              ; If C or Open Type Storage Containers then use
         different rate
     set river-rand-number random 3 ; Coliform incubation growth for River i located in positions 0,1,2 in that vector set pipe-rand-number random 2 ; Coliform incubation growth for Pipe is located in positions 0,1 in that vector
                                                      ; Coliform incubation growth for River is
  1
]
ask households [
if jc_total = 99 [
                               ; Basically, if no jc_total has been defined yet
     let iii 0
     let found-nearby-house 0 ; Tags to specificy whether or not a nearby house has
           been found.
     while [found-nearby-house = 0] ; while no nearby HHB house has been found keep
           searching outward radially
          let near-storage 999 \, ; re-setting the "near" sources to 999 ask households in-radius iii
             if (jc_total != 99 and who < 49); If nearby HHB house has legit storage container tag use that data to set near-storage
               set near-storage jc-total set found-nearby-house 1
          set iii iii +1 if jc\_total = 99 and found\_nearby\_house = 1; Break out of the previous
          search and set the formally unspecified house to be a nearby house [set jc_total near-storage]
       ]
  ]
1
ask households [
                               ; Basically, if no cup_total has been defined yet
   if cup_total = 99 [
     let iii 0
     let found-nearby-house 0; Tags to specificy whether or not a nearby house has
     while [found-nearby-house = 0] ; while no nearby HHB house has been found keep
           searching outward radially
          let near-storage 999 ; re-setting the "near" sources to 999
           ask households in-radius iii
             if (cup_total !=99 and who <49); If nearby HHB house has legit storage
                   container tag use that data to set near-storage
               set near-storage cup_total
set found-nearby-house 1
             ]
           set iii iii + 1
           if \operatorname{cup\_total} = 99 and \operatorname{found-nearby-house} = 1; Break out of the previous
                search and set the formally unspecified house to be a nearby house
           [set cup_total near-storage ]
           ; print who
```

```
]
   ask households [
  if bhw_total = 99 [
                           ; Basically, if no cup_total has been defined yet
    let iii 0
    let found-nearby-house 0 ; Tags to specificy whether or not a nearby house has
          been found.
     while [found-nearby-house = 0] ; while no nearby HHB house has been found keep
         searching outward radially
                                  ;re-setting the "near" sources to 999
         let near-storage 999
         ask households in-radius iii
           if (bhw_total != 99 and who < 49); If nearby HHB house has legit storage container tag use that data to set near-storage
             set near-storage bhw_total set found-nearby-house 1
           ]
         set iii iii + 1
if bhw.total = 99 and found-nearby-house = 1 ;Break out of the previous search and set the formally unspecified house to be a nearby house
     ]
1
ask households [
  if clean-min = 99 [ ;Basically, if no cup_total has been defined yet let iii 0
    let found-nearby-house 0; Tags to specificy whether or not a nearby house has
          been found.
     [
         let near-storage 999
let near-storage2 999
                                   ;re-setting the "near" sources to 999
         ask households in-radius iii
           if (clean-min != 99 and who < 49); If nearby HHB house has legit storage container tag use that data to set near-storage
              set near-storage clean-min
             set near-storage2 clean-max
set found-nearby-house 1
           ]
         set iii iii +1 if clean-min = 99 and found-nearby-house = 1; Break out of the previous
              search and set the formally unspecified house to be a nearby house
           set clean-min near-storage
           set clean-max near-storage2
         ]
```

