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SUPPLEMENTARY INFORMATION.  

 

1. Quantitative Analysis of the Dependence of the Rupture Force on Dwell Time: 

Reaction-diffusion model of adhesin-surface association 

 

1.1 Multistep surface kinetic scheme 

 

To model the time dependence of the adhesion force on dwelling time, a 

reaction-diffusion surface attachment mechanism is proposed. The model was born out 

from the requirement of a minimal set of parameters reproducing the most salient 

features of the experimental results. Thus, we assume that adhesins, denoted P, can 

diffuse within the holdfast mass and bind irreversibly to the surface, denoted � . An 

intermediate step in the binding process is the reversible association of �  with the 

surface. The coupling between bulk and surface concentrations of �  is achieved by 
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including reversible adsorption and desorption kinetics from the surface, where we 

denote the concentration of surface associated �  by ���� . The strength of holdfast 

attachment is proportional to the concentration of the irreversibly bound surface bound 

complex, [� � � ], and more weakly to the concentration of the reversible surface 

associated form ����. We note that ��� is a volume concentration, while ���, ����, and 

�� � �� are concentrations of the substrate, adhesin, and bound complex on the surface, 

respectively. The resulting reaction-diffusion equations are: 

����
�� 	 
�����, �1� 

�	����
�� 	 ��	���	���� �	�����|��� � ������,			�2� 

�	�� � ��
�� 	 �	���	���� 	 �	����	����� �	 �� � ���.			�3� 

where 
 is the diffusion constant of adhesin within the holdfast mass, ��, and ��  are 

reaction rates describing association and dissociation of �  with the surface, and � 

describes the rate at which the irreversibly bound complex, �� � ��, is formed from the 

surface associated adhesin, ��. Approximating the holdfast by a cubic volume of size 

� � 60	!" with the reactive surface at # 	 0, the boundary conditions for � are no-flux at 

all non-reactive boundaries (!$ 	 ∙ 	
�&&'��� 	 0 , where !$  is the unit normal to a domain 

boundary). At # 	 0, the boundary condition is 


 ()
(� �*, +, # 	 0, �� 	 	������*, +, # 	 0, ��� � ������*, +, ���.  (4) 

It is useful to introduce dimensionless variables (denoted with hat) by rescaling 

all lengths by � , i.e. *$ 	 */� , and rescaling time as �̂ 	 �/./ , where ./ 	 �� 
⁄  is a 

diffusive time scale. Concentrations are rescaled by the appropriate powers of �, which 

defines �1 	 ����2 , � � �3 	 �� � ���� , ��4 	 ������, �5 	 ����� , and reaction rates are 

rescaled as ��6 		�� 7
/ , ��6 		�� 78

/  and �1 	 �/
 . Numerical solutions are obtained for 

different choices of total concentrations ��6  and ��6 , and parameters ���6,��6,�1� . A 

representative example of the numerical solution to the model is shown in Figure S1, 

which plots the dimensionless concentrations as a function of time.  

Given that the time to rupture is much shorter than the experimental dwell times, 

we assume that the strength of the adhesion force is proportional to the concentrations 

of the surface associated adhesin, ���� and �� � ��, that have accumulated for a given 

dwell time, �. Specifically,  
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9��̂� 	 :;<=	��4 �*$, +$, �̂��*$	�+$ � :;� 	=� � �3 �*$, +$, �̂��*$	�+$ , �5� 
where we have assumed that each � � � bond contributes a constant force :;� to the 

total rupture force, and that each surface associated adhesin �� contributes a constant 

force :;< . We expect :;< ?	:;� , as discussed below, based on the experimental 

observation that for the much longer dwell times characterizing earlier micropipette 

experiments of Tsang et al., the measured rupture forces are greater than those 

obtained on the shorter time scale of dwell times accessible to AFM measurements. As 

we discuss later, one possible mechanism for the onset of larger forces on longer time 

scales is the accumulation of the � � � complex, characterized by a long reaction time 

scale relative to the time scale of the AFM experiments (small reaction rate). 

The solutions to this reaction-diffusion model provide insight into the observed 

experimental trends on the adhesion force. To make direct comparison between the 

model and data, we convert the dimensionless dwell time �̂ into the dimensioned dwell 

time �  according to the time scale, ./ 	 	�� 
⁄ . We note that although the value of 

� � 60	!"  is known from the experiments, the diffusion coefficient of the adhesin 
 

within the bulk of the holdfast is unknown. Hence, we treat ./ as a model parameter. 

