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ABSTRACT We consider a phase transition "loop," ob-
tained from a mean field type o approximate treatment of a
closed steady-state Ising system. Where is the cut (stable path)
across the loop located? The general procedure, in answering
this question, is to pass to an open version of the same system
and use the cut that appears automatically in this case (no loop
is possible in an open system) This is equivalent to finding the
point at which the two pbases have equal total probability in
the open system. It is shown here that this procedure, when
applied to a system of two-state enzyme molecules, is formally
equivalent to well-known thermodynamic methods (Maxwell's
theorem, etc.) These can be applied directly to the closed system
without considering the open system explicitly. However, for
enzyme molecules with more than two states, the "thermody-
namic" method generally fails and one must fall back on the
open system procedure mentioned above. Practical imple-
mentation of this procedure is not easy.

In earlier papers of this series (1, 2), the Bragg-Williams (BW)
or "mean field" approximation was introduced as one method
of treatment of the steady-state kinetics of a lattice of enzyme
molecules with nearest-neighbor interactions (i.e., a steady-state
Ising system). With strong enough attractive interactions, phase
transitions appear in the form of van der Waals "loops." The
question arises (just as at equilibrium): if the stable phase
transition path is followed, cutting across the loop, where is the
cut located? The answer is well known at equilibrium. We
discuss the steady-state situation here.
Our comments are limited to systems of the type mentioned

above, treated by any approximation that produces a loop.
Keizer (3) has recently discussed the same question but for a
different class of systems.
Review for a one-component equilibrium system
Certain features of this case, which have already been discussed
at some length (4), provide the general approach to the
steady-state problem as well. Hence a very brief summary is
called for. Consider a lattice gas ofM sites, N of which are oc-
cupied by molecules. There are attractive interactions between
the molecules, leading to a phase transition. If an approximation
of theBW or quasichemical (5) type is used on the closed system
(independent variables N, M, T), a loop is obtained, for ex-
ample, in a plot of 0 NIM against X = e;,/kT (5). However,
if the open version of the same system, to the same approxi-
mation, is treated (fluctuations inN are allowed; independent
variables A, M, T), the loop in 0 plotted against X is now missing
and a vertical (or almost vertical, ifM is large but finite) line
takes its place (4). The "open" vertical line cuts the "closed"
loop at just that X prescribed by Maxwell's equal area theorem
(applied to a plot of 0 against In X).

The probability that the open system containsN molecules
is proportional to R(N) Q(N, M, T)XN, where Q is the ca-
nonical partition function. Let P(N) be R(N) normalized. At
an "ordinary" point, P(N) has a single peak centered at N =
0(X)M for a given X. However, there are two peaks in P(N) at
or near a phase transition, atN = 01M and 02M, one peak cor-
responding to each phase (with 01 or 02). At the center of the
phase transition (with X located by the vertical line mentioned
above), 0 = (01 + 02)12 and the two peaks in P(N) necessarily
have the same area or total weight (4).

Thus, although it is not at all necessary at equilibrium, the
cut across the "closed" loop could be located on the X axis by
passing to the open system and noting where the vertical step
in the plot of 0 against X occurs. Alternatively, and completely
equivalently, one could note where the two peaks in P(N) have
the same area or weight. Exactly the same procedure (based on
passing from the closed to the open system) can be followed at
steady state. This procedure provides a general method, at least
in principle, for steady-state systems. This is noteworthy be-
cause, as we shall see, thermodynamic-like methods cannot be
applied to an arbitrary closed steady-state system-in fact, such
methods can be applied, in-general, only to a steady-state system
comprised of two-state molecules.

Steady-state system of two-state molecules
We show in this section that the treatment of any steady-state
system of two-state enzyme molecules, using an approximation
of the BW type, can be arranged to parallel the equilibrium
treatment of the same kind of system. Hence we find a Maxwell
theorem, etc.
We have a lattice system ofM interacting enzyme molecules,

whereM is very large. Each molecule has an unperturbed (i.e.,
no interactions) kinetic diagram (6) as shown in Fig. la. Each
molecule may be in state l or state 2; the system is therefore
"open" with respect to the number of molecules N in state 2.
In the general interaction problem (7), the open system has 2M
separate states that must be considered. The kinetic diagram
for the entire system is therefore extremely complicated.
However, in the BW approximation, all of the M!/NI(M - N)l
states with exactly N molecules in state 2 are equivalent and
hence can be grouped together. The kinetic diagram for the
complete system therefore simplifies tremendously: the di-
agram is linear, as shown in Fig. lb, with system states char-
acterized by the value of the single variable N. The circum-
stance that, in the BW approximation, the kinetic diagram for
the system is linear is the key point: the equilibrium-like
treatment below is practically an automatic consequence of this
feature.