```
]
     ]
   ]
   if container-test = TRUE[ ; If in container-testing mode then
    ; let who-count 0
      ask households[
         ifelse random 100 < closed-percent [set storage-container 1][set storage-
             container 2
   ]
    if jc_test = TRUE[
     ask households [set jc_total jc_total_test] ; Sets jc_total for all HH to be that
             which is set in the Interface if in jc_test mode
    if cup_test = TRUE[
      ask households [set cup_total cup_total_test] ;Sets cup_total for all HH to be that which is set in the Interface if in cup_test mode
end
to \ setup-haz
  set ecdage-list[]
file-open "ecdage_jul_data_4mths.csv" ; File with codes for
while [not file-at-end?]
[set ecdage-list lput file-read ecdage-list]
   file -close
   let final-list[ ]
  file—open "final-jul_data_4mths.csv" ; File with codes for while [not file—at—end?] [set final-list lput file—read final-list] file—close
  let haz-list list ecdage-list final-list
  set haz-table table:make
  (\, \mathtt{foreach} \,\, \mathtt{ecdage} \! - \! \mathtt{list} \,\, \mathtt{final} \! - \! \mathtt{list}
   table:put haz-table ?1 ?2
  set ecdage-list-double[] file-open "ecdage_jul_data_4mths_double_cases.csv" ; File with codes for while [not file-at-end?] [set ecdage-list-double lput file-read ecdage-list-double]
   file -close
   let \ final-list-double [ \ ]
   while [not file-at-end?]
                                                                            ; File with codes for
    set final-list-double [put file-read final-list-double]
   file - close
   let haz-list-double list ecdage-list-double final-list-double
  \mathtt{set} \ \mathtt{haz} \mathtt{-table} \mathtt{-double} \ \mathtt{table} \mathtt{:} \mathtt{make}
  (\, for each \ ecdage-list-double \ final-list-double \,
   table:put haz-table-double ?1 ?2
```

```
])
end
to setup-hh-water-sources2
   let pri-water-list[]
  ret pri-water-list[]
file -open "hhb.water_sources.txt" ; File with codes for
    of the HHB water sources l=River, 2=Piped, 3=MT, 4=Hose
while [not file-at-end?]
[set pri-water-list lput file-read pri-water-list]
                                                                 ; File with codes for the primary water sources
   file -close
   let sec-water-list[ ]
   file -open "hhb_second_water_sources.txt"
   while [not file-at-end?]
[set sec-water-list lput file-read sec-water-list]; File with codes for the secondary water sources of the HHB water sources 1=River, 2=Piped, 3=MT, 4=Hose
   {\tt file-close}
     ask households [
      if who < 49 ; For all of the HHB households
                   pri-water-source item who pri-water-list ;Set primary and secondary sources to be what the HHB study measured, I am omitting Ceramic filter data
            set pri-water-source item who pri-water-list
            because it isn't that accurate, specifically, they seem to have mis-
interpreted household taps and municipal taps
set sec-water-source item who sec-water-list
        ]
      ask households [
         if who > 49
            let i 0
             let nearest-household min-n-of i other households
            [distance myself]
            set pri-water-source [pri-water-source] of nearest-household
            ; print pri-water-source [pri-water-source] of nearest-household != 0 [stop] set i i + 1
        -1
      1
end
to \operatorname{setup-hh-water-sources}
   of the HHB water sources.txt"; File with codes for of the HHB water sources 1=River, 2=Piped, 3=MT, 4=Hose while [not file-at-end?]
[set pri-water-list lput file-read pri-water-list]
file-close
   \label{eq:control_file_primary_water_sources.txt"} \end{substitute} \begin{substitute}{0.5\textwidth} respect to the primary water sources of the Ceramic water sources 1=River, 2=Piped, 3=MT, 4=Hose while [not file-at-end?] \end{substitute}
   [set pri-water-list lput file-read pri-water-list]
  ; print length pri-water-list
```

```
let sec-water-list[]
fell = sec-water-list [ ]
file -open "hbb-second_water_sources.txt"
while [not file-at-end?]
[set sec-water-list lput file-read sec-water-list] ; File with codes for the secondary
    water sources of the HHB water sources 1=River, 2=Piped, 3=MT, 4=Hose
{\tt file-close}
file -open "ceramic_second_water_sources.txt"
while [not file-at-end?]
[set sec-water-list lput file-read sec-water-list]
file -close
ask households [
  set pri-water-source 999 ;999 is a number I assigned in the above text files and
         here to indicate that no source has been assigned to a given household
   set sec-water-source 999
  if who < 49 ; For all of the HHB households
        set pri-water-source item who pri-water-list ; Set primary and secondary sources to be what the HHB study measured, I am omitting Ceramic filter data because it isn't that accurate, specifically, they seem to have mis-
              interpreted household taps and municipal taps
        set sec-water-source item who sec-water-list
1
    ; ask households [print who]
ask households [
   if pri-water-source = 999 or sec-water-source = 999 [
                                                                              ; Effectively , look at all
        households with pri or sec sources as yet unspecified
     let iii 0
     let found-nearby-house 0
                                          ; Tags to specificy whether or not a nearby house has
           been found.
     let found-nearby-house2 0
     while [found-nearby-house = 0]
                                               ; while no nearby HHB house has been found keep
           searching outward radially
           let near-pri-water-source 999 ; re-setting the "near" sources to 999
           ask households in-radius iii
                                                                                                         : I am
                   not letting 26 and 20 determine nearby houses because 26 uses the river and I am confident that the houses nearby probably don't use this source , also excluding 20 because they reported using the Pipe system which is
                not in the part of Tshibvumo where they are.