The final parameters to be specified are :;< and :;�. The parameters :;< and :;� are 

determined by minimizing the cost function @� 	 ∑ <
BC8 �9��D� � 9EFG��D���HD�<  subject to the 

constraint that :;� I !:;<, where ! is some factor, chosen to be ! 	 2 in the fits reported 

here. Here JD  is the standard deviation of the experimentally measured rupture force 

9EFG��D� for dwell time �D. This constraint ensures that a � � � bond contributes a larger 

force than a surface associated contact, ��. To produce model fits, as in Figure 12 and 

Figure S2, we discretize parameter space for a broad range of values for the parameters 

(�1�, �5�, ��6,��6,�1, ./ , :;<, :;�). We set initial values of :;< and :;� consistent with the above 

mentioned constraint and compute the cost function. We then perform a random walk in 

the parameter space of �:;<, :;��, with a step size of �0.01 K :;<, 0.01 K :;��. Steps which 

decrease the cost are accepted with probability 1, and those which increase the cost are 

accepted with probability 0.05. The random walk is continued until the cost function 

converges to its minimum value. Discretizing parameter space in this manner and 

obtaining a numerical solution at each point to construct the cost function, @�, does not 

reveal an explicit minimum. Thus, many good fits are characterized by similar values of 

$�, disallowing tight constraints on parameter values. Further characterization of the 
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adhesin and its biochemical properties is required to provide constraints on some model 

parameters, allowing others to be better determined than currently possible through a 

similar fitting procedure. Hence, we proceed instead to highlight trends present in the 

solutions to the model and their connection key experimental features.  

In this model, the lag time observed in the dependence of adhesion on dwell time 

is related to the rate at which the surface associated adhesin, �� , and the bound 

complex, � � � , accumulate at the surface. At fixed total substrate concentration, ����, 
the rate of � � �  accumulation depends on the rate of irreversible adhesin-substrate 

complex formation, �, and the concentration of surface associated adhesin, ����. For a 

fixed amount of total adhesin, ��, within the holdfast mass, the concentration of �� at a 

given dwell time depends on: (i) the diffusive time scale . 	 �� 
⁄  which sets an upper 

bound on the rate of accumulation of �  at the surface, and (ii) the rates ��� , ��� 
governing the adsorption of � to and desorption of ��  from the surface, respectively. 

While (i) is likely independent of the nature of the substrate, (ii) may depend on the 

surface composition. We note that the parameters ��� , ���  governing the surface 

localization of the adhesin from its bulk concentration could strongly depend on the 

hydrophobicity/hydrophillicity of the surface. Furthermore, depending on the nature of 

the adhesin-substrate bond, surfaces with different chemical composition could present 

varying adsorption site concentrations ����, also affecting the onset of the adhesion 

force.  

The strength of adhesion depends on the force required to rupture a single 

adhesin-substrate (� � �) bond, :;�, and the force required to rupture a single surface 

associated (��) contact, :;<. In performing fits to the data, this parameter is required to 

be less than the maximum forces of adhesion, which are measured to be approximately 

1 nN, and additionally constrained by :;� I !:;<. (Here, the factor ! 	 2 is chosen to 

ensure that a � � � bond contributes a larger force than a �� contact. The fit values are 

not sensitive to this factor.) For comparison, the strength of a single covalent bond has 

been measured in AFM experiments where single polysaccharide molecules covalently 

anchored between a surface and an AFM tip were stretched until they became detached 

1. It was found that the silicon-carbon bond ruptured at 2 ± 0.3 nN, and the sulfur-gold 

anchor ruptured at 1.4 ± 0.3 nN, exceeding the total rupture forces measured in this 

work. We conclude that for the dwell times probed, the nature of the chemical bonds 

between the adhesin and substrate is likely noncovalent (ionic, van der Waals, 

hydrogen). Within the framework of the current model, we demonstrate that noncovalent 
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bonds can still lead to the much larger rupture forces measured by the micropipette 

assay of Tsang et al. 2, as discussed below. 

 

1.2. Comparison of strength of adhesion on short and long time scales 

In the Tsang et al. 2 measurements, cells were allowed to attach to a thin flexible 

pipette whose force constant has been calibrated by AFM. A suction pipette is then used 

to grab an attached cell and pull in a direction perpendicular to the flexible pipette. The 

force of adhesion is then calculated by the amount of bending in the flexible pipette prior 

to rupture of the cell-pipette contact. To make direct comparison with these results, the 

force measurements from Tsang et al. 2 have been rescaled by the ratio of areas 

��/�L� � 1/4, where �� is the contact area between the shed holdfast and the surface in 

the current AFM experiments, and �L�  is the cross sectional area of the stalk. This 

rescaling is necessary because in the micropipette experiments, the holdfast is in 

contact with the surface over an area which is at least as large as the cross sectional 

area of the stalk. The qualitative picture that emerges within the framework of the current 

model is as follows: For short dwell times, the rupture force (9 ≲ 1	nN) is due mostly to 

the surface associated contacts, �� , which have not yet undergone the irreversible 

transition to the surface bound form � � �. If the rate � for this transition is small, larger 

rupture forces will only be measured for longer dwell times. Fig 12A shows a fit of the 

numerical solution to the model to the maximum adhesion force from the current AFM 

measurements for dwell times, � O 100 s. This figure also shows that for the same fit 

parameters, on the longer time scale, �~2 K 10Q  s, of the micropipette pulling 

measurements of Tsang et al. 2, significantly larger forces consistent with those 

measurements are obtained.  