In Fig. lb, aN-1 is the rate constant for the a transition 1
2 of any one of theM - N + 1 molecules in state 1 (whenN
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FIG. 1. (a) First-order rate constants and diagram for two-state

enzyme molecule in the absence of interactions. (b) Kinetic diagram
for a system ofM two-state molecules, according to the BW (mean
field) approximation. N is the number of molecules in state 2.

- 1 molecules are in state 2). The value of aN-1 is a. multiplied
by a factor that takes nearest neighbors into account, according
to the BW approximation (1, 2). Similar remarks apply to the
other three rate constants in Fig. lb.

If there are no interactions, aN- 1 = ao, etc., in Fig. lb. In this
case. Fig. lb does not represent an approximation. If we define
RN as proportional to the steady-state probability of system-state
N, with Ro 1, then the RN can be found seriatim (because of
the linear diagram):

RO= 1,R, =MxRO,R2= (M-1)xR1/2,etc., [1]

where x = (a0 + ,B3)/(#,o + a'). Thus we find (see also Eq. 6.53
of ref. 6 and Eq. 7.43 of ref. 8)

RN = M!XN/N!(M - N)! (O < N < M) [2]
In effect, because of the linear diagram, there is "detailed
balance" between successive states of the diagram. At equi-
librium, in lattice gas notation (5), x = qX, where q (=q2) is the
partition function of a single molecule in state 2 (with qi - 1).
That is (5),

RN = QNXN, QN = MlqN/N!(M - N)!, [3]
where QN is the canonical partition function.
With interactions included, as is well known (5), RN can still

be written as QNXN at equilibrium, either in an exact or in an
approximate treatment. However, at steady state, with inter-
actions, RN cannot, in an exact treatment, be put in the form
rNXN, as in Eq. 2. This follows because there is no detailed
balance, real or simulated, in the exact system diagram at an
arbitrary steady state, even with two-state enzyme molecules
(1,7).

In the BW approximation, however, with interactions in-
cluded, the linear diagram in Fig. lb does allow steady-state
RN of the form rNXN. To arrange this, we make the same
change of independent kinetic variables as in earlier papers
(2, 7): instead of i3o, a', ao, im' (Fig. la), we use 3od- 1, ao, x, F,
where

x = (aO + fo)/(l + a')
F = eX/kT = ao/afB

ao = ao( + a:) x F/(1 + a'F)

[4]
[5]
[milIU'
[7]

Here X is the thermodynamic force, and ao and (3, are both
proportional to x. Consequently, when we write R1/Ro, R2/R1,
etc., essentially as in Eq. 1, a factor x appears at each stage (each
aN-1 and fN- have factors a. and I3O, respectively, which in
turn have factors x). Thus, by virtue of a simulated "detailed
balance", we again obtain RN = rNXN, but here FN includes
not only M!/N!(M - N)!, as in Eq. 2, but also a factor involving
the intermolecular interactions of the model.
The final ingredient required, before proceeding to the main

argument, is the observation that, when M is very large, the
steady-state system we are considering here will have extensive

and intensive properties, just as an equilibrium system does.
Thus, for example, if we double the size of the system (M),
holding all kinetic and interaction parameters constant (these
are intensive variables), then all other extensive variables will
also double; for example, the total enzyme flux, In rN (see Eq.
2, for example), N, etc.
The method to be outlined below is critically dependent on

the definitions of (a) an intensive variable x that appears at each
stage R1/Ro, R2/R1, etc., and of (b) an extensive variable In rN
(N large) such that the unnormalized probability (Ro 1) RN
has the form rNXN.
The normalized probability P(N) (we discontinue the use of

subscript N in the remainder of this section) that the open BW
system has N molecules in state 2 is

P(N; x, M) = R(N; x, M)/S(x, M) [8]
R(N; x, M) = r(N, M)XN, S(x, M) = E R(N; x, M). [9]

N

Here, S is analogous to a grand partition function and r to a
canonical partition function (we are omitting the temperature
T from the notation). It follows from Eqs. 8 and 9 that

N = x(aln S/lX)M
or2/M = (N2 - K2)/M = xao/ax,

[10]

[11]

where 0 = NIM. The variance a2 is of order M; the peak in
P(N), for an "ordinary" point, occurring at, say, N = N* will
be extremely sharp ifM is very large. Therefore, we can replace
ln S by the logarithm of the maximum term in S (5).
To do this, we use

ln R = In F + Nln x

bIn R/1N = (bln= r/N)M + In x.

