
Supporting Information I

Analytical

Fitness of the linear block

Fitness of block of length i

W@i_D := 1 - S +

J1 -
i

n
N S

1 -
i Θ

n

Fitness of the block with a modifier mutation present

w@i_D := 1 - s +

J1 -
i

n
N s

1 -
i q

n

Mean population fitness when the frequency of residents is not 1 (used to estimate the amount of 

selection acting on the modifier)

Wbar@k_D :=

2 HSum@p@iD W@iD, 8i, k - 1<D + Hp@kDL W@kDL + Hp@0D - HSum@p@iD, 8i, k - 1<D + Hp@kDLLL

Recombination

Derivation of the opeator Y in the paper:

We need to find the number Y [c,k,i] of the daughter blocks of length i Î [1, k-1] resulting from all 

possible combinations of c Î [1, k-1] crossovers in k - 1 locations. The cases of no recombination (c 

= 0) and i = k are not included.

First, recall that any one combination of crossovers divides a single parental block in two groups of 

segments, which then are joined to form the two daughter blocks: we number these as (1) and (2). 

Notice that when a block of length k is cut by the odd number of crossovers (c = 2x+1), the number 

of resulting segments forming either (1) or (2) is equal x + 1. With even number of crossovers (c = 

2x), the first arbitrary chosen daughter block (1) will be composed of x+1 segments, and the second 

block (2) will contain x segments.

x = 1              (1)    ----        ----          x + 1

c = 2x + 1      (2)          -----      -----   x + 1

x = 1              (1)     ----        ---------          x + 1

c = 2x            (2)           -----                      x

Consider the case when the two daughter blocks (1) and (2)  have lengths  i and k - i. Let's find out 

how many ways there are to compose the daughter block (1) of length i with x + 1 segments, in both 

cases of c = 2x + 1 and c = 2x. This is the same as finding the number of compositions of the 

integer a into b parts, which is K
a -1

b - 1

O. Hence, there are K
i -1

x
O compositions of (1). Similarly, 

we find out the number of compositions of (2): if it contains x + 1 segments (i.e. c = 2x + 1), there 

are K
k -i -1

x
O compositions, and with x segments (i.e. c = 2x), there are K

k -i -1

x - 1
O composi-

tions. To get the total number of compositions of the parental block, the corresponding binomilas 

need to be multiplied, i.e.  K
i -1

x
O K

k -i -1

x
O and K

i -1

x
O K

k -i -1

x -1

O for the odd and even 

numbers of crossovers, respectivelly.

Now, consider the reverse case where the block (1) has length k - 1 and the block (2) has length i. 

Then, if c = 2x +1, the block (1) has K
k -i -1

x
O and the block (2) has K

i -1

x
O compositions; and if 

if c = 2x,  the block (1) has K
k -i -1

x
O and the block (2) has K

i -1

x - 1
O compositions. 

Combining all these terms to get the total number of compositions of the parental block, the result 

follows:

If c = 2x+1, then   Y[c,k,i] = K
i -1

x
O K

k -i -1

x
O+K

i -1

x
O K

k -i -1

x
O 

If c = 2x, then   Y[c,k,i] =  K
i -1

x
O K

k -i -1

x -1

O+K
k -i -1

x
O K

i -1

x - 1
O 
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In Mathematica code:

Y@x_, k_, i_D := IfBEvenQ@xD, Binomial@i - 1, x � 2D BinomialBk - i - 1,

x

2

- 1F +

BinomialBi - 1,

x

2

- 1F Binomial@k - i - 1, x � 2D,

2 Binomial@i - 1, Hx - 1L � 2D Binomial@k - i - 1, Hx - 1L � 2DF

F does the same, manually (up to 12 genes below).

2     Suppl Info.nb



Y@x_, k_D := 8Transpose@
8ðP1T & �� Subsets@Range@k - 1D, 1D, k - ðP1T & �� Subsets@Range@k - 1D, 1D<D,