In the present model, the multiple time scales arise from the two-step surface 

reaction scheme: the small reaction rate (and long time scale) characterizing the 

formation of � � �  bonds leads to the stronger forces measured on the longer time 

scales of micropipette experiments, while the faster time scales associated with diffusion 

of adhesin within the bulk of the holdfast and its surface adsorption/desorption kinetics 

lead to smaller forces on the shorter time scale of the AFM experiments. However, other 

mechanisms leading to multiple time scales are also possible, and we discuss two 

plausible mechanisms below.  

 

1.3. Alternative Mechanisms 
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Slow diffusion limit: Within the framework of the above model, if the second, slow 

surface reaction step is absent, then the adhesion force would arise entirely from the 

surface associated adhesin concentration, ����. In this case, if the diffusion constant 

associated with movement of the adhesin within the holdfast mass is very slow, then the 

larger forces on longer time scales could arise from the diffusion-limited rate of arrival of 

adhesin to the surface.  Thus, the smaller forces on shorter time scales result from the 

presence of adhesin molecules already in contact with the surface, with the dependence 

of the adhesion force on dwell time characterized by the rates of adsorption and 

desorption, ��,�.   

To justify a small diffusion constant, a common biophysical mechanism is the 

reduction of the diffusion constant of a chemical species due to its rescaling in the 

presence of traps 11. If the adhesin binds to the holdfast matrix, denoted R, with on /off 

rates, �S and �T, respectively, then its dynamics within the holdfast mass is given by 

��
�� 	 
����� � �S	�R�	��� �	�T�R � ��,			�6� 
�	�R � ��

�� 	 	�S�R���� � �T�R � ��.		�7� 
In the limit that the dynamics of binding/unbinding of adhesin to/from the matrix are fast 

compared to the time scale of its diffusion, then 
�	�)TV�

�W � 0 , i.e., the adhesin-matrix 

complex, �R � ��, is assumed to be in pseudo-equilibrium. Furthermore if �R � �� ≪ �R��, 
an approximation that holds true if the concentration of total adhesin is much smaller 

than that of available matrix binding sites, �R��, then �R � �� � �S�R�����/�T . Adding 

Eqs. (6) and (7), we find that the dynamics of the adhesin can be approximated by the 

diffusion equation, with a diffusion constant rescaled according to 
 → 
/Z , where 

Z 	 [\�V]�
[^ .  If the kinetics of adhesin-matrix binding is characterized by a very small 

unbinding rate, a condition required for overall strength of the holdfast, then Z can be 

very large, leading to a small, effective diffusion constant.  

 We carried out numerical simulations with 
 small, eliminating the slow surface 

reaction step (� 	 0). In this case, the force of adhesion is due entirely to the formation 

of the surface associated form ��. For concreteness, the diffusion constant is rescaled 

according to Z 	 1000. We have also investigated Z 	 100, with no qualitative change in 

conclusions. As demonstrated in Figure S2, there are two plateaus in the concentration 

of surface-adsorbed adhesin and rupture force. The first plateau occurs as the initial 
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adhesin molecules within the holdfast layer proximal to the surface reach equilibrium in 

their binding to the surface. The second plateau occurs as the remaining adhesin 

molecules within the bulk of the holdfast diffuse to the surface. In Figure S2, the second 

plateau occurs for a force of approximately 10 nN, which is an order of magnitude larger 

than the forces as measured by AFM for dwell times less than 100 seconds. However, 

this plateau is less than characteristic forces on the order of 100 nN measured for much 

longer dwell times reported by Tsang et al. 2.  Due to the dimensionality and dynamic 

range of the parameter space, it is difficult to rule out the possibility that the slow 

diffusion scenario with single-step reaction kinetics can better capture both the short and 

long time scale regimes. Future experimental studies that constrain the experimentally 

accessible parameter space will allow a more direct examination of the detailed 

assumptions of the reaction-diffusion model of surface adhesion elaborated above. 