[12]
[13]

The value of N that satisfies Eq. 13 isN = N*. In the equations
below it is to be understood that N represents N*. In effect, we
thereby treat the open system as virtually closed, because of the
small fluctuations in N (5). In Eq. 12, we replace In R by In S
and use Eq. 13 to eliminate In x:

In S = lnr- N(lnFr/aN)M. [14]
We also have

dln F = (bln rlFN)M dN + (bln r/aM)NdM [15]
ln r = N(aln r/aN)M + M(aln r/aM)N, [16]

where Eq. 16 follows (Euler's theorem) because In r, N, and
M are extensive properties while the two derivatives are in-
tensive properties of the system. On comparing Eqs. 14 and 16,
we have

In S = Mb,4 = (ilnFr/aM)N. [17]
Here 4 is the analogue of an equilibrium pressure (in dimen-
sionless units).

Equations 14 and 15 can be rewritten as

[18]

[19]
In S = Mb = In F + Nlnx

dIn F =-In x dN + 4dM.

Thus we find
dIn S = d(M 4)) = 4dM + Ndln x

and also

d4l = 0 dln x, 'I(x) = 0)x')dln x',

[20]

[21]
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where 0 = NIM. Eq. 21 shows how to calculate 4P if 0(x) is
known [e.g., from the BW treatment of the closed system
(2)].
The above equations all have well-known thermodynamic

analogues but it should be noted particularly that thermody-
namics per se has not been used in the derivation.
We turn now to the situation at a phase transition. In the open

steady-state system, just as at equilibrium (4), P(N) will have
two sharp peaks (phases) centered at N1 = 01(x)M and N2 =
02(x)M. Suppose the two peaks have equal areas (total proba-
bilities) at x = xt. Then, at this x,

0 = NIM = (01 + 02)2. [22]
This is where the vertical step in 0(x) occurs. For x slightly
different from xt, one or the other peak will be very small (4)
(a metastable state, possibly followed in a hysteresis loop). For
an x at or near xt, let RI(x) and or1(x) be the largest R(N) and
the variance of the first peak, respectively, and let R2(x) and
oj(x) have the same meaning for the second peak. The condition
that the two peaks have equal areas (to locate xt) is equivalent
to, for Gaussian peaks,

R1(xt)a1(xt) = R2(xt )a2(xt) [23]
or, to terms of macroscopic order of magnitude,

In Si(xt) = In S2(xt) or In RI(xt) = In R2(xt). [24]
Here, S1 represents the sum in Eq. 9 over the first peak, etc.,
and the second of Eqs. 24 follows because In Ri is of orderM
while In uj is of order InM (this is, of course, also the justification
for the maximum term procedure in Eqs. 12-14).

Finally, we note that the equal peak area condition, In Si =
In S2, is the same as the condition 1 = 42, in view of Eq. 17.
Thus, if we have derived 0(x) for a closed BW system, we can
find 4(x) from Eq. 21 and then locate the phase transition at
x = xi by the condition (i = 4P. Although we have used the
mathematically more complicated open system to deduce this
procedure, we need not actually consider the open system in
the application of the method. It suffices to work with the
simpler closed system exclusively.

Maxwell's equal area theorem holds here if applied to a plot
of 0 against In x. This follows from Eq. 21:

r2
2- 1 = 0 0(x')dln x', [25]

where the integral is over the loop from 01,xt to 02,xt. Maxwell's
theorem is obviously equivalent to 4) = 1'2-
The above results exactly parallel those for an equilibrium

system. Unfortunately, the formal resemblance is limited to
two-state enzyme molecules.
Three-state enzyme molecules
As a simple example of a more complicated system, suppose we
have M three-state enzyme molecules (1, 9) in a lattice. The
diagram for a single unperturbed molecule is shown in Fig. 2a.
In the absence of interactions, the steady-state probabilities pi
for each of three states can easily be expressed in terms of the
six rate constants aq belonging to Fig. 2a (6). If we then define
X2 = P2/P1 and x3 = P3/P1, the generalization of Eq. 2, with
the same physical significance, is (ref. 6, Eq. 6.53)

RN2N3 = M!X2N2 X3N3/N2!N3!(M - N2- N3)! [26]

However, it is easy to see, from simple examples (M small), that
for the BW approximation of the system with interactions, it
is not possible in general to put RN2N3 in the form

RN2Ns = rN2N8 X2N2x3NS, [27]

1
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FIG. 2. (a) First-order rate constants and diagram for three-state

enzyme molecule in the absence of interactions. (b) Schematic kinetic
diagram for a system ofM three-state molecules, according to the BW
approximation. N2 is the number of molecules in state 2, etc.

with rN2N3 independent of x2 and X3. This is a consequence of
the absence of any sort of "detailed balance" in this case.