Transpose@8ðP1T + k - ðP2T & �� Subsets@Range@k - 1D, 2D,

ðP2T - ðP1T & �� Subsets@Range@k - 1D, 2D<D,

Transpose@8ðP1T + ðP3T - ðP2T & �� Subsets@Range@k - 1D, 3D,

ðP2T - ðP1T + k - ðP3T & �� Subsets@Range@k - 1D, 3D<D,

Transpose@8ðP1T + ðP3T - ðP2T + k - ðP4T & �� Subsets@Range@k - 1D, 4D,

-ðP1T - ðP3T + ðP2T + ðP4T & �� Subsets@Range@k - 1D, 4D<D,

Transpose@8ðP1T + ðP3T - ðP2T + ðP5T - ðP4T & �� Subsets@Range@k - 1D, 5D,

-ðP1T - ðP3T + ðP2T + ðP4T + k - ðP5T & �� Subsets@Range@k - 1D, 5D<D,

Transpose@8ðP1T + ðP3T - ðP2T + ðP5T - ðP4T + k - ðP6T & �� Subsets@Range@k - 1D, 6D,

-ðP1T - ðP3T + ðP2T + ðP4T - ðP5T + ðP6T & �� Subsets@Range@k - 1D, 6D<D,

Transpose@8ðP1T + ðP3T - ðP2T + ðP5T - ðP4T + ðP7T - ðP6T & ��

Subsets@Range@k - 1D, 7D,

-ðP1T - ðP3T + ðP2T + ðP4T - ðP5T + ðP6T + k - ðP7T & �� Subsets@Range@k - 1D, 7D<D,

Transpose@8ðP1T + ðP3T - ðP2T + ðP5T - ðP4T + ðP7T - ðP6T + k - ðP8T & ��

Subsets@Range@k - 1D, 8D, -ðP1T - ðP3T + ðP2T + ðP4T -

ðP5T + ðP6T + ðP8T - ðP7T & �� Subsets@Range@k - 1D, 8D<D,

Transpose@8ðP1T + ðP3T - ðP2T + ðP5T - ðP4T + ðP7T - ðP6T + ðP9T - ðP8T & ��

Subsets@Range@k - 1D, 9D, -ðP1T - ðP3T + ðP2T + ðP4T - ðP5T +

ðP6T + ðP8T - ðP7T + k - ðP9T & �� Subsets@Range@k - 1D, 9D<D,

Transpose@8ðP1T + ðP3T - ðP2T + ðP5T - ðP4T + ðP7T - ðP6T + ðP9T - ðP8T + k - ðP10T & ��

Subsets@Range@k - 1D, 10D,

-ðP1T - ðP3T + ðP2T + ðP4T - ðP5T + ðP6T + ðP8T - ðP7T + ðP10T - ðP9T & ��

Subsets@Range@k - 1D, 10D<D, Transpose@
8ðP1T + ðP3T - ðP2T + ðP5T - ðP4T + ðP7T - ðP6T + ðP9T - ðP8T + ðP11T - ðP10T & ��

Subsets@Range@k - 1D, 11D, -ðP1T - ðP3T + ðP2T + ðP4T - ðP5T + ðP6T +

ðP8T - ðP7T + ðP10T - ðP9T + k - ðP11T & �� Subsets@Range@k - 1D, 11D<D,

Transpose@8ðP1T + ðP3T - ðP2T + ðP5T - ðP4T + ðP7T - ðP6T + ðP9T - ðP8T +

ðP11T - ðP10T + k - ðP12T & �� Subsets@Range@k - 1D, 12D,

-ðP1T - ðP3T + ðP2T + ðP4T - ðP5T + ðP6T + ðP8T - ðP7T + ðP10T - ðP9T +

ðP12T - ðP11T & �� Subsets@Range@k - 1D, 12D<D<PxT

Load by branching process

Definitions: dn [ i ] --- the lineage size ( = Zi in the paper), L [k] --- migration load, wbar -- mean 

population fitness, k - number of genes in the intitial block,, W [ k ] -- fitness of the block of length k.

A single gene:

Clear@dnD

dn@1D =
H1 - mL wbar H1 - W@1DL

wbar - W@1D + m W@1D
;

k  genes:

dn@k_D :=

H-1 + mL H-1 + rL -wbar + wbar W@kD - â
x=1

-1+k

â
i=1

-1+k

2 H1 - rL-1+k-x
r

x
BinomialB-1 + i,

1

2

H-1 + xLF BinomialB-1 - i + k,

1

2

H-1 + xLF dn@iD W@kD �

I-wbar + r wbar + H1 - rLk
W@kD - m H1 - rLk

W@kDM;

numerical solution for the load:

Suppl Info.nb    3



Load@j_D := 1 - wbar �.

