### **Developmental Cell, Volume 24**

# **Supplemental Information**

# **Chromosome Engineering Allows the Efficient**

# **Isolation of Vertebrate Neocentromeres**

Wei-Hao Shang, Tetsuya Hori, Nuno M.C. Martins, Atsushi Toyoda, Sadahiko Misu, Norikazu Monma, Ichiro Hiratani, Kazuhiro Maeshima, Kazuho Ikeo, Asao Fujiyama, Hiroshi Kimura, William C. Earnshaw, and Tatsuo Fukagawa

### **Inventory of Supplementary Information**

Figure S1, A strategy to isolate surviving cells after removal of endogenous Z centromere, related to Figure 1.

Figure S2, Representative images of Immuno-FISH analysis in various types of chromosomes with neocentromere, related to Figure 2.

Figure S3, ChIP-seq analysis in cells with neocentromere, related to Figure 3.

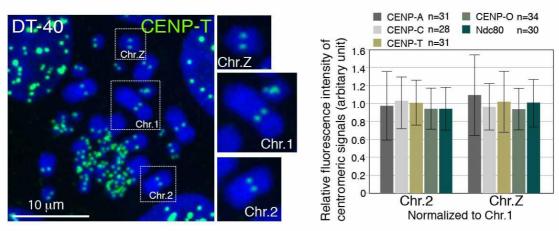

Figure S4, CENP-P or CENP-S is not required for efficient neocentromere formation, related to Figure 3.

Figure S5, Distribution H3K9me3 in DT40 cells, related to Figure 5.

Supplemental Experimental Procedures

Supplemental References

А



В

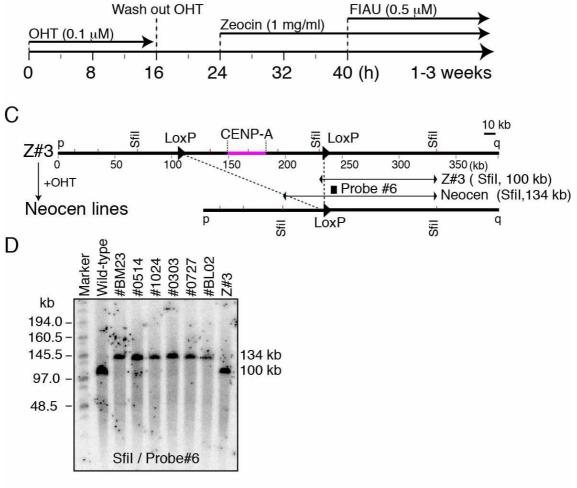
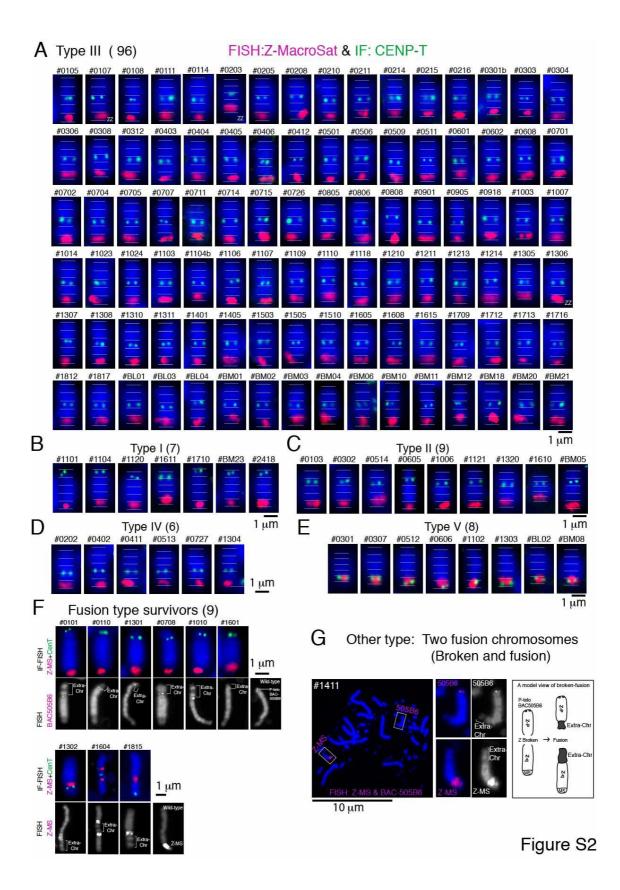




