Pulsed EPR Spectroscopy of ³³S-Labeled Molybdopterin in Sulfite Oxidase

Eric L. Klein,^{1,3} Abdel Ali Belaidi,² Arnold M. Raitsimring,¹ Amanda C. Davis,¹ Tobias Krämer,³ Andrei V. Astashkin,¹ Frank Neese,³ Günter Schwarz,² John H. Enemark^{1*}

- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
- 2. Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany

*jenemark@email.arizona.edu Phone: 520 621-2245 Fax: 520 621-8065

Supporting Information

Orbital Analysis for the Energy-Minimized Mo(V) DFT Model

The frontier orbital energy diagram for the optimized structure of the SO active site model is depicted in Figure S1, showing the canonical Kohn-Sham orbitals. The orbital scheme is typical for a Mo(V) center with d¹ configuration. Spin polarization effects strongly stabilize the majority spin orbitals such that the singly-occupied MO 168 α is shifted below the highest occupied orbitals of mainly ligand character. As a result of strong intermixing between metal- and ligand-based orbitals, the d_{xy}-character (in the chosen coordinate system) is spread over orbitals 168 α and 169 α (~26% Mo character in each orbital, see Table S1). In the former, the d_{xy} orbital mixes with the out-of-plane p_z orbitals of the MPT S atoms, while the latter mixes d_{xy} orbital character with the S^V orbital of cysteine.^{1,2} Similar interactions have been found for the DFT model [MoO(SCH₃)(dithiolene)OH]⁻ (dithiolene = SCHCHS),³ for example, which features the same inner-sphere coordination environment as SO. The empty β -spin d_{xy} orbital (172 β) corresponds to the lowest unoccupied MO (LUMO) and is of predominantly Mo character (77%). Above the d_{xz} orbital lie the remaining unoccupied metal d-orbitals, having d_{yz} (173 β), d_{xz} (174 β), d_x²- γ^2 (176 β), and d_z² (177 β) character, respectively.

Additionally, four corresponding empty α -spin d-orbitals can be readily identified within the vacant α -spin manifold.

A chemically more intuitive picture can be obtained by visualizing the electronic structure in terms of localized molecular orbitals (LMOs). The Pipek-Mezey population-localization protocol yields 10 molecular orbitals of mainly d-character localized on the Mo center, shown in Figure S2. Note that the MO diagram focuses entirely on the metal-centered orbital manifold, omitting ligand-orbitals. Furthermore, the energy splitting is represented in a schematic way since all information about orbital energies is lost in the process. All 10 orbitals of predominantly metal d-character can be identified in the diagram, and from this the d_{xy} character of the singly occupied orbital becomes much more recognizable.

Figure S1. Canonical Kohn-Sham molecular orbital diagram (frontier orbital region) for the computational SO active site model (B3LYP/TZVP/ZORA). HOMO = Highest Molecular Orbital; LUMO = Lowest Unoccupied Molecular Orbital.

Figure S2. Pipek-Mezey localized molecular orbitals of the Mo *d*-orbital manifold of the computational SO active site model. Note that the diagram is a schematic representation of the ligand field splitting.

Figure S3. Overlay of the crystallographic atom coordinates (from pdb 1SOX) and the minimumenergy geometry optimized Mo(V) structure, including added H atoms (red and green structures, respectively). Atoms marked by asterisks were constrained to their relative crystallographic coordinate positions. S_1 and S_2 correspond to index numbers 30 and 32, respectively, in each of the DFT models (see below).

