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S1. Some Modeling Details
A crucial issue in modeling the effect of external potentials on
membrane proteins is the proper modeling of the effect of the
solvent molecules and the bulk ions. The solvent is modeled
implicitly, but the ions in the solutions are considered more ex-
plicitly. That is, in trying to introduce the electrolytes, it is im-
portant to retain the option of multistage modeling by describing
a key part of the system in a fully discrete model. For example, we
can treat the immediate region near the protein by a primitive
model with the explicit ions moving by Langevin dynamics treat-
ment. Here, however, we have focused in our approach on the next
layer of surrounding, where the electrolytes are described in
a simpler way. This is done by adopting a compromise between full
Monte Carlo (MC) and grid-type approaches. That is, we would
like to start conceptually by placing ions on grid points (with an
assumed separation) and then use an MC model of the type we
and others applied in determining the ionization states in proteins.
However, for practical purposes, we introduced some additional
simplifications, which can also be removed. At any rate, we ended
up with a semimacroscopic strategy applied in our previous elec-
trostatic modeling, which is similar to the approach introduced
originally by Pack and coworkers (1), but it retains a more mi-
croscopic view. In this approach, we generate a grid whose spacing
is taken here as Δ with a volume element τ=Δ3 and place at the
center of the ith grid point a residual charge (qgi ) determined by
the following:

qgi = q+i + q−i ; [S1]
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where q+i and q−i are, respectively, the positive and negative
fractional charges that are assigned to the ith grid point, α± is
the ion charge of the electrolyte ions in atomic units (namely,
± 1 for the 1:1 electrolyte used in our calculations), N ±

box is
the total number of cations/anions in the simulation box, Q±

box
is the total charge of cations/anions in the simulation system
given by Q±

box = α±N ±
box, ϕi is the electrostatic potential (times

a unit charge) at the ith grid point and β= ðkBTÞ−1. Ngrid
bulk is the

number of grid points within the bulk system and ϕbulk is a con-
stant potential on the bulk grid points (see ref. 2 for more de-
tails). ϕi can be expressed as follows:
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where Vext
i represents the external potential (time a unit charge)

on the ith grid point that will be described below. Here, qPj is the
charge of the jth protein residue (these charges are evaluated by
MC procedure described above), and qgk is the point charge at
the kth grid point (representing the excess net charge of the kth
volume element). Eq. S3 should also include the term−RT lnðCi=C0Þ
due to the concentration dependence, in case ofmembrane potential
with different concentration of electrolytes in the two sides of
the membrane. The treatment of the boundary conditions is dis-

cussed in ref. 2. The final set of the grid charges (qg) is obtained
iteratively, and the effect of the ionic strength is evaluated as outlined
in ref. 3.
To model the effect of the external potential, one can consider

formally the membrane/protein/water system as a capacitor. In
this case, it is possible to use the well-known macroscopic ca-
pacitor model (e.g., see ref. 4), where the external potential in-
duces surface charges (σf ) whose value will be defined below,
and creates the corresponding displacement vector D0. In this
case, we have the following:

D0 = σf : [S4]

Our first task is to determine the membrane potential and the
electrolyte charges, so we can evaluate the free energy of the
protein charges in the presence of this potential. This is done by
expressing the external potential as follows:

V i
ext =

ZZi

Z0

D0
z=«ðZÞdZ; [S5]

where Z0 is the Z coordinate at the left electrode (in the current
work, we define the left side as side with smaller value for the Z
coordinates and the right side with the larger Z value). The other
alternative strategy is to replace the treatment of Eq. S5 by
simply having a finite grid of point charges on the electrode.
Both treatments have been described and validated in ref. 3.
Our coarse-grained (CG) model describes the effect of the

membrane head groups by electrostatic term with a high dielectric
(see ref. 2). However, in the present study, we tuned this effect
off, considering the fact the experimental finding of the impor-
tant effect of theses head groups (5) should be left to more
detailed subsequent studies that can also be used to validate and
improve the representation of the head groups.