if pri-water-source > 0 and pri-water-source < 5 and found-nearby-house = 0 and who < 49 and who != 26 and who != 20 ; If nearby HHB house has
                      legit source use that data to set near-pri
                   set near-pri-water-source pri-water-source
                   set found-nearby-house 1
           set iii iii + 1
           if pri-water-source = 999 and found-nearby-house = 1 ; Break out of the
                 previous search and set the formally unspecified house to be a nearby
                house
             [set pri-water-source near-pri-water-source]
     set iii 0
                                                           ;Same loop as above, just for the
           secondary sources
     while [found-nearby-house2 = 0]
           ask households in-radius iii
                if sec-water-source > 0 and sec-water-source < 5 and found-nearby-house2 =
                       0 and who < 49
```

```
set near-sec-water-source sec-water-source
                  ; set color 46
                  set found-nearby-house2 1
          \operatorname{set}^{i} iii iii + 1
               sec-water-source = 999 and found-nearby-house2 = 1
          i f
             [set sec-water-source near-sec-water-source]
  {\tt set today-source pri-water-source}
if source-scenario-test = TRUE [ ; If in source-testing mode then setup houses to have
  one of four different sources according to Interface page let who-count \boldsymbol{0}
  if source-scenario = 1 [set river-percent 0 set pipe-percent 100 / 3 set mt-percent 100 / 3 set hose-percent 100 / 3]
  if source-scenario = 2 [set river-percent 25 set pipe-percent 25 set mt-percent 25 set hose-percent 25]
  if source-scenario = 3 [set river-percent 50 set pipe-percent 50 / 3 set mt-percent
  50 / 3 set hose-percent 50 / 3]
if source-scenario = 4 [set river-percent 75 set pipe-percent 25 / 3 set mt-percent 25 / 3 set hose-percent 25 / 3]
  if source-scenario = 5 [set river-percent 100 set pipe-percent 0 set mt-percent 0 set hose-percent 0]
if source-scenario = 6 [set pipe-percent 0 set river-percent 100 / 3 set mt-percent
  100 / 3 set hose-percent 100 / 3]
if source-scenario = 7 [set pipe-percent 50 set river-percent 50 / 3 set mt-percent 50 / 3 set hose-percent 50 / 3]
  if source-scenario = 8 [set pipe-percent 75 set river-percent 25 / 3 set mt-percent 25 / 3 set hose-percent 25 / 3]
  if source-scenario = 9 [set pipe-percent 100 set river-percent 0 set mt-percent 0 set hose-percent 0]
if source-scenario = 10 [set mt-percent 0 set pipe-percent 100 / 3 set river-percent
         100 / 3 set hose-percent 100 / 3]
  if source-scenario = 11 [set mt-percent 50 set pipe-percent 50 / 3 set river-percent 50 / 3 set hose-percent 50 / 3]
  if source-scenario = 12 [set mt-percent 75 set pipe-percent 25 / 3 set river-percent 25 / 3 set hose-percent 25 / 3]
  if source-scenario = 13 [set mt-percent 100 set pipe-percent 0 set river-percent 0
  set hose-percent 0]
if source-scenario = 14 [set hose-percent 0 set river-percent 100 / 3 set mt-percent
         100 / 3 set pipe-percent 100 / 3]
  if source-scenario = 15 [set hose-percent 50 set river-percent 50 / 3 set mt-percent 50 / 3 set pipe-percent 50 / 3]
  if source-scenario = 16 [set hose-percent 75 set river-percent 25 / 3 set mt-percent
  25 / 3 set pipe-percent 25 / 3]
if source-scenario = 17 [set hose-percent 100 set river-percent 0 set mt-percent 0 set pipe-percent 0]
  ask households[
     ; Setting up households to have one of four source according to the percentages on
           the main page. using who-count to go through the list so the houses are
           randomized
      f who-count < river-percent / 100 * 410 [set pri-water-source 1]
    ; Hose
     set who-count who-count + 1
     set wno-count who-count + 1
if pri-water-source = 4 [set color 14]; Hose Red
if pri-water-source = 1 [set color 84]; River Blue
if pri-water-source = 2 [set color 4]; Piped Grey
if pri-water-source = 3 [set color 54]; MT Green
         today-source pri-water-source
```

