Supplementary Information

Critical roles of nardilysin in the maintenance of body temperature homeostasis

Yoshinori Hiraoka, Tatsuhiko Matsuoka, Mikiko Ohno, Kazuhiro Nakamura, Sayaka Saijo, Shigenobu Matsumura, Kiyoto Nishi, Jiro Sakamoto, Po-Min Chen, Kazuo Inoue, Tohru Fushiki, Toru Kita, Takeshi Kimura & Eiichiro Nishi

Supplementary Figures 1-9

Supplementary Tables 1-2

Supplementary Figure 1. Cold-tolerance of younger $Nrd1^{+/+}$ mice with similar body size as $Nrd1^{-/-}$ mice (P90). (a) Average of body weight of $Nrd1^{+/+}$ (P23 and P90) and $Nrd1^{-/-}$ (P90) mice. (b) $Nrd1^{+/+}$ mice (P23), which have the similar body weight as P90 $Nrd1^{-/-}$ mice, kept their body temperature during 3 hours-cold exposure. n = 6 per genotype. All data represent means ± s.e.m. [†]P < 0.0001.

Supplementary Figure 2. NRDc has no effect on adipogenic differentiation.. (a) Brown preadipocytes derived from neonatal $Nrd1^{+/+}$ and $Nrd1^{-/-}$ BAT were differentiated for 8 days and stained with oil red O. (b) Brown preadipocyte derived from neonatal $Nrd1^{+/-}$ and $Nrd1^{-/-}$ BAT were immortalized by stable introduction of large T antigen. Those cells were differentiated for 6 days and observed by phase contrast microscopy. Scale bars represent 20 µm.

Supplementary Figure 3. Expression of thermogenic genes at different ambient temperature. Quantitative reverse transcription PCR (qRT-PCR) analysis for thermogenic genes in BAT from 6-month-old $Nrd1^{+/+}$ and $Nrd1^{-/-}$ mice housed at 23 °C or 30 °C for 10 days. The mRNA level is normalized by β -actin mRNA, and the level is arbitrarily set at 1 in $Nrd1^{+/+}$ BAT at 30 °C. n = 6 per genotype. All data represent means ± s.e.m. *P < 0.05, **P < 0.001, n.s.; not significant.

Supplementary Figure 4. Increased lipid accumulation in BAT of $Nrd1^{-/-}$ mice fed a high fat diet. (a) Haematoxylin and eosin stained sections of BAT from 6-month-old $Nrd1^{+/+}$ and $Nrd1^{-/-}$ mice fed a normal diet (ND) or a high fat diet (HFD). Scale bars represent 250 µm. (b) Body temperature of 6-month-old $Nrd1^{+/+}$ and $Nrd1^{-/-}$ mice fed a HFD at room temperature. n = 6 per genotype. All data represent means ± s.e.m. [†]P < 0.0001.

Supplementary Figure 5. Immunostaining analysis of mouse embryonic fibroblast (MEF) or BAT. (a) MEF derived from $Nrd1^{+/+}$ and $Nrd1^{-/-}$ mice were fixed with 4% paraformaldehyde (PFA, wt/vol) and immunostained with anti-mouse NRDc antibody, established in our laboratory. Note that no staining was detected in $Nrd1^{-/-}$ MEF. Scale bars represent 50 µm. (b) Immunohistochemical analysis of BAT with anti-NRDc antibody. Sections of $Nrd1^{+/+}$ BAT were immunostained with anti-NRDc antibody and counterstained with DAPI. Arrowheads indicate the nuclear expression of NRDc. Scale bars represent 50 µm.

Supplementary Figure 6. Association of NRDc and PGC-1 α shown by co-immunoprecipitation experiments. COS7 cells were transfected with the indicated expression vectors, followed by the treatment with or without oleate for 24 h. Immunoprecipitation with anti-V5 (NRDc) antibody revealed a complex of NRDc and PGC-1 α . Twenty % of input was blotted with anti-GFP (PGC-1 α) in the bottom lane.