S2. The True Meaning of the Gating Charge
This gating charge concept was initially postulated by Hodgkin
and Huxley (6) provides a qualitative explanation of the coupling
of the external potential to the channel activation. The evalua-
tion of the gating charge is usually done in an indirect way, using
reasonable but not necessarily microscopic assumptions. This
crucial issue is discussed in SI Text, section S2.
One may simply determine the relative population of open and

closed channels as a function of the applied potential and de-
termine the Boltzmann probability for the voltage-induced struc-
tural change. This is equivalent to the assumption that the energy
needed to move the gating charge, Qgate, in the applied electric
field is equal to the work of moving the protein charges between
the two configurations under the membrane electric field. This
assumption can be formulated as follows:

QgateΔV =ΔGcl→op; [S6]

where ΔGcl→op is the contribution of the membrane potential to
the work of moving from the closed to open configuration, and
ΔV is the change in the electrostatic potential between the initial
and final position of the protein effective charge (for a case with
many protein charges, see ref. 2). Under the assumption of linear
membrane potential, it is simple to calculate Qgate if the struc-
tures of the open and closed states are known and a useful
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related insight has been obtained from macroscopic studies.
Attempts to evaluate Qgate from the equivalent of Eq. 1 using
microscopic simulations have also been reported (e.g., see ref. 7).
However, there are some problems with such strategies (see dis-
cussion in ref. 2, including the fact that the potential is not really
linear or uniform in the protein membrane system (in contrast to
the implicit assumption of one of the versions of the treatment of
ref. 8). At any rate, we must consider the fact that the real observ-
able is ΔGcl→opðV Þ, which has not been obtained by microscopic
simulation studies.
We would like to clarify that the results obtained with the linear

approximation may well be very reasonable, but the fact that they
reproduce the reasonably assumed gating charge should not be
confused with the reproduction of a real observable. In fact, in
view of the enormous importance of the gating charge and cur-
rent, it is essential to strive for a model that obtains these quantities
with an explicit description of the electrode/membrane and elec-
trolytes instead of relying on a macroscopic concept that may be
very elegant but as is the case with other problems with electro-
statics in proteins (see discussion of different treatments of ref. 9)
may lead to incorrect (and clearly unverifiable) conclusions.

S3. Structural Modeling
The full structural models of intermediate Kv1.2 (first, second,
third, fourth, and fifth) were constructed by combining the
structural models of voltage sensor domains (VSDs) from the
Shaker channel (10) and of pore domains of Kv1.2 (11). Modeler
(12) was used to build the full intermediate Kv1.2 structures
based on the sequence alignment, taken from Long et al. (13), of
the VSD from the Shaker channel and Kv1.2, whereas either the
open or closed pore template from the K1.2v structures was used
to construct the open model (the first state) or the rest of models
that are closed (the second, third, fourth, and fifth states), re-
spectively. Interdomain restraints between the pore and VSDs,
derived from the structural alignment between Kv1.2 and VSD
of the Shaker channel using align module implemented in Pymol,
were incorporated into Modeler via Python interface to build the

full models with correct orientation between the pore and VSDs.
The structural models, constructed by Modeler, were subsequently
refined using Rosetta membrane (14) with heavy atoms restraint
of flat bottom potential with default width. The best model for
each intermediate state was selected based on the standard Rosetta
membrane environment scoring function (15). The final model
for each intermediate state was then fed into the MOLARIS
program (16, 17) to generate the corresponding CG model,
followed by a molecular dynamics (MD) relaxation of 1 ps with
the CG model of the protein and membrane. Finally, each pair
of two intermediate states was used to locate the corresponding
transition state structure. This was done by using a simple linear
interpolation between two intermediate states, followed by a MD
relaxation of 1 ps with the CG model.
Several key structural features of gating transitions of the VSD

in the present model are consistent with a current consensus
picture of voltage-sensing processes (18). The gating transitions
involve sequential movements of positively charges residues in
the S4 helix, which are stabilized by the negatively charged res-
idues (E183), (E226, E236), and (D259) of the S1, S3, and S4 he-
lixes, respectively. The modeled gating transitions, as is the case
with the structural models of the VSD by ref. 10, involve pre-
dominant movements of the S4 helix along the relatively fixed S3
helix, sliding around 13 Å normal to membrane and rotating
counterclockwise as viewed from the extracellular side, in ac-
cordance with the sliding-helix or helical-screw model (19, 20).
The larger extension of a vertical moment of the S4 helix in the
resulting model is different from the earlier structural model of
Pathak et al. (11) with its smaller vertical movement of ∼7 Å that
supports the transporter model (see ref. 21 for review).
The model of the fifth state, which is suggested to exist in the