 

Multiple species of adhesin or N-acetylglucosamine modification: A second 

possible mechanism leading to the difference in the strength of adhesion on short and 

long time scales is the existence of multiple adhesive components, with surface binding 

kinetics acting on different time scales. One species of adhesin may be responsible for 

weaker binding with faster kinetics, while a second species may adhere with slower 

rates. Finally, modification of the N-acetylglucosamine residues could impact their 

adhesive properties. One of the genes of the holdfast synthesis gene cluster, hfsH, 

encodes a predicted polysaccharide deacetylase. Deacetylation of the holdfast N-

acetylglucosamine residues impact its charge and may provide sites for modification, 

including crosslinking. 

 

Cross-linking of the holdfast polymer matrix: AFM measurements of the adhesive 

properties of shed holdfast reported in this work likely involve multiple bonds with the 

surface, as assumed above. This distinguishes the present study from the large body of 

single molecule AFM studies of specific receptor-ligand binding 3 and protein unfolding 4, 

both theoretically and experimentally. The use of shed holdfast also distinguishes this 

work from whole cell adhesion AFM measurements, allowing the adhesive holdfast 

patch to be studied in isolation without interference from other cell surface interactions. 

Following previous works 5, a simple physical framework for modeling holdfast 

attachment is that of _� bonds acting in parallel with the load distributed (approximately) 

uniformly among them. Each bond is described by a fixed surface binding site and a 
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flexible polymer connected to the holdfast, assumed to be a Hookean spring with spring 

constant, G̀. As a bond ruptures, the load on the remaining bonds increases, thereby 

increasing their probability of rupture according to the load-dependent dissociation 

constant for a single bond given previously 6,7 ,   

����� 	 	��abc�W�Fc/[de ,            (8) 

where �� is the dissociation rate in the absence of a force; *f, is the distance between 

the binding potential and the barrier; 9f���, is the force on a single bond, and $gh is the 

product of Boltzmann’s constant and temperature. Additionally, we treat the holdfast as 

an elastic element with spring constant 7̀, which is in turn coupled to the AFM cantilever 

arm with spring constant ì, pulled at constant speed j, as shown in Fig 12B. As long as 

a bond is intact, it is stretched by *G  assumed to be the same for all bonds. For 

simplicity, rest lengths of all springs are taken to be zero. With the extension of the 

transducer given by *i��� 	 	j�, force balance gives the force on the single bond, 9f���, 
as 

9f��� 	 	 kl
<SH�W�klm n

olS
n
opq

	j�   (9) 

and the force on the transducer is given by 9i��� 	 _���9f���. Note that in our study the 

initial number of bonds, _� 	 _�� 	 0�, in each measurement of the rupture force is a 

function of the dwell time, _� 	 _��.�. 
 Previous work 5 8 has considered the dependence of the rupture force on the 

initial number of bonds, _�, for both irreversible bonds (where a bond once ruptured 

does not rebind over the course of the pulling experiment), and reversible bonds (where 

the rebinding rate is not zero). The loading parameter, r, given by 

r 	 Fls
[]	[de

kpkt
kpSkt

	   (10) 

has been modified to additionally include the elasticity of the holdfast in our experiments. 

The scaling of the rupture force with _� has been determined in fast and slow loading 

regimes in the limits of soft and stiff transducers. 

  For the experiments reported in this work, we estimate the loading parameter r 

as follows: The cantilever retraction rate in the experiments reported here is j � 2	r"/u, 

�gh 	 4	v_ ∙ !" at room temperature, and we estimate *G~	1	!" 9. From numerical fits 

of simulations to the AFM rupture force data reported above, we take the rate 

��~��~10Tw	uT<  (see Figure 12A and Figure S2). Hence, we can write the loading 

parameter as 



 9

r~�5 K 10x	!" ∙ v_T<�	 kpkt
kpSkt

   (11) 

In the limit that Ẁ 	≪ 	 7̀ or Ẁ 	~	 7̀, we can approximate 
kpkt
kpSkt

�	 Ẁ 	 25	v_/!", giving 

r~10y. For Ẁ 	≫ 	 7̀ , we have r~�5 K 10x	!" ∙ v_T<�	 7̀ . From numerical simulations 

reported in Figure 12A and Figure S2, the number of bound adhesins does not exceed 

102. Hence, for plausible values of 7̀, we expect r { _�, putting our experiments in the 

fast loading regime. 