Supplementary Figure 7. Oxygen consumption per animal at different ambient tenperature. (a) Average of body weight of $Nrd1^{+/+}$ and $Nrd1^{-/-}$ (P180) mice. n = 6 per genotype. (b,c) Oxygen consumption per animal of $Nrd1^{+/+}$ and $Nrd1^{-/-}$ mice were monitored at 23 °C (b) or 30 °C (c). n = 6 per genotype and temperature. (d) The average oxygen consumption per animal during dark and light period of $Nrd1^{+/+}$ and $Nrd1^{-/-}$ mice housed at 23 °C or 30 °C. n = 6 per genotype and temperature. (e,f) Oxygen consumption per animal induced by β 3-agonist (BRL37344: 5 mg kg⁻¹) in $Nrd1^{+/+}$ and $Nrd1^{-/-}$ mice

housed at 23 °C (e) or 30 °C (f). n = 6 per genotype and temperature. (g) The average oxygen consumption per animal of $Nrd1^{+/+}$ and $Nrd1^{-/-}$ mice before (Pre) and after (Post) β 3-agonist injection at 23 °C or 30 °C. n = 6 per genotype and temperature. All data represent means \pm s.e.m. **P < 0.005, ***P < 0.001, n.s.; not significant (two-tailed Student's *t*-test).

Supplementary Figure 8. Role of NRDc in the derepression of PGC-1 α activity. NRDc represses PGC-1 α activity and UCP1 transcription by binding directly to PGC-1 α . Upon activation, removal of NRDc from the complex derepresses the coactivator function of PGC-1 α , allowing it to activate UCP1 transcription (Upper panel). In the absence of NRDc, the basal levels of PGC-1 α and UCP1 activation are upregulated. However, further activation of those genes by β -stimulant is impaired without the derepression process by NRDc (Lower panel).

Full blots for Figure-6b

Full blots for Figure-7a

Full blots for Figure-8a

Full blots for Figure-8b

Supplementary Figure 9. Full blots of Figures presented in the main paper.

	Nrd1 ^{+/+}	Nrd1 ^{-/-}	Unpaired <i>t</i> -test
$\Delta T_{\rm skin}$ (°C)	-10.0 ± 1.7	-11.1 ± 1.9	n.s.
$\Delta T_{\rm BAT}$ (°C)	0.6 ± 0.1	-0.2 ± 0.1	P < 0.001
ΔHR (bpm)	39 ± 10	33 ± 25	n.s.
$\Delta T_{\rm rec}$ (°C)	-1.9 ± 0.5	-2.0 ± 0.5	n.s.
ΔT_{tail} (°C)	-2.3 ± 0.5	-4.4 ± 0.7	n.s.

n.s.; not significant

Supplementary Table 1. Cooling-evoked changes in physiological variables (n=4 for $Nrd1^{+/+}$, n=7 for $Nrd1^{-/-}$ mice, mean ± s.e.m.)

Gene	Forward (5' -> 3')	Reverse (5' -> 3')
Nrd1	ATGGATGGCCTTTCCCTTG	CGCGAAGTTCAGCTTGTCAA
Ppargcla	AGCCGTGACCACTGACAACGAG	GCTGCATGGTTCTGAGTGCTAAG
Ucp1	GGCATTCAGAGGCAAATCAGCT	CAATGAACACTGCCACACCTC
Adrb3	CCACTCCGGGAACACCG	GGCAGTAGATGACCGGGTTG
Cptla	GGGCACCTCTGGGAGTTTGT	TTGGCTCACCCACAGTGT
Acadm	GCCAAGATCTATCAGATTTATGAAGGT	AGCTATGATCAGCCTCTGAATTTGT
Acadvl	GCCAGGGCAGAATCGAAGT	TGGTAAGCTGGCCTTTGAACAT
Pdk4	GCAGTAGTCCAAGATGCCTTTGA	AATACTGGTCGCAGAGCATCTTT
Acadl	CCCTCCGCCCGATGTT	AAGGAGTTTCTAGACGCGCTTCT
Esrra	AGCAAGCCCCGATGGA	GAGAGGCCTGGGATGCTCTT
Actb	CTGACTGACTACCTCATGAAGATCCT	CTTAATGTCACGCACGATTTCC

Supplementary Table 2. Primer sequences used for RT-PCR