Supplemental material

JCB

Nazarko et al., http://www.jcb.org/cgi/content/full/jcb.201307050/DC1

Figure S1. Supplemental data on Atg37 modification, interaction, and the role in phagophore formation. (A) Atg37 is a phosphoprotein. Cell lysates were incubated with (+) or without (-) PAP. (B) Atg37 does not interact with Pex3 in Y2H. Interaction was measured by the growth of cells on -His plates with 10 mM 3-AT. 3-AT, 3-amino-1,2,4-triazole; AD, activation domain; BD, binding domain. (C) Atg37 is essential for MIPA formation. Methanol-grown cells were adapted to glucose medium. Arrows point to the GFP-Atg26 labeled MIPA in the WT cell. DIC, differential interference contrast. Bar, 5 µm.

Figure S2. Atg37 binds Pex3, but not Atg8, under pexophagy conditions. (A) Pex3 coimmunoprecipitates with Atg37 under pexophagy conditions. Methanol-grown cells were adapted to glucose medium for 0.5 h. (B) Atg37 does not coimmunoprecipitate with Atg8. Methanol-grown cells were adapted to glucose medium for 0.5 h. The α -mCherry band represents the heavy chain of the antibody. (C) Atg37 does not interact with Atg8 in Y2H. Atg37 Δ C self-interacted, but did not interact with either Atg8 or Atg8 Δ C (aa 1–115).