In the fast loading regime, it has been shown that the relevant scaling of the 

rupture force with _�  is linear (with logarithmic correction) 5 8. This scaling is the 

justification for taking the rupture force to be linearly proportional to the surface 

concentration of adhesin in Section 1. Furthermore, the rupture force, 9∗, is found to 

increase (logarithmically) with the loading parameter, r 

9∗ 	 ��gh/*f�	_} log�r/_��    for _� ≪ 	r    (12) 

 We note from Eq. (9) that the loading parameter r  increases with increasing 

holdfast spring constant, 7̀, leading to an increase in the rupture force for the same 

number of initial surface bonds. A possible mechanism for a time-dependent increase in 

the holdfast stiffness, 7̀���, is cross-linking of the holdfast polymer network, akin to 

actin-filamin gels 10. In this scenario, in addition to binding the holdfast to the surface, the 

adhesin also cross-links the holdfast matrix over time. The stiffening of the holdfast 

matrix ensures that an applied load is uniformly distributed over the multiple parallel 

bonds with the surface. If this were not the case, then the force on some bonds for a 

given applied load would be larger, leading to a greater probability of rupture according 

to Eq. (8), resulting in a cascade of ruptures with shorter rupture time and therefore 

smaller rupture force. Indeed, in the large load regime, the rupture time is determined to 

be inversely proportional to r 5. 

 The cross-linking of the holdfast matrix can be achieved by the putative cross-

linker/adhesin or alternatively through chemical modification of N-acetylglucosamine as 

described above. Regardless of how cross-linking is achieved, it provides an alternative 

mechanism for generating the separation of time scales leading to smaller adhesion 

forces on short time scales and large forces on longer time scales. In this scenario, the 

strength of adhesion is additionally derived from stiffening of the holdfast, thereby 

uniformly distributing an applied load among multiple parallel bonds with the surface.  
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2. Analysis of Rupture Event Force Distributions  

2.1 Identifying Rupture Events from AFM Retraction Curves 

 

The majority (~60%) of the DFS retraction curves are characterized by a single 

contact-rupture event as in Figure S3A, the others containing several local minima 

corresponding to partial rupture events, as demonstrated in Figure S3B. To perform a 

quantitative statistical analysis of the rupture events, we identified rupture events in two 

ways: i) by visual inspection (carried out independently by two experimenters), and ii) 

based on an automated procedure of identifying local maxima/minima in the AFM 

retraction curves. In the latter approach, the first step is to parse the curve into a rupture 

portion (when the holdfast adhered to the AFM tip is in contact with the surface), shown 

in red in Figure S3B, and a detached portion (after the holdfast on the AFM tip is 

completely detached from the surface), shown in blue. The rupture portion of the 

retraction curve may contain many local minima, as seen in Figure S3B. The algorithm 

identifies all of the local minima mi, circled in black, and their corresponding local 

maxima Mi, circled in green. The portion of the AFM curve connecting mi to Mi is 

classified as a candidate rupture event with a rupture force of magnitude ∆Fi = F(Mi) − 

F(mi). The true rupture events are selected from the set of candidate events by setting a 

force threshold, which is a consequence of instrumental noise. 

In this analysis, we apply two different methods of setting a force threshold, a 

constant force threshold and a variable force threshold. For the constant force threshold, 

the true rupture events are selected from the candidate events provided they satisfy the 

criterion ∆Fi > ∆Fcrit, where ∆Fcrit is a constant force threshold, fixed for all AFM retraction 

curves. Typical choices of ∆Fcrit = 5 − 25 pN are consistent with threshold values used in 

previous works 9. This thresholding truncates the lower half of force histograms up to the 

threshold values. We find that the fit results to the resulting force distributions are little 

affected by the choice of ∆Fcrit within the range given above. For the variable force 

threshold, we first determine the variability in each individual experiment by calculating 

the standard deviation of the force σi for the detached portion of each individual DFS 

retraction curve. Across the 157 different curves, this value σi varies between 3 and 10 

pN, as demonstrated in Figure S3C. True rupture events are selected from the candidate 

events provided they satisfy the criterion ∆Fi > mσi, where m is a numerical parameter 
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which is held constant across all curves, and σi is the standard deviation for curve i. In 

words, only candidate rupture events whose magnitude is greater than m standard 

deviations are classified as true ruptures. We find that for m = 2 − 4, yielding force 

thresholds that are consistent in value to the constant thresholds used in the former 

method, the fit results are little affected by the choice of m. 

