Supporting Information

Kang et al. 10.1073/pnas.1400126111

Fig. S1. Imino region of the 2D nuclear Overhauser effect spectroscopy (NOESY) 1-1 echo spectrum at 27 °C of prequeuosine class II (preQ₁-II) riboswitch in 60 mM KCl, pH 6.3, on an 800-MHz NMR spectrometer. Red and purple lines show sequential imino connectivities in P2 and P4, respectively.

Fig. 52. Pseudo-heteronuclear correlation spectroscopy (J_{NN} -COSY) spectrum of WT preQ₁-II riboswitch at 27 °C in 60 mM KCl, 3 mM CaCl₂, 2 equivalents of preQ₁, pH 6.3, on an 800-MHz NMR spectrometer, showing the correlation between imino protons and corresponding nitrogens in Watson–Crick or Hoogsteen base pairs. No correlation is observed for U19.

Fig. S3. One-dimensional imino proton spectra at 27 °C of preQ₁-II riboswitch in 60 mM KCl, 2 equivalents of preQ₁ with 8 equivalents of CaCl₂ on 800 MHz (*A*), 15 equivalents of CaCl₂ on 600 MHz (*B*), and 15 equivalents of MgCl₂ on 600 MHz (*C*). The spectra show that 8 equivalents of Ca²⁺ result in almost the same chemical shifts as 15 equivalents of Mg²⁺.

Fig. S4. Imino region of the 2D NOESY 1-1 echo spectrum at 27 °C of WT (*A*) and Δ P4(36-49) preQ₁-II riboswitch (*B*) in 60 mM KCl, 4 mM (20 equivalents) CaCl₂, pH 6.3, on 800 MHz, and WT (C) and (Δ A33C34) preQ₁-II riboswitch (*D*) in 60 mM KCl, 3 mM CaCl₂, 2 equivalents of preQ₁, pH 6.3, on 800 MHz. Red, blue, and purple lines show sequential imino connectivities in P2, P3, and P4, respectively.

Fig. S5. (*A* and *B*) One-dimensional imino proton spectra at 27 °C of preQ₁-II riboswitch in 60 mM KCI (*A*) and 60 mM KCI and 2 equivalents of preQ₁ (*B*). (*C*) Imino region of the 2D NOESY 1-1 echo spectrum at 27 °C of *B* on 800 MHz. Red, blue, and purple lines show sequential imino connectivities in P2, P3, and P4, respectively (corresponding to labels in *A* and *B*). (*D*) ¹H-¹⁵N heteronuclear single-quantum correlation (HSQC) spectra of preQ₁-II riboswitch as a function of added Ca²⁺, from 0 equivalents to 8 equivalents, in 60 mM KCI, 2 equivalents of preQ₁, pH 6.3, at 27 °C on 800 MHz. The intensity of the U10 N3-H3 cross-peak is too low to be visible at the contour levels shown at Ca²⁺ below 8 equivalents; its chemical shift positions are marked with an "×".

Fig. S6. (*A* and *B*) Slices of nuclear Overhauser effect (NOE) cross-peaks of $preQ_1$ H1 from 2D NOESY 1-1 echo spectra at 27 °C of *Bacillus subtilis queC* (*Bsu*) $preQ_1$ -I riboswitch in 50 mM KCI, 2 equivalents of $preQ_1$ (31) (*A*) and *Streptococcus pneumoniae* (*Spn*) $preQ_1$ -II riboswitch in 60 mM KCI, 3 mM CaCl₂, and 2 equivalents of $preQ_1$ (*B*). (*C* and *D*) $PreQ_1$ -base interactions in *Bsu* $preQ_1$ -I riboswitch (*C*) and *Spn* $preQ_1$ -II riboswitch (*D*).