HsATG37 RnAtg37 MmAtg37 PpAtg37 PaAtg37 UbAtg37	1 1 1 1	MADTRSVHETREEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQATEGPCKLSRPGFWD.PIGRYKWD MADTRSVYETREEAAVKVIQSLPKNGSFQPTNEMMLRFYSFYKQATEGPCKLSRPGFWD.PIGRYKWD MADTPSVYETREEAAVKVIQSLPKNGSFQPTNEMMLKFYSFYKQATEGPCKLSRPGFWD.PIGRYKWD MSESIDRVFVKAIGTIRTLSSRTGYGGLPRPIENRVKLYGLYKQATEGDVAGVMERPLGDSPEAEAAKRKWD MSSADVIDALFVKTVDMVQSLPKSGPIOTSYEEKLALYSLYKQATEGDVSSKRPGMID.MLGRAKWD MSSADVIDALFVKTVDMVQSLPKSGPIOTSYEEKLALYSLYKQATEGDVSSKRPGMID.MLGRAKWD
SrAtg37	1	.MSSADVIDALEVKTVDMVQSLPKSGPIQTSYBEKLALYSLYKQATEGDVSSKRPGMID.MLGRAKCD <u>Yxxl</u> AWSSIGDMIKEDAMIAYVEMKKITETM.PMTEKVEELLRVIGPFY.ETVEDKKSGRSSDITSDLGNVL.TSDPNAKTVN
RnAtg37 MmAtg37 PpAtg37 PaAtg37 UhAtg37 SrAtg37	68 68 74 67 67 67	AWSSIGDMTKEEAMIAYVEEMKKIIETM.PMTEKVEELLHVIGPFY.ETVEDKKNSKSDLTSDLGNVL.TSS.NAKAVN AWSSIGDMTKEEAMIAYVEEMKKIIETM.PMTEKVEELLHVIGPFY.ETVEDKKSSKSDLTSDLGNVL.TSS.NAKAVN AWRSEQGTSKTEAKRQYISYLIDTMKQEASDTTEARELISELEYLWNQISDVSPNDSSDSESNA AWSKVSGIPPRDAKQMYVESMLRILRRF.SDRPQAAALIQELENFSGCVAQRVMDGSLAQVDSDESITDTDADDQQRLD AWSKVSGMPPRDAKQMYVESMLRILRRF.SDRPQAALIEELENFSGCVAQRVMDGSLAQVDSDESITDTOSDDQQRLD AWSKVSGLPPRDAKQMYVESMLRILRRF.SDRPQAASIIQELENFSGCVAQCVMDGSLAQVDSDESITDTOSDDQQRLD AWSKVSGLPPRDAKQMYVESMLRILRRF.SDRPQAASIIQELENFSGCVAQCVMDGSLAQVDSDESITDTGSDDQQRLD
HsATG37 RnAtg37 MmAtg37	145 144 144	<u>WxxI</u> GKAESSDSGAESEEEEAQEEVKGAEOSDNDKK.MMKKSADHKNLEVIVINGYDKDGFVODIONDIHASS GKAESSDSGAESEEEEAQEELKGAEOSGSDDKKMMTKSTD.KNLEIIVINGY.KDSFAOD.SDIHTDS GKAESSDSGAESEEEEAQEELKGAEOSGSDDKKTLKKSAD.KNLEIIVINGY.KGSFVODIOSDIHTDS
PpAtg37 PaAtg37 UhAtg37 SrAtg37	138 146 146 146	PTCLHQPPSGPSRQQPPPPQLPAHLAPLSRDTSVVDDP.ITTSSCNPPMINPSEQRHNSSRFINA PTCLHQPPSGPSRQQPPPPQLPAHLAPHPPSVTGTSTA.ATRGGGAASAISTQRTPLASESEQDS PTSLHQPPSGPSRAAQPHLPRHLAPTAPSITAPSITATSTA.ATRGGGVGDAASAISPGRTPLASESEQDS PTALHQQPSRAAQSNLPRHLAPNAPSVAGTSTA.ATRGGGVGDAASAISPGRTPLASESEQDS
HsATG37 RnAtg37 MmAtg37 PpAtg37 PaAtg37 UhAtg37 SrAtg37	213 209 211 186 210 213 208	SLNGRSTEEVKEIDENLGQ.TGKSAVCTHQDINDDHVEDVTGIQHLTSDSDSEVYCDSMEQFGQEESLDS SRSARRSEDKKFTDQSSQQ.TGNTVLCVHQDTNEDPGEDASGVHHLTSDSDSEVYCDSMEQFGQEE SRSTRSSEDEKEGESSQQ.TGNTVLCVHQDTNEDPGEDASGTHHLTSDSDSEVYCDSMEQFGQEE STAFRINSLSNYSNLNPTPFISSRRVQGSVTPRNVDFIKWQNDINNSINKLNHDUQLLANRRLQSS SDDDHLGSQPGPFRSVARHPTPHABPSTHSYRPQPRGSVSATEGYAR.GPPSRSNVPTSSVHEASTTURPRGPPSLQGG SEDDRLGSQPGPFRGASRHPAPHRESSVQSYRPQPRAGSISATEGYNR.RPPSRSQVSALAQYESSQGLRPRGPPSLQGG SNDDRLGSQPGPFRSAPRHSSHAPPSVQSYRSQPRAGSISATEGYNRGGPPSRSQVSTSAQYDNPQALRSRGPPSLQGG <u>YxxL</u>
HsATG37 RnAtg37 MmAtg37 PpAtg37 PaAtg37 UhAtg37 SrAtg37	282 274 276 253 289 292 288	ET SNNGPFQYYLGGHSSQPMENSCHREDIQVPPCNGNIGNMQVVAVEGKGEVKHGGEDGRNNSGABHREKRGGE YYLGGDPAQHLEGSGFCEDAQLSPGNGSIGKMQWRAVKGKGEVKHGGEDGRSSSGTBHREKRGGE ASDPLYSKRGSDLTHDDFVNDISSSSSNRFFARRNQPLVSKV YTRHTYAPQSTAASVAGSNYPRQPEPGHYQRSTYAASSVGGRSVGTRTGPAPYPPPSNAGSSHOPPRPEMEL YSRPQYAPKSTAASVAGSNYPRQGEPGDYQRSTYAASSVGGRSVGTRTGPPFYPPRPPSNAGTAREQPRAEMEM YSRPQYAPKSTAASVAGSNYPRQPEYQRSTYAASSVGGRSVGTRTGPPSLYPPPPSNAGTAREQPRAEMEM
HsATG37 RnAtg37 MmAtg37 PpAtg37 PaAtg37 UhAtg37 SrAtg37	356 339 341 296 364 367 360	TDEFSNVRRGR.GHRMQHLSEGTKGRQVGSGGDGERWGSDRGSRGSINEQIALVLMRIQEDMQNVIQRLQKLETL SEDISGVRGRVGHRMPHLSEGTKGRQVGSGGDGERWGSDRGSRGSINEQIALVLIRIQEDMQNVIQRLHKLETL SEDFSSVRGRVGNRIPHLSEGFKGRQVGSGGDGERWGSDRGSRGSLNEQIALVLIRIQEDMQNVIQRLHKLETL LIGTISLLKLIKTVIKHV
HsATG37 RnAtg37 MmAtg37 PpAtg37 PaAtg37 UhAtg37 SrAtg37	430 414 416 348 438 440 435	TALQAKSSTSTLOTAPQPTSQRPSWWPFEMSPGVLTFAIIWPFIAQWLVYLYYQRRRKL TASQAKLSWOTSNQPSSQRPSWWPFEMSPGALAFAIIWPFIAQWLVYLYYQRRRKL TASQAKLSLOTSNQPSSQRPAWWPFEMSPGALAFAIIWPFIAQWLVHLYYQRRRKL HHSELESNSSIKGDSNGGRLTIVLPFINGKDFFQENSLIGKLLKVFHDYVDHVSRTRLIKRN APSFLAEGG.GATNRSGAAFHLLTSFVRILVALVNLGARLALDIISLALVSSFLYAFKRVTGRGDPLLMLRLLKRL APSFLAQGGAWDNGSKTAYHLFTWPVRILVALVNLGARLALDIISLVLVSSFLYAFKRTGRGDALLMIRILKRL APSFLAQGGGGGSGDRSNAAINLLTSFVRLVALVNLSARLALDUTSLVLVSSFLYAFKRITGRGDPLLMIRLLKRL
HsATG37 RnAtg37 MmAtg37 PpAtg37 PaAtg37 UhAtg37 SrAtg37	490 471 473 410 514 516 513	N N QALLRRAPASAKQLVAEAV. QAILRRSPR.AKQFVDQATA QAVLRRSPA.AKQLVAEASV