 

2.2 Analysis of Rupture Force Distributions 

Distributions of rupture forces obtained using the methods described above were 

analyzed in the context of two semi-empirical hypotheses. The first hypothesis considers 

a given rupture event to correspond to the breaking of an integer number of adhesin 

bonds with the substrate, each with a common, characteristic adhesion force. Assuming 

this characteristic force is larger than the AFM resolution, rupture force histograms would 

feature a series of regularly spaced peaks. Visual inspection of the data suggested the 

possibility of such structure with a peak spacing of approximately 30 pN. One example, 

obtained from the algorithmic rupture event identification approach, is plotted in Figure 

S4. We have carried out a series of fits to assess the statistical compatibility of the data 

with this intriguing hypothesis. To interpret the resulting goodness-of-fit metrics, we 

compared with results obtained considering a second, “null” hypothesis. The functional 

form taken for this hypothesis, the sum of two falling exponential distributions, was 

motivated by inspection of semi-logarithmic plots of the rupture force histograms, for 

example as shown in the right panel of Figure S4. Two roughly linear regions (from 25 to 

120 pN, and from 120 to 400 pN) can be identified, spanning larger ranges of rupture 

forces than the separation between the putative peaks: the question is whether the 

peaks (and intervening troughs) are consistent with statistical fluctuations relative to 

some smooth underlying dependence. A sum of two exponential distributions would 

appear to provide a viable description of the main trends in the data if one ignores the 

peak-like indications. 

The main results reported here are based on analysis of rupture force histograms 

in 5 pN-wide bins over a range from 25 to 250 pN. Analyses employing other bin widths 

and fit ranges gave consistent results, as shown below. Accounting for the limited 

number of rupture events per bin, we have employed a maximum likelihood approach. 
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This approach naturally incorporates the Poisson errors intrinsically present in binned 

data under the assumption that rupture events are mutually independent. We report as 

the goodness-of-fit metric the value of the −2ln � quantity being minimized, where � is 

the product of the per-bin likelihoods that represent the Poisson probability that the fit 

function value for a given bin has fluctuated to yield the number of rupture events 

actually observed, 

� 	 	ΠD	
�C�CE^�C

HC!      (13) 

where rD is the value of the fit function (rupture force) at the ith bin, and _D is the number 

of rupture events in this bin. For the case of the multiple-peak hypothesis, we assume: 

1. Rupture events occur in integer multiples of a characteristic adhesion force.  

2. Noise in the AFM data introduces systematic smearing of the measured rupture 

forces, assumed to be Gaussian distributed and with a constant width over the 

range of measured forces (i.e., independent of the number of ruptured bonds).  

3. Additionally, there could be some background level of incorrectly inferred rupture 

forces, assumed to be uniformly distributed.  

The nominal fit function consists of six Gaussians, each with a mean corresponding to 

a particular integer (!  = 1–6) multiple of the characteristic rupture force, and with 

identical widths, plus a flat “background”. With this, there are 9 free parameters: 7 scale 

factors An for the six Gaussians and background level, one parameter *̅ representing the 

mean characteristic rupture force, and one parameter σ for the common root-mean-

square width of the Gaussians. Thus, each Gaussian takes the form: 

R�	�*D; 	��, *̅, J� 	 ��
√��B 	a*v �

�FCT�F̅�8
�B8 �   (14) 

where *D represents the force (in pN) of the ith bin of the histogram, and ! = 1, ..., 6.  

 We have varied the number of Gaussians as well as the form of the background 

function, obtaining consistent results for the common parameters. Despite the large 

number of free parameters in the nominal six-Gaussian plus flat background function, fits 
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are well-behaved, with roughly parabolic −2 ln � surfaces in parameter space out to (at 

least) several standard deviations relative to best-fit parameter values, as is illustrated 

below. The null-hypothesis function has four free parameters. These are the scale factor 

and slope for each of the two exponential functions. 

 

2.3 Results from fits to multiple-peak hypothesis 

The fit of the multiple-peak function to the algorithmically derived rupture force 

histogram obtained with a constant 20 pN threshold is presented in the main text in 

Figure 9A. For comparison, in Figure 9B we display the corresponding fit to the rupture 

force histogram obtained from visual identification of rupture event candidates. Results 

obtained from a number of fits for key parameter and goodness-of-fit values are 

presented in Table S1, with the two cases plotted in Figure 9 entered in the first two 

rows.  

In general, good agreement is found among the different analyses, with a best fit 

value for the characteristic rupture force of approximately 30 pN, and common widths of 

the Gaussian peaks of approximately 9 pN. For the purposes of reporting a single result 

in the main text, we have taken the analysis shown in the first row of the table as the 

nominal one. Considering the variations in values across the different analyses, we 

estimate a systematic uncertainty of 0.7 pN on the characteristic rupture force, which, 

when combining with the statistical uncertainty gives an overall uncertainty of 1.0 pN. 

 

2.4 Robustness of fits to multiple-peak hypothesis 

In assessing further the robustness of the multiple-peak analysis, several points 

can be made. Despite the large number of fit parameters, it is notable that the constraint 

embedded within the fit function that the peaks are equally spaced with common widths 

is a strong one. Furthermore, the peaks are well separated, limiting the degree of 

correlation among fit parameters. Consequently, best-fit parameter values are found to 

be insensitive to the number of peaks included and the range over which the fit is 

performed.  
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To further illustrate the robust nature of the fit procedure and results, in Figure S5 

we plot the value of �2	�!	� versus x from a scan over this parameter in which the fit was 

redone at each point with all other parameters floating. The sharp minimum around 30 

pN, and the parabolic shape in the vicinity of the minimum are as expected given the 

statistical uncertainties reported by the fit. 