Statistic	Value
Distance constraints	
Total NOE	866
Intraresidue	306
Interresidue	516
Sequential $(i - j = 1)$	326
Nonsequential $(i - j > 1)$	190
Intermolecular (preQ ₁ -RNA)	44
Hydrogen bond constraints	122
Total RDCs (¹ D _{CH} and ¹ D _{NH})	103
Total dihedral angle constraints	220
Ribose	59
Glycosidic bond	59
Backbone, based on A-form geometry	102
Structure statistics	
Violations, mean \pm SD	
Distance constraints, Å	0.039 ± 0.004
Dihedral angle constraints, °	0.26 ± 0.06
Maximum dihedral angle violation, °	0.36
Maximum distance constraint violation, Å	0.05
Dipolar coupling, Hz	0.59 ± 0.06
Deviations from idealized geometry	
Bond length, Å	0.006 ± 0.0004
Bond angle, °	1.16 ± 0.02
Impropers, °	0.59 ± 0.05
Average pairwise rmsd from mean, Å*	
All heavy atoms (residues in P2, P3, P4, and $preQ_1$)	1.13 ± 0.18
All heavy atoms (residues in P2, P3, and $preQ_1$)	0.95 ± 0.22
$preQ_1$ binding pocket (residues 8–10,17–19,35,50–52, and $preQ_1$)	0.71 ± 0.19
Number of NOE violations >0.5, Å	0.17 ± 0.51
Number of NOE violations >0.2 from P2, P3, and P4, Å	0.11 ± 0.32
Number of dihedral violations >5, °	0.88 ± 0.90
Number of RDC violations >2, Hz	1.38 ± 1.14

rable 51. Think constraints and structure statistics for $5ph$ prog 1 in hooswitch (55 mg	Table S1.	NMR constraints and	structure statistics	for Spn preQ	1-II riboswitch (59 nt)
---	-----------	---------------------	----------------------	--------------	-------------------------

*Pairwise rmsd was calculated among 18 refined structures.

Table S2. ITC measurements for Spn preQ ₁ -II riboswitch and muta	ints
--	------

RNA	Cation (3 mM)	K _D , nM	Ν	Δ H, kcal/mol	–T Δ S, kcal/mol*	ΔG , kcal/mol [†]	$\Delta\Delta G$, kcal/mol [‡]
WT	None	6,500 ± 700	1.2 ± 0.2	-31 ± 1.6	24 ± 3	-7.1 ± 3.5	2.6
WT	Mg ²⁺	86 ± 3	0.9 ± 0.01	-24 ± 0.1	14 ± 0.1	-9.6 ± 0.1	0.1
WT	Ca ²⁺	75 ± 10	0.9 ± 0.04	-27 ± 0.8	17 ± 0.8	-9.7 ± 0.1	-
P1+WT	Ca ²⁺	220 ± 30	0.6 ± 0.05	-26 ± 3.3	17 ± 3	-9.1 ± 4.7	0.6
ΔP4(36-49)	Ca ²⁺	2,000 ± 300	0.5 ± 0.06	-16 ± 0.6	8 ± 2	-7.8 ± 2.2	1.5
A35G	Ca ²⁺	950 ± 300	0.8 ± 0.0	–17 ± 1.5	9 ± 2	-8.2 ± 2.2	1.9
A50G	Ca ²⁺	$24,000\pm6,000$	0.9 ± 0.1	-10 ± 1.6	4 ± 2	-6.3 ± 2.2	3.4
ΔA33C34	Ca ²⁺	190 ± 10	1.1 ± 0.0	-22 ± 0.1	13	-9.2	0.5
ΔA33C34+A35U	Ca ²⁺	900 ± 100	1.2 ± 0.6	-23 ± 4.2	15 ± 4	-8.3 ± 6	1.5

* –T Δ S was calculated using T = 298.15 K.

[†] ΔG is reported as Gibbs free energy, $\Delta G = \Delta H - T\Delta S$.

 $^{*}\Delta\Delta G$ is calculated relative to WT in Ca²⁺.

RNA sequences (modified or deleted residues indicated by either underlines or dashes):

P1+WT:

SANG SANG

gguugaaugaaucaacc - CUUGGUGCUUAGCUUCUUUCACCAAGCAUAUUACACGCGGAUAACCGCCAAAGGAGAA WT:

gCUUGGUGCUUAGCUUCUUUCACCAAGCAUAUUACACGCGGAUAACCGCCAAAGGAGAA ΔP4(36-49):

gCUUGGUGCUUAGCUUCUUUCACCAAGCAUAUUACA - - - - - - - - AAAGGAGAA A35G:

gCUUGGUGCUUAGCUUCUUUCACCAAGCAUAUUACGCGCGGAUAACCGCCAAAGGAGAA A50G:

gCUUGGUGCUUAGCUUCUUUCACCAAGCAUAUUACACGCGGAUAACCGCC<u>G</u>AAGGAGAA AA33C34:

