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ABSTRACT Genes within the major histocompatibility
complex (MHC) are characterized by extensive polymorphism
within species and also by a remarkable conservation of
contemporary human allelic sequences in evolutionarily dis-
tant primates. Mechanisms proposed to account for strict
nucleotide conservation in the context of highly variable genes
include the suggestion that intergenic exchange generates
repeated sets ofMHCDRB polymorphisms [Gyllensten, U. B.,
Sundvall, M. & Erlich, H. A. (1991) Proc. Nati. Acad. Sci. USA
88,3686-3690; Lundberg, A. S. & McDevitt, H. 0. (1992) Proc.
Natl. Acad. Sci. USA 89, 6545-6549]. We analyzed over 50
primate MHC DRB sequences, and identified nucleotide ele-
ments within macaque and baboon DRB6-like sequences with
deletions corresponding to specific exon 2 hypervariable
regions, which encode a discrete ct helical segment of theMHC
antigen combining site. This precisely localized deletion pro-
vides direct evidence implicating segmental exchange ofMHC-
encoded DRB gene fragments as one of the evolutionary
mechanisms both generating and maintaining MHC diversity.
Intergenic exchange at this site may be fundamental to the
diversification of immune protection in populations by per-
mitting alteration in the specificity of the MHC that deter-
mines the repertoire of antigens bound.

Extensive variation of major histocompatibility complex
(MHC) genes occurs in all vertebrate species, due to a number
of structural and genetic features, including gene duplication,
heterodimer formation, and extensive allelic polymorphism.
Notably, within MHC DRB genes, sequence polymorphism is
nonuniform, clustered within "hypervariable" regions of the
second exon (1-4), which encodes the antigen-binding portion
of the MHC class II molecule. Thus, functional properties of
the MHC molecule and the corresponding selective pressures
that arise from immunological challenges cluster within a
limited set of highly polymorphic nucleotides.

Calculations based on sequence variation have indicated
that the overall mutation rate of MHC loci is not higher than
that of most other genetic loci (5). However, it has been
suggested that discrete segments within the second exon may
accumulate mutations at different rates (4). Specific mecha-
nisms for generating localized variability in the MHC, such as
gene conversion and interlocus genetic exchange, have been
suggested but they are controversial and indirect (6-8). In-
deed, arguments for convergent mechanisms to account for
recurrent sequences within otherwise divergent alleles have
even been proposed (9). We now provide evidence from an
analysis of macaque and baboon MHC DRB-related genes for
intragenic segmental loss of specific hypervariable sequences,
consistent with evolutionary mechanisms involving exchange
of DRB gene segments generating MHC diversity.

MATERIALS AND METHODS

DRBFP1 (forward) and DRBRP2 (reverse) oligonucleotide
primers were used for primary amplification and sequencing of
DRB loci in humans and nonhuman primates. Genomic DNA
was amplified by PCR for 29 cycles at 55°C, 72°C, and 93°C for
30 sec each. Amplification products were ligated into the TA
cloning vector (Invitrogen) before sequencing by the dideoxy
termination method. As described, additional allele-specific
primers were then derived from these sequences. Nested
reverse primers NHP-R0, NHP-R1, and NHP-R2 were used
in conjunction with nested forward primers NHP-01, NHP-02,
NHP-03, and NHP-04 to confirm the "short" MHC sequences
by independent amplification from genomic DNA. Primers
used included: NHP-01, TGGAGCAGGCTAAGTGTAAG;
NHP-02, TTCTTGGAGTAGGCTAAGTGT; NHP-03, GG-
AGCAGGCTAAGTGTGAG; NHP-04, TTGGAGCAGGCT-
AAATATGAG; NHP-R0, TGTAACTCTGTGACAGGCCA;
NHP-R1, TGTAACITCTGTGACAAGCCG; NHP-R2, TTCC-
GTAATTGTAACTCTGTGA; DRBFP1, CCCCACAGCAC-
GTTTCTTG; DRBRP2, CCGCTGCACTGTGAAGCTCT.