Serie of	Center					
Spin-α	Mo(36)	S(4)	S(30)	S(32)	O(16)	O(37)
168α	26.4%	14.0%	28.0%	12.7%	4.3%	2.9%
169α	26.8%	38.6%	10.6%	4.3%	2.2%	2.1%
173α	59.0%	8.2%	8.6%	0.0%	0.0%	19.1%
174α	61.5%	0.6%	0.8%	9.7%	4.5%	18.5%
175α	41.5%	11.8%	8.6%	3.8%	4.2%	5.1%
177α	34.1%	0.8%	31.0%	5.6%	3.5%	8.9%
	Contor					
Spin-β	Mo(36)	S(4)	S(30)	S(32)	O(16)	O(37)
172β	76.7%	6.4%	2.4%	2.6%	2.2%	0.5%
173β	62.1%	7.4%	7.5%	0.0%	0.0%	17.5%
174β	64.2%	0.6%	0.8%	9.0%	4.2%	16.4%
176β	36.9%	9.9%	7.5%	4.7%	4.1%	2.0%
177β	48.3%	1.8%	4.6%	5.9%	4.0%	13.0%

Table S1. Compositions of selected canonical KS orbitals in the frontier orbital region.^a

^aThe numbers in parentheses correspond to the atom coordinates of the DFT model (see below).

ORCA Input Files and Optimized Model Coordinates

Input used for geometry optimization calculations:

```
! BP86 TZVP RI TZV/J OPT GRID4 NormalPrint VDW10
%qeom
Constraints
\{C 0 C\}
\{C \in C\}
{ C 7 C }
{ C 8 C }
{ C 18 C }
# additional angle constraints for the models with dihedral angles defined at
# 120, 150, 180, 210, and 240 degrees. Atoms 68 and 69 are dummy atoms located
# between the dithiolene sulfurs and adjacent carbon atoms, as described within
# the Materials and Methods section.
{ A 36 68 69 C }
{ A 30 68 32 C }
{ A 29 69 31 C }
end
end
* xyz -1 2
<atom coordinates>
*
%cosmo
epsilon 4
end
```

Input used for all properties calculations:

```
! B3LYP TZVP ZORA COSMO TightSCF NPA GRID4 LargePrint VDW10
* xyz -1 2
<atom coordinates>
%cosmo
epsilon 4
end
%rel
         SOCType 3
         SOCFlags 1, 3, 3, 0
         method ZORA
         modelpot 1,1,1,1
         picturechange true
         modeldens rhoZORA
end
%eprnmr
         gtensor 1
         Nuclei = all Mo {aiso, adip, aorb, rho, fgrad}
         Nuclei = 38 {aiso, adip, aorb, rho, fgrad}
         Nuclei = 17 {aiso, adip, aorb, rho, fgrad}
Nuclei = 68 {aiso, adip, aorb, rho, fgrad}
Nuclei = 53 {aiso, adip, aorb, rho, fgrad}
         Nuclei = 31 {aiso, adip, aorb, rho, fgrad}
         Nuclei = 33 {aiso, adip, aorb, rho, fgrad}
         Nuclei = 5 {aiso, adip, aorb, rho, fgrad}
```

end

Optimized atom coordinates:

Dihedral Angle = "relaxed"

С	-1.6330	2.8589	1.6059
0	-0.5316 -0.4775	3.5803	2.3827
C	-1.5257	3.0956	0.0964
S	-0.0422	2.3194	-0.7186
N	0.3581	2.7822	3.0276
C	5.5613	-1.6784	5.8455
С	4.1389	-2.2351	5.5830
С	3.8534	-2.2162	4.0966
C	3.3564 4 2123	-1.05//	3.4803
C	3.2330	-0.9571	2.0941
С	4.0886	-3.2111	1.8729
С	3.6029	-2.0363	1.2709
0	1.8811	0.0000	-0.7847
N	-4.1717	-7.7399	-1.1233
С	-3.9495	-8.4585	-2.2020
N N	-4.5112 -3.1297	-9./163	-2.3188
С	-2.3905	-6.8255	-3.1749
0	-1.6836	-6.5077	-4.1504
N	-1.8619	-4.8941	-1.7725
C	-3.4228	-4.4100	0.1244
Ν	-3.7829	-5.7926	0.0959
С	-2.5858	-6.0802	-1.9688
C	-3.5109 -1.7091	-6.5438 -2.7561	-1.0346 -0.5839
S	0.0039	-2.3053	-0.7575
С	-2.7037	-1.8339	-0.5774
с С	-4.1730	-2.2162	-0.8040 -0.4754
0	-4.3677	-3.6378	-0.6458
С	-5.0660	-1.5336	-1.5078
0	0.0000	0.0000	1.7379
Η	-2.5885	3.2917	1.9463
H	-1.6545	1.7849	1.8302
п Н	-2.4213 -1.4396	4.1712	-0.4114 -0.1128
Н	0.3276	1.7798	2.8221
Н	1.1975	4.2360	4.2804
н Н	5.6463	-1.6767	6.9203 5.4738
Н	4.0656	-3.2618	5.9758
Н	3.3971	-1.6253	6.1226
H H	3.0657	-0.2051 -4.2102	4.1008
Н	2.8392	-0.0480	1.6393
Η	4.3600	-4.0566	1.2375
H u	2.9515	-1.2034	-0.3755
H	-4.7140	-10.0448	-3.2603
Η	-2.9684	-8.6205	-4.0315
H u	-1.8823	-4.2570	-2.5695
п Н	-1.2997	-4.0586	1.1720
Η	-4.5968	-6.0861	0.6316