Figure S1





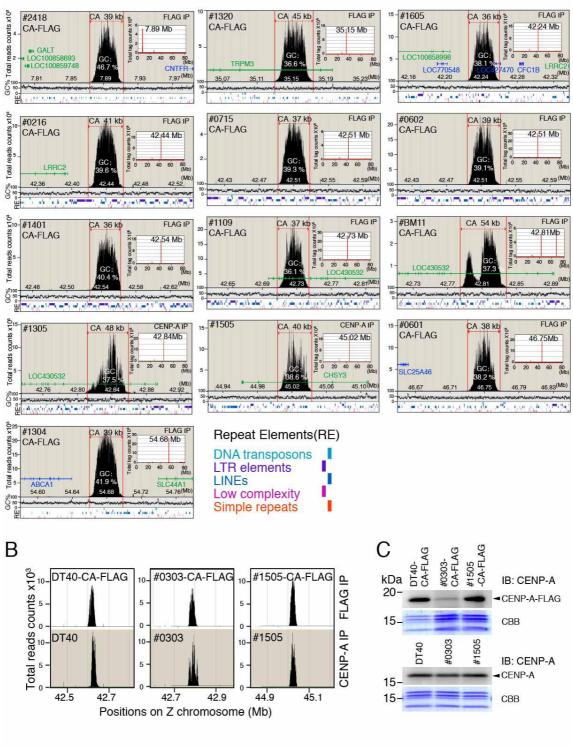
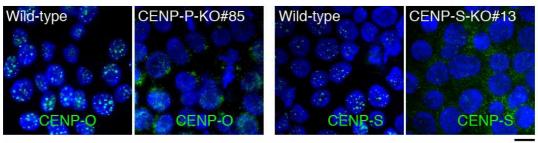



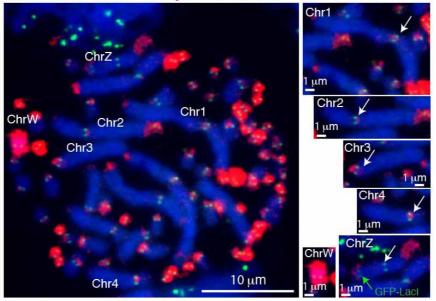

Figure S3

А



10 µm

# В


| Zcen (-) / 1,000,000 Cells |               |           |
|----------------------------|---------------|-----------|
| Trials                     | Z#3           | P-KO#85   |
| #1                         | 3.0           | 5.9       |
| #2                         | 4.0           | 5.1       |
| #3                         | 4.6           | 4.4       |
| Avg ± SD                   | $3.9 \pm 0.8$ | 5.1 ± 0.8 |

| Zcen (-) / 1,000,000 Cells |               |               |
|----------------------------|---------------|---------------|
| Trials                     | Z#3           | S-KO#13       |
| #1                         | 2.3           | 2.2           |
| #2                         | 3.4           | 2.7           |
| #3                         | 3.8           | 3.7           |
| Avg ± SD                   | $3.2 \pm 0.8$ | $2.9 \pm 0.8$ |

Figure S4

А

# Alexa488-CENP-T Cy3-H3K9me3



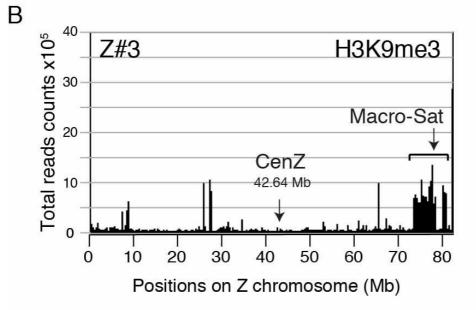



Figure S5

### **Legends for Supplementary Figures**

# Figure S1 A strategy to isolate surviving cells after removal of endogenous Z centromere, related to Figure 1.

(A) Measurement of signal intensities of anti-CENP-A, CENP-C, CENP-T, CENP-O, and Ndc80 on chromosome 1, 2, and Z. A typical image for CENP-T staining on chicken chromosome spread was shown. These signal intensities were similar between chromosome 1, 2, and Z. Error bars show standard deviation (SD).

