Supplementary Material

Wall Deposition Patterns for Nanoparticles in an Inflamed Patient-Specific Arterial Tree

Shaolie S. Hossain^a, Thomas J.R. Hughes^b, Paolo Decuzzi^a

^aDepartment of Translational Imaging and Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA ^bInstitute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX 78712, USA **Supplementary Figure 1:** Time evolution of particle volumetric concentration at A) 1 s, B) 5.25 s, and C) 8 s. Right column plots the area-averaged quantity normalized by the number of particles injected n_{inj} and averaged over the surface area along the vessel centerline ("Z"direction).

Supplementary Figure 2: Time-integrated particle volumetric concentration (cm⁻³) $C|_{s}$ at the lumen-wall interface at the end of simulation (t = 9 s) averaged over the circumference of each cross section taken at various "Z"-locations along the vessel centerline.

Supplementary Figure 3: Time-averaged wall shear stress (WSS) in Pa (N/m^2) A) during the first 5 s of catheter injection and B) after catheter injection is ceased.

Supplementary Figure 4: Comparison between A) 30:70, B) 50:50, and C) 60:40 aVCAM:aEsel targeting in terms of $(n_{adh}/n_{inj} \times A)$, where n_{adh} is the number of adhered particles, n_{inj} is the total number of injected particles, and A is the surface area (cm²).

Supplementary Figure 5: Comparison between different proportions of dual targeting. The number of adhering 0.5 μ m particles averaged over the circumference of each cross section taken at various "Z"-locations along the vessel centerline. Here n_{adh} is the number of adhered particles, n_{inj} is the total number of injected particles, and A is the surface area (cm²). Comparison between A) 30:70 aVCAM-aEsel, B) 50:50 aVCAM-aEsel and C) 60:40 aVCAM-aEsel cases. Here dashed line represents the LAD branch.

Supplementary Figure 6: Comparison of particle size under single receptor (VCAM-1) targeting. Spatial distribution of different sized particles: A) $d_p = 0.1 \,\mu\text{m}$, B) $d_p = 0.5 \,\mu\text{m}$ and C) $d_p = 2.0 \,\mu\text{m}$, in terms of $n_{adh}/(n_{inj} \times A)$, where n_{adh} is the number of adhered particles, n_{inj} is the total number of injected particles and A (cm²).

Supplementary Figure 7: Comparison of particle size under single receptor (E-selectin) targeting. Spatial distribution of different sized particles: A) $d_p = 0.1 \,\mu\text{m}$, B) $d_p = 0.5 \,\mu\text{m}$ and C) $d_p = 2.0 \,\mu\text{m}$, averaged over the circumference of each cross section taken at various "Z"-locations along the vessel centerline in terms of $n_{adh}/(n_{inj} \times A)$. Here, n_{adh} is the number of adhered particles, n_{inj} is the total number of injected particles and A (cm²). The dashed line represents the LAD branch.

Supplementary Table 1: Area-averaged NP surface density in the arterial tree segment under the single- and dual-targeting approaches.

	Total area-averaged NP surface density, cm ⁻²			
NP type	Single - receptor targeting approach			
aICAM-1	7.09 x 10 ⁻⁹	4.51 x 10 ⁻⁸	7.48 x 10 ⁻⁸	
aVCAM-1	3.26 x 10 ⁻⁸	4.14 x 10 ⁻⁷	1.87 x 10 ⁻⁶	
aEsel	1.82 x 10 ⁻⁸	1.75 x 10 ⁻⁷	4.83 x 10 ⁻⁷	
aVCAM-1:aEsel	Dual - receptor targeting approach			
30:70	2.25 x 10 ⁻⁸	2.46 x 10 ⁻⁷	9.03 x 10 ⁻⁷	
50:50	2.41 x 10 ⁻⁸	2.86 x 10 ⁻⁷	1.18 x 10 ⁻⁶	
60:40	2.55 x 10 ⁻⁸	3.09 x 10 ⁻⁷	1.32 x 10 ⁻⁶	

Supplementary Table 2: Heterogeneity index, H under the single- and dual-targeting approaches. Here, $H = \frac{N_{LCX}}{N_{LAD}}$, and N is the surface density of particles integrated over the entire surface of the branch and divided by the total surface area of the branch.

	Heterogeneity index, H			
	$d_p = 0.1 \ \mu \mathrm{m}$	$d_p = 0.5 \mu\mathrm{m}$	$d_p = 2.0 \ \mu \mathrm{m}$	
NP type	Single-receptor targeting approach			
aICAM-1	1.06	0.88	0.53	
aVCAM-1	1.21	1.35	1.22	
aEsel	1.04	1.01	0.70	
aVCAM-1:aEsel	Dual-receptor targeting approach			
30:70	1.11	1.17	0.99	
50:50	1.15	1.23	1.08	
60:40	1.16	1.26	1.11	