RESULTS AND DISCUSSION
Over 50 DRB-like sequences from a wide variety of nonhuman
primates were derived by amplification of the second exon
homologs using DRB1 consensus primers. Most of the se-
quences gave the expected 270-bp product that aligned with
DRB second exon sequences. However, four short variants of
208 bp were identified in macaques; these sequences were also
homologous to portions of the DRB second exon with a 62-bp
gap and were observed in two species of macaques, Macaca
fascicularis and Macaca nemestrina (Fig. 1). The deleted
nucleotide sequences corresponded to codons 60-80 of the
DRB second exon, also creating a frame shift at the junction
flanking this gap. Additional polymorphisms distinguished the
four short variants, consistent with continued divergence of
these sequences subsequent to a common ancestral deletional
event.
A very similar sequence was also identified in a baboon

DRB-like gene shown in Fig. 1, designated Paca-DRB6*pssO2.
Again, codons 60-80 were specifically deleted with the same
frame-shift mutation at this site. Additional polymorphisms
within the baboon-derived sequence, particularly at codon
35-37, indicate that this gene also contains additional muta-
tions, consistent with continued accumulation of deleterious
nucleotide changes.

Abbreviations: MHC, major histocompatibility complex; HVR, vari-
able region.
Data deposition: The sequences reported in the paper have been
deposited in the GenBank data base (accession nos. L76641-L76651,
L76675-L76695, L76720-L76725, L76980-L76981, L77100-L77105,
and L77110-L77112).
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FIG. 1. MHC DRB6 second exon sequence alignments. Primate DRB6 alleles identified with a gap

corresponding to codons 60-80 are aligned with previously described human DRB6 sequences. Representative
additional macaque DRB6 full-length alleles are also listed for comparison; provisional locus and allelic
nomenclature assignments are based on overall homology with published human and nonhuman primate
DRB6 sequences (10, 11).

To confirm the presence of the short sequences in genomic
DNA, additional primer oligonucleotides (NHP-R0, NHP-
Rl, NHP-R2) were constructed that annealed to the predicted
junctional sequence linking codons 59 and 81 when codons
60-80 are deleted. Specifically amplified DNA of the pre-

dicted length was obtained from all four macaque samples and
nucleotide sequences confirmed the previously identified genes.

Because the deleted gene segments corresponded to most of
the distal portion of the second exon, sequences in the proximal
portion of the exon were used for alignment comparisons.
Conserved lineage motifs in this region for each of the five
deleted DRB sequences corresponded to homology with the
DRB6 locus. This alignment is shown in Fig. 1. DRB6 genes

have been identified in prosimians and most primate species,
suggesting that it is one of the oldest ancestral DRB homologs
(11). In modern primate and human lineages, DRB6 analogs

are pseudogenes with, for example, deletions of the first exon
commonly found (12). Indeed, one of the short DRB6 se-

quences observed in the macaques contains an additional
sequence polymorphism at codon 10 that encodes a stop

codon, consistent with the interpretation that these represent

ancestral pseudogenes.
DNA from a variety of human MHC haplotypes was also

studied, using both the amplification primers originally used in
this study as well as primers corresponding to the predicted
junctional sequences; no short human homologs were iden-
tified.
The boundaries of the deleted DNA segment from codon

60-80 are of interest because they have a specific topological
alignment within the DRB molecule. Codons 7-54 encode a

,B-pleated sheet platform structure underlying the MHC-

antigen binding groove, and codons 60-80 encode a long a
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helical loop that forms the lateral boundary of the antigen

binding MHC groove (13). Previous sequence comparisons of

full-length DRB genes have suggested that these two regions
have distinct evolutionary histories. Statistical analyses of the

relative frequencies of replacement and silent substitutions

(14), as well as phylogenetic analysis (4, 15), have been used to

argue that the proximal (f3 sheet portion) second exon contains

Proc. Natl. Acad. Sci. USA 93 (1996)

most of the stable allelic lineage-related sequence motifs, with

a slow conventional accumulation of additional mutations over

time. In contrast, the distal (a helical portion) second exon

represents a fixed sequence element that occurs in the context

of multiple different allelic lineages. We believe we have

identified in the short DRB6 macaque and baboon sequences

direct evidence consistent with a mechanism of intergenic
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segmental interchange for the distal (a helical portion) DRB
second exon. The short macaque DRB6 pseudogenes appear to
represent the donor sites from such an exchange, which in
these cases was apparently nonreciprocal, leading to the evo-
lutionary remnants found.