gCUUGGUGCUUAGCUUCUUUCACCAAGCAUAUU - -ACGCGGAUAACCGCCAAAGGAGAA $\Delta A33C34+A35U;$

gCUUGGUGCUUAGCUUCUUUCACCAAGCAUAUU - -<u>U</u>CGCGGAUAACCGCCAAAGGAGAA

Table S3.	Table of	RDCs						
Residue	Atom	RDC, Hz	Residue	Atom	RDC, Hz	Residue	Atom	RDC, Hz
G-1	C8H8	-2.69	U19*	C1'H1'	-8.58	C38*	C5H5	21.11
G-1	C1′H1′	12.91	C20*	C6H6	-9.65	G39*	N1H1	7.68
G-1	N1H1	-1.53	C20*	C5H5	23.08	G39	C8H8	-16.13
C1	C5H5	14.16	C20*	C1'H1'	-8.73	G39*	C1'H1'	14.18
U2*	N3H3	-0.32	A21*	C2H2	-2.28	G40	C1'H1'	1.53
U2*	C5H5	-12.57	A21*	C1'H1'	-12.69	A41	C1′H1′	-6.95
U3*	N3H3	-9.68	C22*	C5H5	-8.54	A43	C8H8	-7.24
U3*	C5H5	-9.1	C22*	C1'H1'	-17.4	A43	C1′H1′	-1.33
U3	C1′H1′	-13.07	C23*	C5H5	-6.38	A43	C2H2	6.83
G4*	N1H1	-11.71	A24*	C8H8	27.39	A44	C2H2	-5.45
G4*	C8H8	26.05	A24*	C2H2	20.97	C45	C5H5	12.09
G4*	C1'H1'	-8.53	A25*	C8H8	22.11	C46*	C5H5	11.88
G5*	N1H1	-2.61	A25*	C1'H1'	3.33	C46*	C1'H1'	1.21
G5*	C8H8	21.22	G26*	N1H1	4.69	G47*	N1H1	3
G5*	C1'H1'	-3.68	G26*	C8H8	-4.96	G47*	C8H8	-17.58
U6*	N3H3	3.27	G26*	C1'H1'	1.8	G47*	C1'H1'	-8.14
U6*	C5H5	24.55	C27	C6H6	-4.55	C48	C6H6	21.43
G7*	N1H1	2.3	C27	C5H5	5	C48	C5H5	-14.15
G7*	C8H8	-11.66	A28	C2H2	-6.29	C49	C6H6	22.65
C8*	C6H6	-3.82	A28	C1′H1′	-10.86	C49	C5H5	-6.93
C8*	C5H5	-3.93	U29	C6H6	10.92	C49*	C1'H1'	4.84
C8*	C1'H1'	-8.74	U29	C5H5	-0.19	A50*	C8H8	17.25
U9*	N3H3	0.14	U29	C1'H1'	-1.39	A50*	C2H2	-0.45
U9*	C5H5	-5.9	A30	C8H8	1.28	A50*	C1'H1'	-7.68
U10*	N3H3	-9.84	A30	C2H2	3.54	A51*	C1'H1'	-13.55
U10*	C5H5	-11.91	A30	C1'H1'	3.49	A52*	C2H2	23.32
A11*	C8H8	8.14	U31	C6H6	4.03	A52*	C1'H1'	-6.51
A11*	C1'H1'	-7.03	U31	C5H5	-1.18	G53*	N1H1	5.31
G12*	C8H8	2.07	U31	C1'H1'	0.3	G53*	C8H8	-3.16
G12*	C1'H1'	-9.56	032	C6H6	3.39	G53*	C1'H1'	-6.47
C13*	C5H5	-1.01	032	C1'H1'	0.19	G54*	N1H1	3.43
C/3		-11.49	A33	C8H8	3.32	G54^	C8H8	-9.41
014^		-8.1	A33	C2H2	1.65	G54^		-9.38
014		22.17	A33		2.55	A55^		-9.19
U15*		-2.92	C34	COHO	3.74	A55^		-9.19
015*	COHO	20.78	C34	C5H5	-1.81	GSG		-14.15
		15.99	C34 A2E		1.22	GSG	C0110	24.49
017*		0.75	A33 A25*		-10.40	457		-0.57
1118*	כחכאי 11⊔1י	-/.2/	V32	C2Π2	-10.2 _0.00	A57	C0H0	25.01
112*			637		-9.90	A57	C1/U1/	5.00 6.2
1119*	NSHS	-10.45	637	CSHS	15 27	A57 458	CRHR	0.5 7 Q1
1119	Сене	17 75	C38*	СбНб	_9.88	Δ58	C2H2	13 97
U19*	C5H5	6.81	C38*	C1'H1'	11.59	A58	C1'H1'	8.67
		0.01		.			•••••	0.07

PNAS PNAS

*RDCs used in GDO analysis. RDCs not used for final structural refinements are in italic type.

