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SI Results
Number of Glomeruli.We used 10 virtual receptors (VRs) and thus
10 glomeruli in the network. The specific choice of 10 was made as
a compromise to use as many VRs as possible to encode the data
while staying within the maximal neuron count of 192 on the
present hardware system. In the following, we describe this cir-
cumstance in more detail. First, each VR requires one glomer-
ulus. One glomerulus consists of 6 input channels [receptor neurons
(RNs)] and 13 neurons [7 projection neurons (PNs) and 6 local
inhibitory neurons (LNs)]. Ten glomeruli thus require 130 neu-
rons and 60 additional synapse line drivers for input spikes (see
ref. 1 for a detailed technical explanation of the hardware system
with regard to synapse line drivers). In addition, each association
neuron (AN) population consists of 16 neurons (8 excitatory and
8 inhibitory neurons). For the iris dataset, we require three AN
populations, or a total of 48 neurons. Because each neuron re-
quires a synapse line driver, we thus require a total of 130 + 60 +
48 = 238 synapse line drivers. An additional VR would require 6
RNs + 7 PNs + 6 LNs = 19 additional line drivers, totaling to 257
and exceeding the maximum number of 256 synapse line drivers.
Although it might be possible to gain space for one or two addi-
tional glomeruli by tuning the network to use fewer neurons per
glomerulus, we do not expect a significantly different network be-
havior from a small increase in glomerulus number (see also ref. 2
for an analysis of how VR count affects the performance of a naïve
Bayes classifier). Large-scale neuromorphic hardware systems that
are under development (e.g., refs. 3 and 4) will overcome this
limitation and support thousands of neurons.

Per-Class Classification Performance.For a thorough examination of
the classification outcome, we depict the confusion matrix pro-
duced by the classifier network (Table S2). The classifier only
produced errors on the separation of Iris versicolor and Iris vir-
ginica, whereas it always succeeded to correctly separate Iris se-
tosa (RK = 0.87, P20 = 0.85, P80 = 0.89). I. setosa is well separated
from the other classes in feature space. The classifier network
achieved perfect separation in cross-validated training in all 50
repetitions. I. versicolor and I. virginica overlap in feature space,
providing a harder challenge to the classifier that is reflected in
the higher error rate for that particular separation.

Network Optimization for Robustness Against Neuronal Variability.
Constructing a heterogeneous network under constraints of lim-
ited neuron count and bounded synaptic weights imposes a trade-
off in connectivity: The number of neurons in a population that
project on postsynaptic neurons (the postsynaptic “fan-in”) must
be sufficiently large to be able to drive the postsynaptic neuron to
spiking. At the same time, individual populations must be kept
small to accommodate many populations on the chip. In a previous
version of the network, we achieved the maximum possible post-
synaptic fan-in by using all-to-all connectivity (connection proba-
bility pconn = 100%) between all connected populations. In
addition, that network contained only three LNs per glomerulus
(instead of six in the current, optimized network). Because the fan-
in of LNs on PNs is large anyway, this decision seemed a viable
way to reduce the total neuron count. Achieving good classification
performance with that network required a network-specific cal-
ibration routine (SI Materials and Methods, Application-Specific
Calibration of the Neuromorphic Hardware System). The calibra-
tion improved the homogeneity of the transfer functions (Fig.
S1A) and classification performance improved from RK around
0.75 to values around 0.86 (Fig. S1B).

Analyzing the operation of the fully connected network in detail,
we found that neurons in PN, LN, and AN populations were highly
synchronized (Fig. S2). This synchronization at the population level
was a direct consequence of full connectivity, which entails that all
neurons of a population receive the same input. For example, all
PNs in a glomerulus received input from the same set of RNs, and
their spiking activity was highly correlated as a consequence of the
common input. Under these conditions, the assumption of a pop-
ulation rate code with independent neurons is violated—the whole
population of n neurons behaves like a single neuron with n times
the synaptic weight. Clearly, the postsynaptic interaction of ex-
citatory and inhibitory inputs in this regime is impaired, because
synchronous PN spikes lead to synchronized inhibitory LN spikes
with a short delay. In contrast, if all n neurons fire independently,
the postsynaptic cell receives the same total number of spikes, but
distributed more evenly in time. Hence, the chance that excitatory
and inhibitory postsynaptic potentials overlap is considerably
higher in the asynchronous case. In the optimized network, we
reduced the synchronization within relevant populations by spar-
sifying the connectivity from RNs to PNs and from PNs to LNs
and ANs by 50% and readjusting the synaptic weights accordingly.
As an additional step to increase the robustness against transfer