At equilibrium, for a two-component system (not based on
Fig. 2a), the right-hand side of Eq. 27 is QN2N32N2X3NS, in
conventional notation (5), whether there are interactions or not
and whether or not any approximation is used in handling the
interactions. Because the three-state steady-state BW system
does not follow this same pattern, equilibrium-like methods of
locating a phase transition are inapplicable in this case (unlike
the two-state steady-state situation above). This will generally
be true for arbitrary steady-state BW systems.
How, then, is the phase transition located, for example, in the

three-state BW case above? The only potentially exact method
we are aware of is to fall back on the basic property that, at a
transition point (X2t, X~t) in the open system, the total proba-
bilities of the two peaks in PN2N3 ("volumes" under the peaks,
in this case) must be equal. One is therefore obliged to use the
open BW system explicitly.
We mention two possible approaches to the implementation

of the above "equal peak volume" requirement, though we
have not actually used either one as yet.

At the outset, Fig. lb must be extended to two dimensions,
as shown schematically in Fig. 2b. This is the system diagram
for the three-state model in Fig. 2a when treated according to
the BW approximation. There are 3M system states altogether,
but they can be collected, in this approximation, according to
N2, N3 values. Because the limit of very largeM is of primary
interest, one approach would be to use the differential equation
in the continuous function P(N2,N3), derived from the differ-
ence equation in PN2N3. One would need, for arbitrary X2, X3,
the solution of the differential equation in the neighborhood
of the two Gaussian peaks and in the region between the peaks
(to establish their relative sizes). Incidentally, it is easy to locate
the position (N2,N3) of the peaks and of the minimum between
them [from the closed system treatment (1, 9)], for given X2,X3.
The problem is to find the relative peak sizes.
A second method would be to use an extremely long Monte

Carlo walk (10) on the diagram in Fig. 2b forM large but finite.
This walk would generate PN2N3 values (10). An alternative and
much more efficient procedure might be to start each of a very
large number of walks at the minimum (which is generally
extremely flat and low) between the two peaks and then record
the fraction of walkers "captured" by each of the two peaks
("capture" meaning first crossing of a perimeter around the
base of a peak).

An explicit two-state example
For the BW model already introduced in Fig. 1 and Eqs. 4-7,
the explicit expression for x(0), in a closed system, is (2)

Chemistry: Hill and Chen
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(1 + aF)0 (1 + a' yf-')
(1 + a')(I - 0)Y (1 + acFYf-') [28]

where

f=fa +fT,Y=ry2e
r = (Y12/Y11)Z, Y = (Y11Y22/Y122)z/2

yjt = e wgj/kT (lj = 1,2).

Here fa and fi are constant kinetic parameters (2, 9), z is the
number of nearest neighbors of a molecule in the lattice, and
wit is the interaction free energy between nearest neighbors in
states i and j. From Eqs. 21 and 28, after integrating by parts,
we find for 4A, expressed as a function of 0,

4t = -ln(l -0) - 02 ln y +Oln [0 + r'ft1(0)]

+ [H(0)/2(1- f)ln y], [29]
where

H(0) = ln (&F+ r130X1)7 [

1(o) = y2(1-f)e.
Usually the integral H must be evaluated numerically. Using
4' from Eq. 29, and Eq. 18,

In S = M4', (1/M)lnr =4'-Oln x. [31]

A number of examples of phase transitions (in the form of
loops), based on Eq. 28, have been presented elsewhere (2). In

several of these cases, as a check, we have located xt by: (a) use
of Eq. 29 and 4'1 = 4s2; (b) numerical integration of Eq. 25
(Maxwell's theorem); and (c) for the open system, explicit
step-by-step calculation of all the RN and PN (normalized)
based on Fig. lb, forM = 1000, 5000, or 10,000. Equality of
the two Gaussian peaks in PN was used to find xt. The three
methods agree, as expected. For example, in one case (y = 50
in figure 12 of ref. 2), xt = 1.6902 from 4Al = 4' (M = co), Xt =
1.6897 forM = 10,000 in method c, and xt = 1.6855 forM =
1000 in method c. Other properties were cross-checked (open
compared to closed), as well, such as 01, 02, Eq. 11 (for each
peak), and Eq. 23.

We are indebted to Dr. Joel Keizer for making available a preprint
of his paper (3) and for a number of very helpful discussions.
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