Table S4.	Table o	f R₁	and	R_2	values
-----------	---------	------	-----	-------	--------

PNAS PNAS

Residue	Atom	R ₁ , Hz	R ₂ , Hz	Residue	Atom	R ₁ , Hz	R ₂ , Hz
G-1	C8	1.63 ± 0.03	64.75 ± 0.87	U29	C6	2.17 ± 0.02	42.66 ± 0.36
G-1	C1'	0.96 ± 0.03	46.48 ± 1.33	U29	C5	1.98 ± 0.01	46.95 ± 0.35
C1	C5	1.62 ± 0.03	77.14 ± 1.01	U29	C1′	1.69 ± 0.01	24.92 ± 0.38
C1	C1′	0.85 ± 0.04	44.49 ± 1.64	A30	C8	1.90 ± 0.01	28.92 ± 0.20
U2	C6	1.29 ± 0.07	77.84 ± 2.64	A30	C2	1.78 ± 0.01	21.54 ± 0.30
U2	C5	1.43 ± 0.03	80.42 ± 1.28	U31	C6	2.69 ± 0.01	28.53 ± 0.18
U3	C6	1.42 ± 0.07	74.08 ± 2.45	U31	C5	2.30 ± 0.01	34.25 ± 0.22
U3	C5	1.50 ± 0.03	83.89 ± 1.35	U31	C1′	1.91 ± 0.01	20.12 ± 0.23
U3	C1′	0.97 ± 0.03	48.18 ± 1.51	U32	C6	2.68 ± 0.01	29.81 ± 0.18
G4	C8	0.80 ± 0.04	60.83 ± 1.40	U32	C5	2.31 ± 0.01	32.95 ± 0.21
G4	C1′	0.94 ± 0.03	46.48 ± 1.50	U32	C1′	1.86 ± 0.01	20.89 ± 0.22
G5	C8	0.86 ± 0.04	60.90 ± 1.34	A33	C8	2.02 ± 0.01	28.67 ± 0.22
G5	C1'	0.92 ± 0.03	42.04 ± 1.25	A33	C2	1.98 ± 0.01	34.84 ± 0.15
06	C6	0.96 ± 0.04	80.11 ± 3.49	A33	C1'	1.78 ± 0.02	22.67 ± 0.35
06	C5	1.63 ± 0.04	/3.98 ± 1.39	C34	C6	2.43 ± 0.02	43.16 ± 0.33
06	CI ^r	0.96 ± 0.04	44.79 ± 1.85	C34	C5	2.16 ± 0.01	44.74 ± 0.34
G/	C8	0.84 ± 0.04	63.20 ± 1.51	C34		1.80 ± 0.02	27.39 ± 0.54
		0.80 ± 0.03	40.40 ± 1.59	A33		1.07 ± 0.04	70 15 ± 1.34
	C0 CE	1.41 ± 0.06	00.04 ± 5.11	A33	C2	1.34 ± 0.05	76.15 ± 2.07
	C3 C1/	1.43 ± 0.03	33.30 ± 1.04	A33		0.92 ± 0.00	40.22 ± 2.31
119	C1 C5	0.85 ± 0.00	43.05 ± 2.91 81.39 ± 2.07	637	C0 C1'	1.03 ± 0.04 1.00 ± 0.03	100.75 ± 1.29
119	C1'	1.43 ± 0.03 0.94 + 0.04	48.01 ± 2.07	C38	C6	1.00 ± 0.03 1.57 ± 0.06	49.09 ± 1.00 77.85 ± 1.97
U10	6	1.42 ± 0.04	40.01 ± 2.05 84 93 ± 3.46	C38	C1′	0.93 ± 0.05	41.07 ± 0.86
U10	C5	1.37 ± 0.08	85.07 + 3.51	G39	C8	1.01 ± 0.04	64.12 + 1.34
U10	C1'	0.83 ± 0.08	44.28 + 3.61	G39	C1′	0.97 ± 0.02	38.76 ± 0.85
A11	C8	1.39 + 0.07	46.00 + 1.89	G40	C1'	1.04 + 0.04	39.65 + 1.54
A11	C1′	1.14 + 0.05	46.45 + 2.11	A41	C1′	1.10 + 0.02	42.80 + 0.98
G12	C8	1.13 ± 0.03	55.96 ± 0.80	A43	C2	1.14 ± 0.02	68.15 ± 0.66
G12	C1′	1.06 ± 0.03	43.75 ± 1.47	C45	C6	1.65 ± 0.06	72.33 ± 2.12