paddle model (22), where R362 is stabilized in the gating charge
transfer center (23) with an vertical movement of greater than
∼15 Å, has been rejected in the present work, because its en-
ergetics was found to be much larger than at of first, second,
third, and fourth. This state can still exist in a deep hyperpo-
larization state (10, 24).
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Fig. S1. A schematic description of the treatment of the simulation system. The regions considered are as follows: the protein/membrane system (region I);
the region with explicit grid (region II); the bulk region (region III); and the region between the bulk and the electrodes (region IV). The “bulk region” far
away from both the membrane and electrode surfaces provides as a specialized way for spanning the space between the membranes to the electrodes,
without using an enormous grid.

Fig. S2. Comparison between the actual CG free energy profile (red) with data points (filled square) and the consensus CG free energy profile (blue). The
profiles of the CG and consensus surfaces were determined by the approach described in Results and Discussion, The Energetics of the Activation Process.
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Fig. S3. The time response of the CG model and the reduced model (the 1D free energy surface) with an applied harmonic potential of the form k(z − z0)
2,

where k = 1 kcal/mol/Å2 and z0 = 8.5. Sconf (y axis) represents a fraction of the conformation transitions from the fourth (close) state to the third state.

Fig. S4. The fluctuations of gating transitions at (A) 0 mV and (B) −50 mV: the simulations were done with a friction of 50 ps−1 (determined by a renorm-
alization approach) on the unscale free energy surface (red curve in Fig. 3).
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Fig. S5. The dwell time (or the first passage time) distributions for the conformational transitions between intermediate states at 0 mV: the average dwell
times are 0.68, 0.40, and 0.53 ns (converted to the original timescale of 1.17, 2.41, and 7.00 ms) for the initial (red), second (green), and final (blue) transitions,
respectively.

Fig. S6. The convergence profiles of the gating current at (A) 0 mV and (B) −50 mV: Langevin dynamics runs on the scaled free energy surface (red curve in Fig. 3)
and the number of Langevin dynamics runs is given on the Top Right.
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Fig. S7. The fast gating current and charge in response to changes in the membrane potential. (A) The total fast gating current (red curve) with (B) its
corresponding gating charge, resulting from an increase in membrane potential from −50 to 0 mV. This current is predominantly determined by a barrier
crossing contribution (green curve). (C) The total fast gating current (red curve) with (D) its corresponding gating charge, resulting from a drop from 0 to −50
mV in the membrane potential, is predominantly determined by a relaxation contribution (blue curve). Notice that the fast gating current contribution away
from the closed state to the deeper state (purple curve) is considered small.
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Table S1. The free energies (kcal/mol) of different intermediate states at low (−50 mV) and high (0 mV)
depolarization

State\free energy
Protein

electrostatics Hydrophobic Van der Waals Hydrophilic
Electrolyte

electrostatics Total

State(IV) (close)
Voltage, mV

0 −100.97 −108.76 −15.04 14.63 27.69 −182.45
−50 −104.07 −110.76 −16.04 13.63 29.72 −187.52

Barrier for the (IV→III) transition
Voltage, mV

0 −91.71 −110.18 −15.51 14.57 31.43 −171.40
−50 −94.23 −111.17 −16.01 15.07 30.62 −175.72

State(III)
Voltage, mV

0 −103.92 −107.59 −16.00 14.52 32.70 −180.29
−50 −104.94 −111.59 −16.00 16.52 28.34 −187.67

Barrier for the (III→II) transition
Voltage, mV

0 −94.54 −110.47 −15.82 14.72 26.21 −176.90
−50 −95.05 −110.23 −15.72 16.22 29.21 −175.57

State(II)
Voltage, mV

0 −105.48 −106.37 −15.65 14.92 26.70 −185.88
−50 −104.85 −109.36 −15.65 15.92 26.08 −187.86

Barrier for the (II→I) transition
Voltage, mV

0 −94.79 −106.76 −15.72 12.32 27.02 −177.93
−50 −91.97 −108.23 −15.64 14.22 26.66 −174.96

State(I) (open)
Voltage, mV

0 −111.55 −105.63 −15.29 10.65 26.76 −195.13
−50 −106.24 −106.30 −15.23 12.38 28.79 −186.60
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