function variability, we increased the number of LNs from three
to six. Because the individual transfer functions of LNs underlie
variability on the hardware, the total transfer function of an LN
population will vary according to σ2/n, with n the population size
and σ2 the variance of the individual transfer functions. Thus,
increasing LN population size decreases variability of LN pop-
ulation transfer functions. In consequence, the inhibition strength
that a PN population receives from other glomeruli becomes more
homogeneous. In other words, increasing LN population size de-
creases the likelihood that a particular glomerulus may exert sig-
nificantly higher inhibition than the others and thus alleviates the
impact of transfer function variability.
Taken together, we achieved robustness to transfer function

variability by two measures: First, we improved population rate
coding by making the connectivity sparser, thus alleviating strong
coupling on the postsynaptic side. Second, we increased the size of
LN populations, thus reducing the variance of the population
transfer functions of the LN groups. These steps resulted in the
present network that is robust against variability in the transfer
functions of individual neurons.

Effect of Lateral Inhibition on Classification Performance. The result
that the naïve Bayes classifier’s performance increases if trained on
the PN firing rates compared with training on the VR responses
(Fig. 5C in the main text) points out the beneficial effect of lateral
inhibition in the presented network. Lateral inhibition transforms
the broad, overlapping receptive fields of VRs into localized and
more selective receptive fields on the PN level. This step facilitates
the “credit assignment problem,” that is, the identification of the
PNs (or more precisely the PN–AN synapses) that are most re-
sponsible for the classification outcome. This information is nec-
essary to select the correct synapses to be potentiated or depressed
during classifier training (the “credit assignment problem”).
Fig. S3 shows a sketch to illustrate this circumstance. Consider

the VR “R2” in Fig. S3A. Because the distances d1 and d2 are
equal, the response of R2 to the respective points will be equal,
since it depends linearly on these distances (Eq. S1). Thus, the
response magnitude of this particular VR provides ambiguous
information with regard to class adherence, which complicates
the learning process. Moreover, because VR receptive fields are
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broad, there is considerable overlap in the receptive fields of R1
and R2 (Fig. S3B). One could now simply reduce the receptive field
size of VRs (Fig. S3C). However, this approach would cause many
data points not to be covered by any receptive field—the network
would be “blind” toward these data points (Fig. S3D). They could
neither be used for training, nor could the trained network achieve
correct classification to any data point in the “blind” areas; these
data points would simply produce no input to the network. More-
over, as the density of VRs in different regions of data space may
be different, choosing one RF size for all VRs is clearly not optimal.
Lateral inhibition solves this problem in an elegant way: The

response of a VR to a data point will be attenuated by lateral
inhibition on the PN level if another VR is closer. Every PN thus
has an “authoritative” region in data space where it provides the
highest response and the responses of PNs in other glomeruli are
attenuated. This region is equivalent to the Voronoi partitioning
of input space with the VRs as generators (symbolized by the
dotted lines in Fig. S3E). The resulting PN receptive fields be-
come narrower in regions where there is overlap, but retain their
full extent in regions where no other PN competes (Fig. S3F).
Hence, lateral inhibition between PNs optimally and efficiently
partitions data space on the PN level. Each PN thus represents
a region in input space for which it is authoritative, considerably
simplifying the credit assignment problem.
Why does the naïve Bayes classifier benefit from lateral in-

hibition? This classifier estimates the mean μ and the variance σ2

of each class along each dimension in its input space. Classifi-
cation is then achieved by comparing the (naively) estimated
probability of adherence to class 1 vs. class 2. These probabilities
are computed from the multivariate normal distributions N(μ,σ2),
with μ and σ2 the means and variances along each dimension of
input space. Broad VR receptive fields entail high variance of VR
responses; thus, the estimated variance of the multivariate re-
sponse distribution will also be high. In contrast, PN responses
exhibit smaller variance because their receptive fields are nar-
rower. Thus, the estimated variance of the PN response distribu-
tion will be smaller, and in consequence the naïve Bayes estimate
of class adherence will exhibit lower variance, allowing for a better
discrimination of classes in data space.