Segmental recombination at this site in DRB second exons
is presumably not limited to the DRB6 pseudogene. Sequence
identities between the a helical portion of the DRB molecule
among different alleles have been noted by many investigators
and are present in most of the functional allelic lineages in
modern primates and man. For example, the human
DRB1 *1414 gene sequence is consistent with a recombination
between DRB1 *1404 and DRBJ *0802 or DRB1 *0804 alleles at
this second exon site (16), and similarly the DRB1 *0415
sequence may derive from a DRB1 *0401/DRBl *11 recombi-
nant (17). Analysis of additional sequences derived from
nonhuman primates identified some striking examples that
also appear to represent this diversification mechanism. As
shown in Fig. 2, polymorphism among DRB genes can be
viewed as a patchwork of distinct clusters of variable sequence
elements (HVR) that occur in three sites, including the HVRII,
cluster encoding residues 67-74 within the a helical loop
region. Conserved sequence motifs from this region occur

interspersed among loci, alleles, and even between species, as

highlighted in Fig. 2.
An example of this segmental conservation is shown for the

HVRII, sequence TAC CTG GAG CAG AGG CGG GCC
GCG (Fig. 2, dark blue), which is found in DRB4-like, DRBS-
like, and DRB6-like loci in several different alleles distributed
across macaque, lemur, and galago species, and is present in
the context of a least four different HVRI and HVRI, se-

quences. Although it is not possible to definitively identify the
codon 60-80 segment currently "missing" from the short
macaque DRB6 sequences, it may be noteworthy that some
contemporary DRB6 genes have identical HVRI and HVRI,
segments (i.e., compare Mane-DRB6*pssO2 with Mane-
DRB6*02a and Mane-DRB6*02b), suggesting the possibility
that the DRB6*02 HVR1II sequence ATC CTG GAG GAG
AAG CGG GAC AAG (Fig. 2, grey) could correspond to the
hypervariable segment deleted in the short sequences. If this
is the case, we can speculate that potential acceptor genes for
this sequence, if indeed it was donated in a nonreciprocal
exchange, might be the macaque DRB6*03a or even the human
HLA-DRB7 pseudogene sequences, which share contempo-
rary HVRII homologs. Most likely, this form of segmental
exchange is frequently reciprocal, yielding gene products of
normal length; the existence of the short DRB6 homologs may
represent an exception to this reciprocal recombination that,
nevertheless, provides direct evidence for this form of diver-
sification mechanism.

Strong selective pressures encourage both diversification of
MHC DRB alleles within a species as well as conservation of
functionally successful motifs, not only within a species but also
between species (18, 19). It is possible that a mechanism of
segmental recombination for the a helical portion of the
second exon represents an evolutionary adaptation favoring
the exchange of successful structural motifs in this region
among different alleles. Indeed, Gyllensten et al. (15) have
noted that DRB sequences between codons 51-55 are partially
homologous to bacterial x-like recombination signals and have
suggested this as a basis for the distinct evolutionary histories
of the a-sheet region compared with the a helical portions of
the second exon (4). Because this x-like sequence occurs in a

nonpolymorphic portion of the exon, it raises the possibility

that conservation of a mechanism for localized segmental
exchange is one of the underlying evolutionary features ac-
counting for MHC DRB diversity.

Localization of DRB1 segmental variation to the second
exon implies functional selection mechanisms, because this
segment encodes the class II MHC domain that interacts with
highly variable peptide antigens. Indeed, the comparable
functional site in the third exon of the MHC class I HLA-B
locus has also been suggested to arise by similar mechanisms,
based on sequence comparisons that suggest recombinant
origins (20). As pointed out by others (21), there are also
examples of sequence variation in DRB genes consistent with
concepts of convergent evolution. However, the specific local-
ization of the deleted DRB6 gene segment described here is
most consistent with the interpretation that the evolutionary
history of the a helical portion of the second exon likely
involves specialized recombinational events.
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