Figure S3. **Multiple sequence alignment of Atg37 orthologues.** Identical residues are indicated with black boxes and similar residues with gray boxes. HsATG37, Homo sapiens ACBD5 isoform 2 (NP_001035938.1); RnAtg37, *Rattus norvegicus* Acbd5 (NP_001071103.1); MmAtg37, *Mus musculus* Acbd5 (AAH61484.2); PpAtg37, *Komagataella* (formerly *Pichia*) *pastoris* GS115 Atg37 (CAY71862.1); PaAtg37, *Pseudozyma antarctica* T-34 Atg37(GAC77071.1); UhAtg37, *Ustilago hordei* Atg37 (CCF51006.1); SrAtg37, *Sporisorium reilianum* SRZ2 Atg37 (CBQ71469.1). The potential AIMs of PpAtg37 are underlined below the aligned sequences.

Figure S4. **ATG37/ACBD5 localizes to peroxisomes in human cells.** (A) ACBD5 is localized to peroxisomes in HeLa cells. Cells expressed peroxisomally targeted mRFP-SKL and were immunostained with antibody to ACBD5. Secondary antibody alone did not show any signal in the respective channel (right). Bar, 10 µm. (B) siRNAs efficiently down-regulate ATG16L1 and ACBD5 in HeLa cells. Cells were transfected with nontargeting control siRNA or siRNA targeting ACBD5 or ATG16L1 for 3 d and immunostained with antibodies to ACBD5 (left) or ATG16L1 (right). DAPI stained nuclei. Bar, 10 µm.

Figure S5. **Role of ATG37/ACBD5 in pexophagy.** (A) Knockdown of ACBD5 increases the peroxisome abundance in HeLa cells. Immunostaining with antibodies to peroxisomal catalase is shown. Bar, 10 µm. (B) Quantitation of data in A. Catalase intensity of cells transfected with control siRNA was set as 1. Relative catalase intensity is shown as the mean + SD (error bars; $n \ge 250$; *, P < 0.05 vs. control siRNA). (C) Knockdown of ACBD5 increases the peroxisome abundance in primary fibroblasts of a patient with a PBD caused by a missense mutation in the *PEX16* gene. Bar, 10 µm. (D) Quantitation of data in C. mRFP-SKL intensity of cells transfected with control siRNA was set as 1. Relative mRFP-SKL intensity is shown as the mean + SD (error bars; $n \ge 20$; *, P < 0.05 vs. control siRNA).