FindRootB1 - m + W@jD 1 -
1

wbar

ISumASumAY@x, j, iD dn@iD r
x H1 - rLj-1-x

, 8i, 1, j - 1<E,

8x, 1, j - 1<E + dn@jD H1 - rLj-1M m � wbar, 8wbar, 1<F

Recursions for block frequencies

Recurs@k_D := IfBk � 1,

W@1D

wbar

Hp@1D H1 - mL + mL,

JoinB:p@1D
W@1D

wbar H1 - mL-1

+ SumBSumBIf@j � k, p@kD H1 - mL + m, p@jD H1 - mLD

r
x H1 - rLj-1-x

wbar

Y@x, j, 1D W@jD

1

, 8x, 1, j - 1<F, 8j, 2, k<F>,

TableBp@iD
W@iD H1 - rLi-1

wbar H1 - mL-1

+ SumBSumBIf@j � k, p@kD H1 - mL + m, p@jD H1 - mLD

r
x H1 - rLj-1-x

wbar

Y@x, j, iD W@jD

1

, 8x, 1, j - 1<F, 8j, i + 1, k<F,

8i, 2, k - 1<F, :
Hp@kD H1 - mL + mL IW@kD H1 - rLk-1M

wbar

>F F

Recursions with the modifier present:

xRecurs@k_D :=

JoinB:
x@0D p@0D H1 - mL

wbar

+ p@0D SumBx@iD H1 - mL H1 - rLi-1
R

w@iD

wbar

, 8i, k<F +

SumBp@iD H1 - mL x@0D H1 - RL H1 - rLi-1
w@iD

wbar

, 8i, k<F>,

TableB p@0D H1 - mL x@iD H1 - rLi-1 H1 - RL
w@iD

wbar

+

p@iD x@0D H1 - mL R H1 - rLi-1
w@iD

wbar

+ SumBp@0D H1 - mL x@jD
w@jD

wbar

IH1 - RL SumAr
c H1 - rLj-c-1

Count@Y@c, jD, 8i, j - i<D, 8c, j - 1<E + R SumA

r
c H1 - rLj-c-1

Count@Y@c, jD, 8j - i, i<D, 8c, j - 1<EM, 8j, k<F , 8i, k<FF

Invasion of modifier

Find the leading eigenvalue of the matrix of linear coefficients of block frequencies:

Max@Eigenvalues@Table@Coefficient@ð, x@iDD & �� xRecurs@kD, 8i, 0, k<DDD;

Simulations

Simulations were peformed using Nick Barton's Multilocus packages: http://www.biology.ed.ac.uk/re-

search/groups/barton/index.html  Note that Multilcous does not seem to work in the versions of 

Mathematica above 7. In each simulation run, the population was iterated until it reached equillib-

rium (~1000 generations), after which the migration load and the block frequencies were estimated.
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Simulations were peformed using Nick Barton's Multilocus packages: http://www.biology.ed.ac.uk/re-

search/groups/barton/index.html  Note that Multilcous does not seem to work in the versions of 
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rium (~1000 generations), after which the migration load and the block frequencies were estimated.

Load the required package:

<< NumericalModels`ExactModel`;

Haploid fitness:

Wf1@Θ_, S_, n_D@X_D := 1 - S +

J1 -
Count@Join@X,Array@0&,Length@XDDD,1D

n
N S

1 -
Count@Join@X,Array@0&,Length@XDDD,1D

n
Θ

With modifier:

Wf2@Θ_, S_, q_, s_, n_D@X_D :=

If@XP1T � 1, 1 - s + HH1 - 1 � nCount@Join@Rest@XD, Array@0 &, Length@XD - 1DD, 1DL sL �
H1 - 1 � nCount@Join@Rest@XD, Array@0 &, Length@XD - 1DD, 1D qL,

1 - S + HH1 - 1 � nCount@Join@Rest@XD, Array@0 &, Length@XD - 1DD, 1DL SL �
H1 - 1 � nCount@Join@Rest@XD, Array@0 &, Length@XD - 1DD, 1D ΘLD

Introgressive simulation (mean population fitness is calculated as a sum over 

p[i]*W[i])

Iterate a haploid population 

Introgress@pp_, k_, m_, r_D :=

ModuleB8pp1, pp0, fr, pp2<,

pp0 = MigrateExact@pp, MakePopulation@k, Array@1 &, kD, 1D, mD;

H*Selection*L
fr = Flatten@MapIndexed@Wf1@Θ, S, nD@ð1D Hpp0P1TPð2TL &, HaploidTypes@kDDD;

pp1 =
fr

Plus �� fr

;

pp2 =

DropAPlus �� I2 pp1 IGametes@ðP1T, ðP2T, Linkage ® Array@r &, k - 1DD & �� TableA