(B) Experimental time-line to isolate neocentromere-containing cells. OHT was added to activate Cre-recombinase and cells were cultured for 16 h and OHT was washed out at 16 h. Zeocin was added for positive selection at 24 h after the addition of OHT and FIAU was added for negative selection at 40 h after the addition of OHT. Surviving colonies were isolated 1-3 weeks later after the OHT addition.

(C) Probe information (probe #6) for Southern analysis shown in Figure S1D.

(D) High molecular weight genome DNAs extracted from various cell lines with neocentromere were digested with Sfi I and were applied to pulsed-filed gel electrophoresis. A gel was transferred and was hybridized with the probe #6.

# Figure S2 Representative images of Immuno-FISH analysis in various types of chromosomes with neocentromere, related to Figure 2.

(A) Images of Type III chromosome (96 examples). Red shows satellite sequence on q-arm of chromosome Z. Centromeres (green) are visualized by anti-CENP-T antibodies.

(B) Images of Type I chromosome (7 examples).

(C) Images of Type II chromosome (9 examples).

(D) Images of Type IV chromosome (6 examples).

(E) Images of Type V chromosome (8 examples).

(F) Images of fusion chromosome Z with another chromosome. BAC505B6 containing p-telomere region was used as a probe to confirm p-arm fusion. Six cases were p-arm fusion. Three cases were q-arm fusion.

(G) A cell line (#1411) contains two fusion chromosomes. Each fusion chromosome contains p-arm and q-arm of Z chromosome, respectively. Our model is shown in right

cartoon: chromosome Z was broken in middle region and p-arm and q-arm were independently fused with another chromosome and two fusion chromosomes were generated.

### Figure S3 ChIP-seq analysis in cells with neocentromere, related to Figure 3.

(A) ChIP-seq analysis with anti-FLAG or anti-CENP-A antibodies in cells with neocentromere. We used anti-FLAG antibodies for cells expressing CENP-A-FLAG (FLAG-IP). For cells not expressing CENP-A-FLAG, we used native CENP-A antibodies (CENP-A-IP). IP DNAs were deeply sequenced and sequence data were mapped on chicken genome database. We firstly identified a major peak as a neocentromere from entire chromosome Z in each cell line and examined detail distribution around the peak with a higher resolution. GC% contents and distribution of transposons, repeat sequence, and genes are shown as in Figure3.

(B) Comparison of ChIP-seq profiles with anti-CENP-A of cells not expressing CENP-A-FLAG with cells expressing CENP-A-FLAG.

(C) Expression level of CENP-A-FLAG in DT40-CA-FLAG, #03030-CA-FLAG and #1505-CA-FLAG cells. CENP-A-FLAG was not over expressed in these cell lines.

# Figure S4 CENP-P or CENP-S is not required for efficient neocentromere formation, related to Figure 3.

(A) Immunofluorescence analysis of wild-type DT40 or CENP-P-deficient cells with anti-CENP-O antibodies (left two panales) and immunofluorescence analysis of wild-type DT40 or CENP-S-deficient cells with anti-CENP-S antibodies (right two panels).

(B) Numbers of cells with neocentromere. We independently performed 3 trials for this assay.

## Figure S5. Distribution H3K9me3 in DT40 cells, related to Figure 5.

(A) Immunofluorescence analysis on mitotic chromosome spread from chicken DT40 cells with Alexa488-labeled-anti-CENP-T (green) and Cy3-labeled-anti-H3K9me3 (red). H3K9me3 signals were not detected in centromere of chromosome Z, but were detected in centromeres of chromosome 1, 2, 3, and 4, which contain tandem-repetitive sequences. We note that as repetitive region on centromere is long (~Mb) and

kinetochore domain is short (30-40-kb), H3K9me3 signals did not overlapped wirh CENP-T signals on repetitive centromeres. Entire region of chromosome W is highly heterochromatinized. Strong accumulation of H3K9me3 in entire chromosome W was observed.

(B) Genome wide ChIP-seq profile with anti-H3K9me3 on chromosome Z in DT40 cells.H3K9me3 was not enriched around centromere region, but accumulated in macro-satellite region on the q-arm in chromosome Z. This data is consistent with immunofluorescence shown in (A).