Table S1. P. pastoris strains and plasmids used in this study

Name	Description	Genotype and plasmid	Source
PDG2d	∆atg28	GS200 Δatg28::ScARG4	Stasyk et al., 2006
PPY12h	ŴŢ	arg4 his4	Gould et al., 1992
PPY12m	WT	arg4 his4	Gould et al., 1992
R8	∆atg11	GS115 atg11-2::Zeocin [®]	Kim et al., 2001
SEW1	Δpex3	PPY12h Δpex3::ARG4	Wiemer et al., 1996
SKF13	Δpex19	PPY12h $\Delta pex19::Zeocin^{R}$	Snyder et al., 1999
SJCF51	ŴT	PPY12m his4::pTW51 (P _{AOX1} -GFP-SKL, HIS4)	Nazarko et al., 2009
SJCF320	WT	SJCF247 his4::pJCF208 (P _{ATG8} -GFP-ATG8, HIS4)	Farré et al., 2008
SJCF376	∆atg30	SJCF332 his4::pJCF208 (PATG8-GFP-ATG8, HIS4)	Farré et al., 2008
SJCF547	ŴŢ	PPY12m his4::pJCF208 (PATGR-GFP-ATG8, HIS4)	Farré et al., 2008
SJCF925	Δatg8	PPY12h Δatg8::Geneticin [®] (pJCF182)	Nazarko et al., 2009
SJCF936	∆atg30	PPY12h $\Delta atg30::Zeocin^{R}$ (pJCF56)	Nazarko et al., 2009
SJCF1821	Δata30	SJCF959 P_{AOX1} ::pPICz-BFP-SKL (P_{AOX1} -BFP-SKL, Zeocin [®])	Farré et al., 2013
SMD1163	pep4 prb1	pep4 prb1 his4	Tuttle and Dunn, 1995
SMY154	WT	PPY12h PEX3::pMY126 (Ppex3-PEX3-TAP, Zeocin [®])	This paper
SMY431	$\Delta pmp47$	PPY12m $\Delta pmp47$::Zeocin [®] (pMY243)	This paper
SMY432	Δata37	PPY12m \Deltata37::Zeocin [®] (pMY92)	This paper
SMY433	WT	SMY432 his4::pMY244 (PGAPDHEGFP-ATG37, HIS4)	This paper
SMY437	Aata37	SMY432 his4:: $TW51$ (Pacet-GEP-SKI HIS4)	This paper
SMY448	WT	PPY12m his4pMY244 (PcappleGEP-ATG37 HIS4)	This paper
SRRM197	AvptZ	PPY12h AvptZ [.] : Geneticin [®]	Maniithaya et al. 2010
STN29	Δata 1	R12 his4::pTW51 (P_{AOX1} -GFP-SKL HIS4)	Nazarko et al., 2007
STN48	Δata37	SMY432 PAOVICE RDM054 (PAOVI-BFP-SKL, Hygromycin ^R)	This paper
STN50	Δata37	STN48 his4::pICF208 (PATCe-GFP-ATG8, HIS4)	This paper
STN52	Δata37	SMY432 his4::pICF208 (PATGe-GFP-ATG8, HIS4)	This paper
STN66	Aata l	R12 hisduple208 (Parce-GEP-ATG8 HISA)	Nazarko et al. 2009
STN95	Δata30 Δata37	SICE936 Λ ata 37. Geneticin [®] (pMY92Kan)	This paper
STN96	Δata37	PPY12h Aata37Geneticin [®] (pMY92Kan)	This paper
STN117	WT	PPY12h bisd. DCE392 (Pare GEP-ATG26 HISA)	This paper
STN119	Aata8	SICE925 his4: DICE392 (PCARDLE GEP-ATG26 HIS4)	This paper
STN126	WT	SICF936 his4::pICF213 (PATG20-ATG30-GFP, HIS4)	This paper
STN128	WT	STN96 his4::pMY323 (PATG37-ATG37-GFP, HIS4)	This paper
STN130	WT	SICE936 his4::DICE45 IP_ARD:ATG30-GEP_HIS4)	This paper
STN132	WT	STN96 his4::pTYN4 (PCARDH-ATG37-GFP, HIS4)	This paper
STN139	WT	STN96 his4::pMY244 (PGAPDHEGEP-ATG37, HIS4)	This paper
STN148	Δata30	STN95 his4::pTYN4 (PGAPDHEATG37-GFP, HIS4)	This paper
STN149	Δata37	STN95 his4::pICF45 (PGARDERATG30-GFP, HIS4)	This paper
STN155	Δata30	STN95 his4::pMY323 (PATG37-ATG37-GFP, HIS4)	This paper
STN161	WT	STN128 P_{AOX} ··· PRDM054 (P_{AOX} -BEP-SKI Hydromycin ^R)	This paper
STN163	Δata30	STN155 P_{AOX1} ::pRDM054 (P_{AOX1} -BFP-SKL, Hvaromycin ^R)	This paper
STN199	WT	STN126 Pacy1::pRDM054 (Pacy1-BFP-SKL, Hyaromycin [®])	This paper
STN201	Δata37	STN95 his4::pICF213 (PATG30-GFP, HIS4)	This paper
STN203	Δata37	STN201 P_{AOX1} ::pRDM054 (P_{AOX1} -BFP-SKL. Hyaromycin [®])	This paper
STN215	WT	STN96 his4::pMY320 (PATG37-ATG37-2xHA, HIS4)	This paper
STN245	WT	PPY12h ATG37::pMY328 (PATG37-ATG37-GFP, ARG4)	This paper
STN249	Apex19	SKF13 ATG37::pMY328 (PATG37-ATG37-GFP, ARG4)	This paper
STN255	WT	STN245 his4::pKSN183 (Pperg=PEX3-mRFP1, HIS4)	This paper
STN260	Apex19	STN249 his4::pKSN183 (Pperg=PEX3-mRFP1, HIS4)	This paper
STN286	ŴT	STN288 PACY1::pRDM054 (PACY1-BFP-SKL, Hydromycin [®])	This paper
STN288	WT	STN128 arg4::pJCF477 (PATGR-mCHERRY-ATG8, ARG4)	This paper
STN292	acbs	STN96 his4::pTYN21 (PATG37-ATG37 ^{Y40F, K44A} -2×HA, HIS4)	This paper
STN294	Atg37 ^{∆TMD}	STN96 his4::pTYN24 (PATG37-ATG37 ²²⁹⁰⁻³³⁹ -GFP, HIS4)	This paper
STN300	acbs	STN96 his4::pTYN22 (PATG37-ATG37 ^{Y40F, K44A} -GFP, HIS4)	This paper
STN352	acbs	STN300 P_{AOX1} ::pRDM054 (P_{AOX1} -BFP-SKL. Hvaromvcin ^R)	This paper
STN356	Atg37 ^{∆TMD}	STN294 P _{AOX1} ::pRDM054 (P _{AOX1} -BFP-SKL, Hygromycin [®])	This paper
STN363	WT	STN215 arg4::pJCF477 (P _{ATGR} -mCHERRY-ATG8. ARG4)	This paper
STN556	WT	STN96 his4::pKO8 (PATG37-GFP-ATG37- HIS4)	This paper
STN563	$\Delta atg30$	STN95 his4::pMY320 (PATG37-ATG37-2xHA, HIS4)	This paper