 

2.5 Results from fits to null hypothesis 

For all fits performed with the multiple-peak hypothesis, values for goodness-of-fit 

metrics are within acceptable ranges, as indicated by the correspondence between the 

�2	�!	�	values and the number of degrees of freedom. However, by itself this finding 

does not exclude the possibility that alternate hypotheses, without peaks, could explain 

the DFS data. In this section we address to what extent the multiple-peak structure 

suggested by the data is present at a statistically significant level by comparing with fits 

to the double-exponential function described earlier. 

In Figure S6, we present results that correspond to those shown in Figure 9, but 

with the double-exponential fit function. Inspection of the distributions of residuals 

indicates that the double-exponential function describes well the rupture force histogram 

obtained from the algorithmic analysis, but not so well that obtained from the visual-

identification analysis. This observation is quantified in Table S2, which compares 

goodness-of-fit metrics. 

Two sets of p-values are given in the table. First, given the best-fit double-

exponential function for a given rupture force histogram, one can ask what fraction of 

experiments would give a �2	�!	� value larger than what was actually observed. This 

was addressed by simulating 10,000 toy experiments for each of the two histograms 

(visual and algorithmic rupture-event identification), and histogramming the 

�2	�!	�	values from these experiments, as shown in Figure S7. As suggested by the 

residual plots in Figure S6, the null hypothesis cannot be excluded for the algorithmic 

analysis, with a more than healthy p-value of 88.7%, nor for the visual-identification 

analysis, with a less likely, but still reasonable p-value of 4.7%. 

However, the multiple-peak hypothesis is favored in both analyses, and the 
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second set of p-values in the table is obtained from application of the well-known 

likelihood-ratio test for discrimination between hypotheses. Applying this test to the two 

hypotheses, one would expect the difference in �2	�!	�	 values to be distributed 

according to the χ2 probability distribution for 5 degrees of freedom (the difference in 

number of fit parameters) if both hypotheses are equally likely. The p-values for this test, 

7.25% for algorithmic analysis and 0.01% for the visual-identification analysis show 

some discrimination. While the former value is not statistically significant, the latter 

indicates that the visual-identification histogram strongly disfavors the null hypothesis 

relative to the multiple-peak hypothesis. (It is important to note however that this 

application of the likelihood ratio test is approximate in this case, since the parameters of 

the double-exponential function do not constitute a subset of those of the multiple-peak 

function.) 

From these studies, we conclude that the visual-identification analysis yields a 

strong indication for the multiple-peak hypothesis as providing the best description of the 

DFS data. While we prefer the algorithmic approach as being most reproducible and 

amenable to testing, we are unable to imagine any bias in the visual-identification 

procedure that would artificially give rise to a multiply-peaked structure in the rupture 

force distribution. The facts that goodness-of-fit metrics for the algorithmic analysis also 

favor the multiple-peak hypothesis and that it gives results for fit parameters that are 

consistent with those from the visual-identification analysis provide additional support for 

this hypothesis.  
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SUPPLEMENTARY TABLES 

 

Table S1: Results from fits of rupture force histograms to multiple-peak hypothesis. The 

histograms fitted are obtained from the DFS data based on algorithms employing 

different thresholds or on the visual identification of rupture events, or constructed with 

different bin widths or ranges. The notation d.o.f. refers to the number of degrees of 

freedom in the fit (number of bins minus number of fit parameters). The results 

presented include best- fit values for the characteristic rupture force *̅  and common 

Gaussian width σ with their one-standard deviation uncertainties, as well as the best-fit 

value of �2	�!	�. The notation (a) refers to a histogram generated with a version of the 

constant threshold algorithm, that combines rupture event candidates occurring close in 

time. 