#### **Supplemental Experimental Procedures**

#### **DNA replication timing (detailed method)**

BrdU labeling time was 1 h. Sample labeling, microarray hybridization and data extraction were performed according to standard procedures by NimbleGen using a chicken whole-genome microarray with one probe every 2.6 kb (Roche NimbleGen Inc., galGal3 WG CGH; 385K oligonucleotide probes). For all samples, two independent biological replicates were analyzed, for which early- and late-replicating DNA were labeled reciprocally with Cy3 and Cy5 (=dye switch). In every case, replicates of the same cell line showed very high correlation, verifying the reproducibility and stability of profiles for a given cell line. All data sets are graphically displayed and are downloadable at: http://www.replicationdomain.org

Data analyses were done using R/Bioconductor (http://www.r-project.org). To calculate average replication timing of 100-kb segments, replication-timing ratios of non-overlapping 39 neighboring probes were averaged ( $39 \times 2.586$  kb spacing = 100.854kb). To run SAM (Significance Analysis of Microarrays), we used an R package, siggenes (http://www.bioconductor.org/packages/2.11/bioc/html/siggenes.html). To examine statistical significance of replication timing changes, we first converted data sets to numeric vectors of 9,612 average replication-timing ratios of non-overlapping 100-kb windows. By SAM, later shift in replication timing of 100-kb segments at sites of neocentromere formation in both #0514 and #1024 were found to be statistically significant [#0514: p value=1.86E-5, q value=0.0153; #1024: p value=7.79E-3, q value=0.0903; q value is a FDR (false discovery rate)-based measure of significance (Storey and Tibshirani, 2003)]. By stringent criteria, SAM identified 25 genomic segments of 100-kb showing significant changes in #0514 (FDR=1.8%), which all showed a later shift in replication timing. In #1024, 13 segments showed significant changes (FDR=1.5%). In BM23, none were identified. The neocentromere formation site in #0514 was among these top ranked segments, and in fact it was the top ranked segment on chromosome Z.

### Antibodies

Centromere antibodies used in this study are following: anti-CENP-A (a rabbit antibody against a synthetic peptide for chicken CENP-A 2-15 aa), anti-CENP-C (a rabbit antibody against recombinant chicken CENP-C 1-330 aa), anti-CENP-E (a rabbit antibody against recombinant chicken CENP-E 565-1088 aa), anti-CENP-O (a rabbit antibody against recombinant chicken full-length CENP-O), anti-CENP-T (a rabbit antibody against recombinant chicken full-length CENP-T), anti-Ndc80 (a rabbit antibody against recombinant chicken Ndc80 465-640 aa), anti-KNL2 (a rabbit antibody against recombinant chicken Ndc80 465-640 aa), anti-KNL2 (a rabbit antibody against recombinant chicken full-length CENP-T), anti-Ndc80 (a rabbit antibody against recombinant chicken Ndc80 465-640 aa), anti-KNL2 (a rabbit antibody against recombinant chicken full-length Aurora B antibodies (a rabbit antibody against recombinant chicken full-length Aurora B). Some of these centromere antibodies were used in previous studies (Hori et al., 2008; Kline et al., 2006; Okada et al., 2006). Monoclonal antibodies for histone modification including H3K9me3, H3K4me2 and H3K36me3 were created by H. Kimura (Kimura et al., 2008).

### **Supplemental References**

Hori, T., Amano, M., Suzuki, A., Backer, C.B., Welburn, J.P., Dong, Y., McEwen, B.F., Shang, W.H., Suzuki, E., Okawa, K., *et al.* (2008). CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell *135*, 1039-1052.

Kimura, H., Hayashi-Takanaka, Y., Goto, Y., Takizawa, N., and Nozaki, N. (2008). The organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodies. Cell structure and function *33*, 61-73.

Kline, S.L., Cheeseman, I.M., Hori, T., Fukagawa, T., and Desai, A. (2006). The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. The Journal of cell biology *173*, 9-17.

Okada, M., Cheeseman, I.M., Hori, T., Okawa, K., McLeod, I.X., Yates, J.R., 3rd, Desai, A., and Fukagawa, T. (2006). The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature cell biology *8*, 446-457.

Storey, J.D., and Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America *100*, 9440-9445.