Table S1. P. pastoris strains and plasmids used in this study (Continued)

Name	Description	Genotype and plasmid	Source
STN566	Δatg30 Δypt7	SJCF1736 ATG37::pMY328 (P _{ATG37} -ATG37-GFP, ARG4)	This paper
STN567	$\Delta ypt7$	SJCF1809 ATG37::pMY328 (P _{ATG37} -ATG37-GFP, ARG4)	This paper
STN605	$\Delta atg37$	STN96 his4::pJCF392 (P _{GAPDH} GFP-ATG26, HIS4)	This paper
STN612	WT	STN117 P _{AOX1} :::pRDM054 (P _{AOX1} -BFP-SKL, Hygromycin ^R)	This paper
STN614	Δ atg8	STN119 P _{AOX1} ::pRDM054 (P _{AOX1} -BFP-SKL, Hygromycin ^R)	This paper
STN616	$\Delta atg37$	STN605 P _{AOX1} :::pRDM054 (P _{AOX1} -BFP-SKL, Hygromycin ^R)	This paper
STN618	WT	PPY12h P _{AOX1} ::pPICz-BFP-SKL (P _{AOX1} -BFP-SKL, Zeocin ^R)	This paper
STN620	Δ atg37	STN96 P _{AOX1} :::pPICz-BFP-SKL (P _{AOX1} -BFP-SKL, Zeocin ^R)	This paper
STN622	$\Delta ypt7$	SRRM197 arg4::pJCF340 PATG11-2xFLAG-ATG11, ARG4)	This paper
STN630	Δypt7	STN622 his4::pJCF343 (P _{GAPDH} ATG30-TAP, HIS4)	This paper
STN632	$\Delta ypt7$	STN630 his4::pTYN57 (P _{GAPDH} GFP-ATG17, Hygromycin ^R)	This paper
STN634	$\Delta ypt7$	STN622 his4::pTYN57 (P _{GAPDH} GFP-ATG17, Hygromycin ^R)	This paper
STN636	WT	STN618 arg4::pJCF291 PATG11-GFP-ATG11, ARG4)	This paper
STN639	Δ atg37	STN620 arg4::pJCF291 PATG11-GFP-ATG11, ARG4)	This paper
STN640	∆atg30	SJCF1821 arg4::pJCF291 P _{ATG11} -GFP-ATG11, ARG4)	This paper
STN641	Δ ypt7 Δ atg37	STN632 Δ <i>atg37</i> :: <i>Zeocin[®]</i> (pMY92) colony #2	This paper
STN642	$\Delta ypt7 \Delta atg37$	STN632 <i>\Deltatg37</i> :: <i>Zeocin[®]</i> (pMY92) colony #3	This paper