Η	-4.5242	-1.9411	0.5424
Η	-5.0410	-0.4435	-1.3793
Η	-4.7282	-1.7761	-2.5251
Η	-6.1018	-1.8790	-1.3821
Η	1.8484	2.5811	4.4835
Η	2.3345	3.5772	3.0769
Η	6.3158	-2.2864	5.3247
Η	2.2653	0.8785	-0.9614

Dihedral Angle = 120

ССОСЯИССССССССООИСИИСОИССИССЯСЯСОСМОНННННННН	$\begin{array}{c} -1.6921\\ -0.6236\\ -0.5315\\ -1.4101\\ 0.1136\\ 0.1915\\ 1.3138\\ 4.9720\\ 3.5441\\ 3.3589\\ 2.9682\\ 3.7334\\ 2.9690\\ 3.7277\\ 3.3569\\ 3.3982\\ 1.9076\\ -4.0184\\ -4.3008\\ -4.0184\\ -4.3008\\ -3.1189\\ -3.8976\\ -3.1189\\ -2.8302\\ -1.9434\\ -1.6261\\ -2.7064\\ -2.9689\\ -3.1189\\ -2.8302\\ -1.9434\\ -1.6261\\ -2.7064\\ -2.9689\\ -3.1189\\ -2.8302\\ -1.9434\\ -1.6261\\ -2.7064\\ -2.5052\\ -2.3398\\ -3.8009\\ -3.2544\\ -1.4978\\ 0.0046\\ -2.5052\\ -2.3398\\ -3.8009\\ -3.9243\\ -5.0447\\ 0.0000\\ 0.0000\\ -2.6428\\ -1.8099\\ -2.2666\\ -1.2433\\ 0.1746\\ 0.9950\\ 5.1553\\ 5.1249\\ 3.3952\end{array}$	2.9107 3.5406 4.7702 3.1671 2.3213 2.6664 3.1384 -2.1356 -2.6083 -2.5089 -1.3000 -3.5596 -1.1284 -3.4116 -2.1854 -2.0744 0.0000 -7.1352 -8.0929 -9.2354 -8.0628 -7.0149 -7.0372 -4.9640 -3.8876 -3.7802 -5.0774 -6.0071 -6.0991 -2.5620 -2.2902 -1.6421 -0.0541 -1.8971 -3.2604 -1.6284 0.0000 3.4051 1.8337 2.8442 4.2417 1.6837 4.0057 -2.1893 -1.0965 -3.6464	$\begin{array}{c} 1.4729\\ 2.3737\\ 2.4983\\ -0.0107\\ -0.6629\\ 3.0308\\ 3.8337\\ 5.9945\\ 5.6206\\ 4.1223\\ 3.5273\\ 3.2684\\ 2.1445\\ 1.8809\\ 1.2977\\ -0.0522\\ -0.7338\\ 1.9856\\ 1.1401\\ 1.5703\\ -0.1671\\ -0.7371\\ -1.9429\\ -0.1781\\ 0.7643\\ 1.8611\\ 2.4234\\ 0.2209\\ 1.5173\\ 0.0505\\ -0.8693\\ 0.1012\\ -0.6996\\ 0.8490\\ 1.3032\\ 0.0050\\ -0.8693\\ 0.1012\\ -0.6996\\ 0.8490\\ 1.3032\\ 0.0050\\ 0.0000\\ 1.7335\\ 1.7320\\ 1.6547\\ -0.6181\\ -0.1750\\ 2.7348\\ 4.4265\\ 7.0807\\ 5.6680\\ 5.9609\\ \end{array}$
H	0.9950	4.0057	4.4265
H	5.1553	-2.1893	7.0807
H	5.1249	-1.0965	5.6680
H	3.3952	-3.6464	5.9609
H	2.7985	-1.9869	6.1430
H	2.6609	-0.4637	4.1625
H	4.0386	-4.5175	3.7015
H H	2.6542	-0.1818 -4.2370	1.7067