SI Materials and Methods
Network Parameters. Each glomerulus was driven by six RNs and
contained seven PNs and six LNs. Each population in the asso-
ciative layer comprised eight excitatory and eight inhibitory
neurons. Connectivity and synaptic weights are described in detail
Table S1. For a schematic overview of the general network ar-
chitecture, see Fig. 1A in the main text. Time constants in the table
refer to the biological value they model. The actual values on
the hardware are 104 times smaller, due to the 104 speedup
factor at which the hardware operates (5, 6). The weights are
specified as fractions of the maximal weight whw finh;excg

max for ex-
citatory and inhibitory synapses in the hardware system, where
whw  inh
max ∼ 4 ·whw  exc

max . Neurons were implemented as standard in-
tegrate-and-fire models (see ref. 1 for details).

VRs. The response r of a VR with coordinates p to the stimulus s
is given by Eq. S1 as follows:

r= 1−
dðs; pÞ− dmin

dmax − dmin
; [S1]

with d(s,p) the Manhattan distance (Minkowski metric with k = 1,
sum of absolute coordinate differences) between s and p; dmin
and dmax denote the minimum and maximum distance observed
in the dataset. Hence, the receptor response is a value in [0, 1],
and it is inversely proportional to the distance between stimulus
and receptor.

The receptive fields implemented by Eq. S1 are equivalent to
linear radial basis functions representing cones. They extend
over the entire space that is covered by the data (“broadly tuned”).
Their receptive fields are largely overlapping. This guarantees that
there are no “blind spots” in data space that are not covered by
any receptive field.
VRs were placed in data space using a self-organizing process.

In this study, we used the neural gas algorithm (7), as im-
plemented in the MDP toolkit (8). The neural gas learns to
represent the distribution of data in the original coordinate
space, thus ensuring that the VRs cover data space appropri-
ately. Each node in the neuronal gas corresponds to one VR.
Using n VRs, a stimulus will thus evoke a response vector r =
(r1, . . ., rn). The elements of response vector ri are then con-
verted into firing rates ρi using Eq. S2 as follows:

ρi = ri · ðρmax − ρminÞ+ ρmin for i= ð1; . . . ; nÞ; [S2]

with ρmin and ρmax the minimal and maximal firing rate, set to 20
and 70 spikes/s, respectively. Firing rates were transformed into
spike trains using a gamma process of order five. The waiting
time between stimulus onset and the first RN spike was drawn
from the appropriate waiting time distribution, in our case
a gamma distribution of order six, to prevent synchronization
of RNs at stimulus onset. We chose a gamma process to generate
spike times because its spiking statistics compares realistically to
biological neurons (see, e.g., ref. 9). In addition, the increased
regularity of a gamma process of order five [Fano factor (FF) =
0.2] compared with a Poisson process (FF = 1.0) reduces the
spike count variability and thus yields a more reliable encoding
of input firing rates.
VRs were implemented in software as a convenient approach

to convert numerical data into a spiking format. The VR ap-
proach satisfies the need for dimensionality reduction due to
limited neuron counts and provides a generic approach to convert
real-valued data into bounded firing rate intervals.

Network Training and Supervised Learning Rule. The classifier net-
work was trained using a supervised learning algorithm. Only
synapses between PNs and excitatory association layer neurons
were subject to learning.
After stimulus presentation, a synapse was eligible for weight

update if it fulfilled a Hebbian eligibility constraint. A synaptic
weight was eligible for updating if the target neuron υtarget was
a member of the winner population ϒ  winner, and if the firing rate
ρpre of the presynaptic neuron during the previous stimulus pre-
sentation exceeded a threshold θ (fixed to 35 spikes/s in this study).
The eligibility constraint « can thus be formalized as follows:

«=
�
1; if   ρpre > θ and υtarget ∈ϒwinner;
0; otherwise: [S3]

The change of the weight ΔwPN→υ between any PN and target
neuron υ in the association layer was governed by Eq. S4 as
follows:

ΔwPN→υ =
�

e · c; if   classification  was  correct;
−e · c; if   classification  was  incorrect; [S4]

with c a constant value determined by the granularity of synaptic
weights on the hardware (1). The new weight wnew was computed
from wold as in Eq. S5:

wnew =wold +ΔwPN→υ: [S5]

Synaptic weights were bounded in the interval [wmin, wmax] by the
constraints of the hardware. Thus, the final value of the synaptic
weight was given by Eq. S6 as follows:
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wfinal =