 

 

Bin size Threshold Range (pN) d.of. *̅ (pN) J �2	�!	� 

5 pN 20 pN 25-250 36 29.7 ± 0.6 9.1 ± 0.8 28.6 

5 pN visual 25-250 36 30.5 ± 0.4 8.4 ± 0.6 41.7 

5 pN 20 pN 25-400 66 29.8 ± 0.5 9.1 ± 0.8 59.2 

5 pN visual 25-400 66 30.5 ± 0.4 8.5 ± 0.6 67.9 

5 pN 15 pN 25-250 36 29.7 ± 0.6 9.1 ± 0.8 28.6 

5 pN 25 pN 25-250 36 29.9 ± 0.6 9.7 ± 1.0 31.9 

5 pN 20 pN (a) 25-250 36 29.8 ± 0.8 10.3 ± 1.4 40.8 

3 pN 20 pN 24-252 67 28.6 ± 0.8 9.0 ± 0.9 62.9 

4 pN 20 pN 24-252 49 28.6 ± 0.7 8.9 ± 0.9 55.1 
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Table S2: Goodness-of-fit metrics for fits to the different hypotheses shown in Figure 9 

and Figure S6. The �2	�!	�values correspond to identical fit ranges and bin-widths, 

leading to 36 degrees of freedom for the multiple-peak hypothesis and 41 degrees of 

freedom for the null hypothesis. Entries under the heading “p-value for Null Hypothesis” 

are determined from simulations of 10,000 experiments drawn from a parent distribution 

governed by the corresponding best-fit double-exponential function. Entries under the 

heading “Likelihood Ratio p-value” are determined assuming the difference in �2	�!	� 

values for the two hypotheses would be governed by a χ2 probability distribution 

corresponding to 5 degrees of freedom (equal to the difference between 41 and 36). 

 

 

 

Rupture Event 

Identification Method 

Best-fit (�2	�!	�) 

Multiple-Peak 

value Null p-value for Null 

Hypothesis 

Likelihood 

Ratio p-value 

Algorithmic  28.6 38.5 88.7% 7.25% 

Visual  41.7 66.9 4.7% 0.01% 
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SUPPLEMENTARY FIGURE LEGEND. 

 

Figure S1: The dimensionless concentrations as a function of time. The parameter 

values of the fit are: h = 60 nm, k = 7.2 × 10−3 nm2 s−1, ka = 1.5 × 10−1 nm s−1, kd = 0.2 

s−1, S0 = 0.56 nm−2, P0 = 1.5 × 10−2 M , τ = 5 s.  

 

Figure S2: The rupture force as a function of dwell time, as measured by DFS (circles), 

and in the model (solid line). The parameter values of the fit are: h = 60 nm, k = 0 nm2 

s−1, ka = 240 nm s−1, kd = 2.0 × 10−4 s−1, S0 = 1.0 nm−2, P0 = 4.6 × 10−3 nm−3, τ =13.8 h, 

δf1 = 12 pN. Note that in this slow diffusion scenario, since k = 0 no � � � is ever formed, 

and the term proportional to δf2 does not contribute to the adhesion force. The mean 

force as measured by Tang et al. reduced by a factor of 4 is shown as a triangle, which 

corresponds to �� �	 	 2⁄ . The vertical line indicates the range of measured values. 

 

Figure S3: a. The force (N) as a function of the height of the AFM tip z (m) for a sample 

retraction curve. This curve is characterized by a single contact-rupture event. b. The 

force (N) as a function of the height of the AFM tip z (m) for a sample retraction curve. 

The curve is parsed into a rupture portion, when the holdfast adhered to the AFM tip is in 

contact with the surface (shown in red), and a detached portion, when the holdfast 

adhered to the AFM tip is no longer in contact with the surface (shown in blue). This 

curve is characterized by multiple rupture events. Each individual rupture event 

corresponds to the portion of the trace between the local minima (black circles) and the 

local maxima (green circles). c. The standard deviation of the force (N) for different 

experimental trials. The standard deviation of the force is calculated using the deflection 

of the AFM tip for the detached portion of the trace, shown in blue in (b).   

 

Figure S4: Histogram of rupture forces inferred from the algorithmic analysis of the DFS 

data with a fixed 20 pN threshold. a. linear scale. b. logarithmic scale. 

 

Figure S5: Scan of characteristic rupture force values. Plot of �2	�!	�	values (filled 

circles) from fits with fixed values of *̅, scanning over the region near the best fit value of 

29.8 pN for the case of algorithmic identification of rupture events with 20 pN threshold, 

5 pN bin width, and fit range of 25–400 pN. The curve overlaid is a fit of the interior six 

points to a parabola. 
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Figure S6: Plots showing fits of rupture event histograms to the null (double-

exponential) hypothesis. The lower panel of each image displays the histogram of 

rupture-event forces, corresponding to the algorithmic (20 pN threshold, a) and visual (b) 

identification of rupture events in the DFS force-displacement data. The corresponding 

best-fit function comprising a sum of two exponential functions is overlaid. The fits were 

performed over the range 25 to 250 pN. The upper panel of each image displays the 

normalized residuals, computed as (data−fit)/fit). 

 

Figure S7: Distributions of �2	�!	�	values for simulated null-hypothesis actual values 

from the corresponding fits to data are 38.5 for the algorithmic analysis and 66.9 for the 

visual-identification analysis. 
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