C13	C6	1.50 ± 0.08	77.44 ± 2.69	C45	C5	1.76 ± 0.02	64.84 ± 0.86
C13	C5	1.54 ± 0.04	85.31 ± 1.73	C46	C5	1.67 ± 0.03	73.31 ± 1.04
C13	C1′	0.96 ± 0.02	42.71 ± 2.38	C46	C1′	1.01 ± 0.02	41.81 ± 0.87
U15	C6	1.26 ± 0.08	82.15 ± 3.22	G47	C8	1.08 ± 0.03	57.71 ± 0.88
U15	C5	1.52 ± 0.04	78.91 ± 1.60	G47	C1'	0.99 ± 0.02	41.69 ± 0.90
C16	C5	1.52 ± 0.04	79.77 ± 1.77	C48	C1'	0.93 ± 0.02	42.17 ± 0.78
U18	C1′	0.92 ± 0.04	46.44 ± 1.61	C49	C6	1.52 ± 0.05	70.59 ± 1.88
U19	C5	1.59 ± 0.04	81.01 ± 1.64	C49	C5	1.60 ± 0.02	73.93 ± 1.00
U19	C1′	1.02 ± 0.07	42.07 ± 3.07	C49	C1′	1.05 ± 0.03	40.81 ± 1.02
C20	C6	1.34 ± 0.10	80.28 ± 3.69	A50	C8	0.98 ± 0.04	55.33 ± 1.23
C20	C5	1.68 ± 0.04	70.13 ± 1.39	A50	C2	0.96 ± 0.05	74.72 ± 1.56
C20	C1'	0.81 ± 0.05	49.34 ± 2.96	A50	C1'	0.94 ± 0.06	45.48 ± 3.05
A21	68	0.89 ± 0.03	63.25 ± 0.98	A51	C8	1.50 ± 0.09	62.29 ± 1.92
AZ I	C2	0.88 ± 0.03	74.42 ± 1.48	A51 AE1	C2	0.89 ± 0.02	72.33 ± 0.89
AZI C22		0.89 ± 0.04	45.18 ± 1.93	A51 A52		0.72 ± 0.07	48.95 ± 3.01
C22	C0 CE	1.50 ± 0.00	70.00 ± 2.03	A32		0.97 ± 0.03	39.03 ± 1.30
C22	C1/	1.30 ± 0.03	30.24 ± 2.17	A52 A52	C2 C1'	0.89 ± 0.02	72.33 ± 0.09
C22 C23	C1 C5	0.90 ± 0.03 1 50 ± 0.04	40.55 ± 1.00 81 /17 \pm 1.62	G53		0.89 ± 0.03	49.20 ± 2.01 62/11 ± 2.76
Δ24	C8	1.30 ± 0.04 1.03 ± 0.04	56.87 ± 1.02	G53	C1'	0.90 ± 0.00	44.43 ± 1.47
Δ24	C2	1.05 ± 0.04 0.99 + 0.03	50.07 ± 1.25 69.96 ± 0.91	G54	C8	0.55 ± 0.05 0.86 ± 0.05	$66 21 \pm 1.73$
A24	C1'	0.97 ± 0.03	43.79 + 1.41	G54	C1′	0.91 ± 0.03	45.42 + 1.59
A25	C8	1.03 + 0.03	61.63 + 1.10	A55	C8	0.89 ± 0.03	63.25 + 0.98
A25	C2	1.01 ± 0.02	67.27 ± 0.79	A55	C2	0.89 ± 0.03	76.10 ± 1.44
A25	C1′	1.03 ± 0.03	40.57 ± 1.30	A55	C1′	0.92 ± 0.04	43.61 ± 1.48
G26	C8	0.91 ± 0.04	61.21 ± 1.49	G56	C8	0.77 ± 0.05	60.46 ± 1.59
G26	C1′	0.96 ± 0.04	43.03 ± 1.26	G56	C1′	0.92 ± 0.03	39.60 ± 1.65
C27	C6	1.45 ± 0.06	81.17 ± 2.30	A57	C8	1.07 ± 0.03	53.27 ± 0.96
C27	C5	1.56 ± 0.02	75.92 ± 0.93	A57	C1′	1.09 ± 0.02	36.28 ± 0.86
A28	C2	1.12 ± 0.02	65.79 ± 0.51	A58	C8	1.42 ± 0.01	39.88 ± 0.40
A28	C1′	1.16 ± 0.02	38.24 ± 0.75	A58	C2	1.55 ± 0.02	43.29 ± 0.30
				A58	C1′	1.68 ± 0.01	22.01 ± 0.33