8<
:

wmax; if   wnew >wmax;
wmin; if   wnew <wmin;
wnew; otherwise:

[S6]

Evaluation of Classifier Performance. Classifier performance was
evaluated from fivefold cross-validation (CV). Thedatawere split into
five equal parts, and four parts were used in training and one part was
used to test the classifier predictions in each CV run. After five runs,
each data point was once in the test set, allowing computing a single
performance value for all five CV runs. CV was repeated multiple
times with different random splitting of the data into five equal parts.
Classifier performance (i.e., prediction accuracy) was assessed

using Gorodkin’s RK correlation coefficient for discrete multi-
category data (10). The aim is to compare a prediction Ypred to
the true target values Y, with Yn,k ∈ { 0,1} for n predictions of k
classes. The K × K confusion matrix C contains the number of
correctly and falsely predicted data instances per class. Ck,k con-
tains the number of correctly predicted instances of class k, and
off-diagonal elements contain the number of falsely predicted in-
stances. For example, C1,2 contains the number of instances pre-
dicted to belong to class 1, but actually belonging to class 2. The
K-category correlation coefficient computes as in Eq. S7:

RK =
P

klmck;kcl;m − ck;lcm;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

�P
lck;l

��P
l′;k′≠kck′;l′

�r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

�P
lcl;k

��P
l′;k′≠kck′;l′

�r
:

[S7]

Compared with other frequently used performance measures
like “percent correct,” RK is more sensitive to small perfor-
mance differences when overall performance is already high
and thus better suited for benchmarking. In addition, RK is
corrected for the bias introduced by skewed class proportions.
For example, if 90% of the data are of one class and 10% the
other class, we could yield “90% correct” classification by simply
assigning all data samples to the first class. In contrast, RK would
report a value of zero, which is intuitively more accurate.

Application-Specific Calibration of the Neuromorphic Hardware System.
The network-specific calibration for the previous version of the
network with 100% connectivity (SI Results, Network Optimization
for Robustness Against Neuronal Variability) consisted of two steps.
We first calibrated the PNs for homogeneous rate response, be-
fore calibrating the LNs. Calibration was carried out with the
weight of all inhibitory synapses set to zero. We first measured PN
firing rates in response to a 1-s stimulation with nominal intensity,
formed the median from all PN rates and used this as target firing
rate. The “fitness” of the rate distribution was assessed by mean
square deviation (MSD) of PN firing rates from the targeted PN
firing rate as follows:

MSD=
1
n

Xn
1

�
ρPNgoal − ρPNi

�2
; [S8]

with n the number of PNs, ρPNi the firing rate of the ith PN, and
ρPNgoal the targeted firing rate. The weights wi from the RNs to
the ith PN were then updated according to the following:

wnew
i =wi ·

ρPNgoal
ρPNi

: [S9]

In this case, we relied on the automatic conversion of the Spikey
control software that mapped the weight values into the discrete
distribution required by the hardware (1).
When the MSD failed to decrease over five iterations, opti-

mization was terminated and the set of weights that yielded the
best MSD until then was used. After the weights fromRNs to PNs
were optimized, we adjusted the weights between PNs and LNs
using the same algorithm.

Speed Considerations for the Neuromorphic Hardware System. The
execution of the network on the accelerated hardware happens
extremely fast: A simulation lasting for 150-s biological time is
executed in 15 ms (a 104 speedup factor). However, the total run
time of the classifier network is mainly determined by other
factors, which we describe in the following.
A typical CV run requires 150 stimulus presentations of 1-s

duration. Before starting such a simulation session, generic cal-
ibration data must be loaded and applied. The network connec-
tivity as well as synaptic weights must be encoded and transferred,
and subsequently bemapped from their specification in biologically
realistic physical units to the appropriate hardware parameters. In
addition, for each of the 150 simulations, spike data need to be sent
to and received from the hardware, including transfer, encoding,
and decoding of spike times and neuron IDs. During the training
phase of the classifier, synaptic weights also have to be updated
before every stimulus presentation.
The absolute duration of these additional factors depends

heavily on the efficiency of the software interface that links the
hardware with the host system. Because it is a prototype system,
this software interface is constantly developed and improved. It is
therefore difficult to state an absolute number for the effective
speedup achieved by offloading network simulations to the
hardware. To give the reader the opportunity of an informed
estimate, we analyzed how much time is required by each of the
above steps (Fig. S4).
Several of these steps still bear potential for optimization. For