```
ask households[
        if who-count < river-percent / 100 * 410 [set sec-water-source 1]
if who-count >= river-percent / 100 * 410 and who-count < pipe-percent / 100 * 410
+ river-percent / 100 * 410 [set sec-water-source 2]
if who-count >= pipe-percent / 100 * 410 + river-percent / 100 * 410 and who-count
< pipe-percent / 100 * 410 + river-percent / 100 * 410 + mt-percent / 100 *
        ]
  ask households [
     if (pri-water-source = 1); River
        [set daily-wq item random length surfwq surfwq]
     \begin{array}{l} \mbox{if (pri-water-source = 2 or pri-water-source = 4) ; Piped or Hose} \\ \mbox{[set daily-wq item random length pipewq pipewq]} \end{array}
     i\,f\ (\,{\tt pri-water-source}\,=\,3\,)\;;\!{\tt MT}
        [set daily-wq item random length mtwq mtwq]
  ]
end
to make-height-array
    let height-list [ ]
file -open "boyheight.txt"
                                                                                             ;; open txt file
          containing WHO SD0 male height scores by day
    while [not file -at-end?]
    [set height-list lput file-read height-list]
                                                                                         ;; looks at txt file and
    places new number at the end of the list using lput file-close
    set height-array array:from-list n-values 1833 [item ? height-list] ;; covert list to height-array for access during height calculation
    let feight-list [ ] file-open "femaleheight.txt"
    containing WHO SD0 female height scores by day while [not file-at-end?]

[set feight-list lput file-read feight-list]

places new number at the end of the list using lput file-close
                                                                                                 ;;open txt file
                                                                                         ;; looks at txt file and
    set feight-array array:from-list n-values 1833 [item ? feight-list] ;; covert list to feight-array for access during height calculation
    let malfeight-list
    file -open "maled_girl_growth.txt"
file containing WHO SD0 female height scores by day
                                                                                                         ;;open txt
    while [not file-at-end?]
[set malfeight-list lput file-read malfeight-list]
                                                                                                  ;; looks at txt file
           and places new number at the end of the list using lput
    let malheight-list [ ]
    file-open "maled-boy-growth.txt"

containing WHO SD0 female height scores by day
                                                                                                        ;;open txt file
    while [not file-at-end?]
[set malheight-list lput file-read malheight-list]
                                                                                                  ;; looks at txt file
           and places new number at the end of the list using lput
    file -close
```

```
set malheight-array array:from-list n-values 730 [item ? malheight-list] ;;covert list to feight-array for access during height calculation

let water-usage-list []
file-open "maled_water_usage_percents.csv"
while [not file-at-end?]
[set water-usage-list lput file-read water-usage-list]
file-close
set water-usage-array array:from-list n-values 731 [item ? water-usage-list]

end

to do-plots

set-current-plot "Med WQ"
set-current-plot-pen "Med WQ"
plot median [daily-wq] of households
set-current-plot "Mean WQ"
set-current-plot-pen "Mean WQ"
plot mean [daily-wq] of households

end
```

Bibliography

Mellor, J., Smith, J.A., Learmonth, G.P., Netshandama, V.O., Dillingham, R.A., 2012. Modeling the complexities of water, hygiene, and health in Limpopo Province, South Africa. Environmental Science & Technology 46, 13512–13520.

Mellor, J., Smith, J.A., Samie, A., Dillingham, R.A., 2013. Coliform Sources and Mechanisms for Regrowth in Household Drinking Water in Limpopo, South Africa. Journal of Environmental Engineering 139, 1152–1161.