References

- Farré, J.C., R. Manjithaya, R.D. Mathewson, and S. Subramani. 2008. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell. 14:365–376. http:// dx.doi.org/10.1016/j.devcel.2007.12.011
- Farré, J.C., A. Burkenroad, S.F. Burnett, and S. Subramani. 2013. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 14:441–449. http://dx.doi.org/10.1038/embor.2013.40
- Gould, S.J., D. McCollum, A.P. Spong, J.A. Heyman, and S. Subramani. 1992. Development of the yeast *Pichia pastoris* as a model organism for a genetic and molecular analysis of peroxisome assembly. *Yeast*. 8:613–628. http://dx.doi.org/10.1002/yea.320080805
- Kim, J., Y. Kamada, P.E. Stromhaug, J. Guan, A. Hefner-Gravink, M. Baba, S.V. Scott, Y. Ohsumi, W.A. Dunn Jr., and D.J. Klionsky. 2001. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol. 153:381–396. http://dx.doi.org/10.1083/jcb.153.2.381
- Manjithaya, R., C. Anjard, W.F. Loomis, and S. Subramani. 2010. Unconventional secretion of *Pichia pastoris* Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 188:537–546. http://dx.doi.org/10.1083/jcb.200911149
- Nazarko, T.Y., A.S. Polupanov, R.R. Manjithaya, S. Subramani, and A.A. Sibirny. 2007. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. *Mol. Biol. Cell*. 18:106–118. http://dx.doi.org/10.1091/mbc.E06-06-0554
- Nazarko, T.Y., J.C. Farré, and S. Subramani. 2009. Peroxisome size provides insights into the function of autophagy-related proteins. *Mol. Biol. Cell.* 20:3828–3839. http://dx.doi.org/10.1091/mbc.E09-03-0221
- Snyder, W.B., K.N. Faber, T.J. Wenzel, A. Koller, G.H. Lüers, L. Rangell, G.A. Keller, and S. Subramani. 1999. Pex19p interacts with Pex3p and Pex10p and is essential for peroxisome biogenesis in *Pichia pastoris. Mol. Biol. Cell*. 10:1745–1761. http://dx.doi.org/10.1091/mbc.10.6.1745
- Stasyk, O.V., O.G. Stasyk, R.D. Mathewson, J.C. Farré, V.Y. Nazarko, O.S. Krasovska, S. Subramani, J.M. Cregg, and A.A. Sibirny. 2006. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast *Pichia pastoris*. Autophagy. 2:30–38.
- Tuttle, D.L., and W.A. Dunn Jr. 1995. Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J. Cell Sci. 108:25–35.
- Wiemer, E.A., G.H. Lüers, K.N. Faber, T. Wenzel, M. Veenhuis, and S. Subramani. 1996. Isolation and characterization of Pas2p, a peroxisomal membrane protein essential for peroxisome biogenesis in the methylotrophic yeast *Pichia pastoris. J. Biol. Chem.* 271:18973–18980. http://dx.doi.org/10.1074/jbc.271.31.18973