97 93 44
93 44
44
0 4
94
97
89
48
73
89
39
22
18
41
46
52

Dihedral Angle = 150

C C O C S Z C C C C C C C C C C S Z C Z C C C C	-1.5758	2.9381	1.5716
	-0.4472	3.5790	2.3847
	-0.3243	4.8096	2.4572
	-1.4111	3.1734	0.0680
	0.0527	2.3239	-0.7017
	0.3801	2.7130	3.0384
	1.5298	3.1948	3.7964
	5.3233	-2.0450	5.8012
	3.8842	-2.5300	5.4918
	3.6288	-2.4462	4.0040
	3.1689	-1.2569	3.4203
	3.9937	-3.4933	3.1413
	3.0888	-1.1009	2.0379
	3.9101	-3.3608	1.7554
	3.4653	-2.1549	1.1823
	3.4239	-2.0623	-0.1696
	1.8892	0.0000	-0.7719
	-4.4523	-7.5467	-1.2104
	-4.3391	-8.1895	-2.3450
	-5.0484	-9.3797	-2.5591
N	-3.4959	-7.7764	-3.3406
C	-2.6458	-6.6360	-3.2460
O	-1.9397	-6.3038	-4.2090
N	-1.9134	-4.9012	-1.7076
C	-1.9970	-4.2088	-0.4197
C	-3.3964	-4.3892	0.2073
N	-3.7792	-5.7750	0.1815
C	-2.7323	-5.9815	-1.9688
C	-3.6516	-6.4484	-1.0342
C	-1.6985	-2.7338	-0.5638
S	0.0101	-2.2981	-0.7956
C	-2.6930	-1.8096	-0.5397
S	-2.3307	-0.0663	-0.6626
C	-4.1549	-2.1937	-0.3872
O	-4.3653	-3.6166	-0.5171
C	-5.0690	-1.5460	-1 4240
Mo	0.0000	0.0000	0.0000
O	0.0000	0.0000	1.7343
H	-2.5046	3.4370	1.8950
H	-1.6806	1.8648	1.7809
H	-2.3112	2.8405	-0.4677
H	-1.2609	4.2457	-0.1244
H	0.3279	1.7213	2.7857
Н	1.2391	4.0918	4.3586