8HaploidTypes@kDP1T, HaploidTypes@kDPiT<, 9i, 1, 2
k=EMM, 1E;

HaploidFrequencies@Join@81 - Plus �� pp2<, pp2D, 1DF

To speed it up, first evaluate the following:

GTable =

TableAGametes@HaploidTypes@kDP1T, HaploidTypes@kDPiT, Hk - 1L rD, 9i, 1, 2
k=E;

This uses pre-defined GTable of offspring gamete distribution and so is much faster

IntrogressG@pp_, k_, m_, r_D :=

ModuleB8pp1, pp0, fr, pp2<,

pp0 = MigrateExact@pp, MakePopulation@k, Array@1 &, kD, 1D, mD;

H*Selection*L
fr = Flatten@MapIndexed@Wf1@Θ, S, nD@ð1D Hpp0P1TPð2TL &, HaploidTypes@kDDD;

pp1 =
fr

Plus �� fr

;

pp2 = Drop@Plus �� H2 pp1 GTableL, 1D;

HaploidFrequencies@Join@81 - Plus �� pp2<, pp2D, 1DF

IntrogressE does the same thing to Introgress, but stores wbar at the moment of selection. Uses the 

argument in pp = {hp, wbar} format
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IntrogressE@pp_, k_, m_, r_D :=

ModuleB8pp1, pp0, fr, pp2<,

pp0 = MigrateExact@ppP1T, MakePopulation@k, Array@1 &, kD, 1D, mD;

H*Selection*L
fr = Flatten@MapIndexed@Wf1@Θ, S, nD@ð1D Hpp0P1TPð2TL &, HaploidTypes@kDDD;

pp1 =
fr

Plus �� fr

;

pp2 =

DropAPlus �� I2 pp1 IGametes@ðP1T, ðP2T, Linkage ® Array@r &, k - 1DD & �� TableA

8HaploidTypes@kDP1T, HaploidTypes@kDPiT<, 9i, 1, 2
k=EMM, 1E;

8HaploidFrequencies@Join@81 - Plus �� pp2<, pp2D, 1D, Plus �� fr<F

Single Crossover Simulation. Note that recombination rate is (k-1)*r

Define the probability distribtion for gametes under single crossover and store the table for faster 

simulation

SingleGametes@X_, Y_, rho_D :=

Plus �� Table@Gametes@X, Y, Linkage ® ReplacePart@Array@0 &, k - 1D, i ® rhoD,

StoreResults ® TrueD, 8i, k - 1<D � Hk - 1L

STable = TableA

SingleGametes@HaploidTypes@kDP1T, HaploidTypes@kDPiT, Hk - 1L rD, 9i, 1, 2
k=E;

The iterative function

IntrogressSingleR1@pp_, k_, m_D :=

ModuleB8pp1, pp0, fr, pp2<,

pp0 = MigrateExact@pp, MakePopulation@k, Array@1 &, kD, 1D, mD;

H*Selection*L
fr = Flatten@MapIndexed@Wf1@Θ, S, nD@ð1D Hpp0P1TPð2TL &, HaploidTypes@kDDD;

pp1 =
fr

Plus �� fr

;

pp2 = Drop@Plus �� H2 pp1 STableL, 1D;

HaploidFrequencies@Join@81 - Plus �� pp2<, pp2D, 1DF

Panmictic simulation

hp = MakePopulation@k, Array@0 &, kDD; src = MakePopulation@k, Array@1 &, kD, 1D;

H* hp -- population consisting of residents only Hall zerosL,

src --- the source of migrantion Hall onesLL

This is a standard way of simulating the genotype frequencies in Multilocus. See instructions 

therein. In correspondence to the numerical equations for the load and block frequencies, the order 

of events (migration, selection, and union of gametes) has to be chosen carefully, as well as the 

timepoint at which the load is measured. The following order (MigrationSelectionUnion) was used:

NewGametes@MakeDiploid@SelectionExact@MigrateExact@hp, src, mD, Wf1@Θ, S, nDDD,

Linkage ® Array@r &, k - 1DD

 The load is calculated immediately after migration:

6     Suppl Info.nb



1 -

Plus �� HMigrateExact@Nest@NewGametes@MakeDiploid@SelectionExact@MigrateExact@
ð, src, mD, Wf1@Θ, S, nDDD, Linkage ® Array@r &, k - 1DD &,

hp, 1000D, src, mDP1T HWf1@Θ, S, nD@ðD & �� HaploidTypes@kDLL
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