example, the time required for weight update could be drasti-
cally shortened by differential configuration, i.e., updating only
those hardware weights that have changed, instead of over-
writing all weights as in the current implementation. In addition,
on the current system all spike times produced in the network
are being transferred back to the host system during training and
testing phases of the classifier network. The interface can be
improved to only transfer those spikes that are necessary for the
off-chip calculation of the weight change, namely PNs and ex-
citatory ANs, and not transferring spike times from LNs and
inhibitory ANs. When the network is completely trained, only
the spike times from excitatory ANs are needed, further re-
ducing the overhead due to handling spike data. We plan to
implement these optimizations in future versions of the software
interface.
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Fig. S1. Neuronal variability on the hardware system and impact of calibration on classifier performance using a previous version of the network with 100%
connectivity. (A) Rate-response functions of the hardware neurons, before (Left) and after (Right) calibration (5-s stimulation duration). Upper row, PNs; lower
row, LNs. (B) Classifier performance in the iris benchmark before and after network specific calibration. Error bars denote P20 and P80. The horizontal gray bar
indicates naïve Bayes performance.

Fig. S2. Synchronized spiking activity in PNs, LNs, and ANs in a previous version of the network with pconn = 100%. The total neuron count in the previous
network is lower than in the version presented in the main text due to different per-population neuron counts for LNs (three in the previous network vs. six in
the main text) and inhibitory ANs (six vs. eight).
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Fig. S3. Illustration of the credit assignment problem and the effect of lateral inhibition. (A) Cartoon of a hypothetical two-class, 2D classification problem
with VRs. The distances d1 and d2 are equal. (B) One-dimensional sketch of the response profile of the two VRs, R1 and R2. (C) Effect of reducing VR receptive
field size in data space. (D) Effect of reducing VR receptive field size on the response profiles. (E) Voronoi partitioning of input space with VRs as generators. (F)
Effect of lateral inhibition on PN receptive field size.

Fig. S4. Simulation time for one CV run (150 simulations) broken down into discrete steps. The largest fraction of the time is required by mapping the
simulation parameters to hardware-compatible values and configuring the hardware network. Some of these tasks have to be repeated for every simulation,
adding up to a substantial amount of total time. The second largest chunk is taken up by updating weights. The actual simulation requires less than 2% of the
total time. “Other” encompasses numerous small tasks like handling of spike data and network configuration in the PyNN interface code. All numbers are
subject to change as the software interface evolves.
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Table S1. Network parameters

Type of neuron Parameters

Receptor neurons (RNs)
Type Gamma process (γ = 5)
Count Six RNs per VR
Outgoing connectivity Each RN projects on the PNs in one glomerulus; connection probability pconn = 50%
Outgoing weights RN to PN: 0:5 ·whw  exc

max

Projection neurons (PNs)
Type Leaky integrate-and-fire
Count Seven PNs per glomerulus
Outgoing connectivity Excitatory synapses on LNs in the same glomerulus (pconn = 50%) and on

excitatory ANs (pconn = 50%)
Outgoing weights PN to LN: 0:7 ·whw  exc

max

PN to AN: initially random between 0:2 ·whw  exc
max and 0:66 ·whw  exc

max (adjusted in training)
Local inhibitory neurons (LNs)
Type Leaky integrate-and-fire
Count Six LNs per glomerulus
Outgoing connectivity Inhibitory synapses on all PNs in all other glomeruli (pconn = 100%)
Outgoing weights LN to PNs: 0:133 ·whw  inh

max

Excitatory neurons in association layer (ANs)
Type Leaky integrate-and-fire
Count Eight per association population
Outgoing connectivity Excitatory synapses on adjoint inhibitory population (pconn = 50%)
Outgoing weights AN to adjoint inhibitory population: 0:5 ·whw  exc

max

Inhibitory neurons in association layer
Type Leaky integrate-and-fire
Count Eight per association population
Outgoing connectivity Inhibitory synapses on excitatory neurons of all other association populations (pconn = 100%)
Outgoing weights Inhibitory neuron to ANs in different association populations: 1:0 ·whw  inh

max

Table S2. Average count of predicted vs. actual class adherence
(columns vs. rows) obtained across 50 repetitions of fivefold CV

I. setosa I. versicolor I. virginica

I. setosa 50.0 0.0 0.0
I. versicolor 0.0 47.1 10.7
I. virginica 0.0 2.9 39.3
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