H	H 5.5521	-2.0885	6.8792
H	I 5.4554	-1.0076	5.4602
H	H 3.7581	-3.5659	5.8480
H	H 3.1575	-1.9099	6.0415
H	1 2.8679	-0.4248	4.0640
F	4.3529	-4.4357	3.5668
H	1 2.7193	-0.1703	1.6084
F	4.1781	-4.1832	1.0900
F	1 2.9087	-1.2347	-0.4330
F	-5.7177	-9.5232	-1.8039
F	1 - 5.5063	-9.4391	-3.4690
F	1 -3.3748	-8.3227	-4.1919
F	1 - 1.5680	-4.3808	-2.5102
F	$1 - 1 \cdot 2672$	-4.6483	0.2849
F	1 -3.3606	-4.0494	1,2600
F	-4 6446	-5 9975	0 6706
F	4 - 4.4819	-1.8854	0.6307
F	1 - 5.0489	-0.4525	-1.3296
F	4 - 4.7330	-1.8198	-2.4334
F	1 - 6.0980	-1,9036	-1.2780
F	1.8564	2.4097	4,4906
F	1 2.3717	3.4647	3.1367
F	1 6.0571	-2.6654	5.2655
F	$\frac{1}{1}$ 2 2571	0 8768	-0 9818
1		0.0700	3.3010

Dihedral Angle = 180

С	-1.6844	2.8868	1.6207
0	-0.5518	4.7845	2.6067
Ĉ	-1.4663	3.1430	0.1249
S	0.0589	2.3568	-0.5859
Ν	0.2860	2.7115	3.0786
С	1.4190	3.2345	3.8361
C	5.3443	-1.89/2	5.8668
C	3 6560	-2.4194 -2.3685	4 0759
Č	3.1854	-1.1951	3.4694
С	4.0135	-3.4346	3.2340
С	3.0862	-1.0728	2.0847
С	3.9110	-3.3359	1.8466
0	3.4526	-2.1467	_0 1040
0	1.8957	0.0000	-0.7402
N	-3.6754	-6.7564	-4.5861
С	-3.0410	-7.0798	-5.6845
Ν	-3.5345	-8.0906	-6.5232
N	-1.848/	-6.5056	-6.03/5
0	-1.1023	-5.0094	-5.2005
N	-1.3500	-4.2534	-3.1919
С	-1.9276	-4.0403	-1.8717
С	-3.4527	-4.2819	-1.9314
Ν	-3.7444	-5.5318	-2.5791
С	-1.8/43	-5.1926	-4.04/5
C	-3.0012	-2.6403	-3.7709 -1.3654
S	-0.0350	-2.3189	-0.7682
С	-2.6315	-1.6881	-1.3898
S	-2.3166	-0.0636	-0.7401
С	-4.0225	-1.9520	-1.9439
U C	-4.09/3	-3.2151 _0 0012	-2.6412
\cup	-4.49/3	-0.9012	-2.9430

Мс	0.0000	0.0000	0.0000
0	0.0000	0.0000	1.7351
Η	-2.6383	3.3540	1.9148
Η	-1.7592	1.8084	1.8182
Η	-2.3274	2.7790	-0.4544
Η	-1.3524	4.2223	-0.0524
Η	0.2876	1.7286	2.7882
Η	1.0749	4.0443	4.4930
Η	5.5723	-1.9188	6.9454
Η	5.4540	-0.8626	5.5096
Η	3.8143	-3.4516	5.9378
Η	3.1761	-1.8077	6.1045
Η	2.8891	-0.3488	4.0965
Η	4.3817	-4.3654	3.6769
Η	2.7058	-0.1537	1.6408
Η	4.1750	-4.1730	1.1982
Η	2.8855	-1.2711	-0.3942
Н	-4.4571	-8.3818	-6.2024
Н	-3.5577	-7.8389	-7.5121
Н	-1.3311	-6.8291	-6.8531
Н	-0.5069	-3./569	-3.463/
Н	-1.5123	-4./612	-1.1386
H	-3.839/	-4.3225	-0.8946
Н	-4./2/5	-5./9//	-2.58/6
Н	-4./321	-1.98/2	-1.0866
H	-4.5/08	0.0830	-2.4636
п	-3./812	-0.8343	-3.1130
H II	-5.4820	-1.1090	-3.3381
п	1.0494	2.4243	4.430/
п Ц	6 0923	2.0440	J.⊥/Z4 5 3/11
п u	2 3016	-2.5092	0 7607
п	2.3040	0.004/	-0.7007

Dihedral Angle = 210

С	-1.6302	2.9796	1.4550
С	-0.5407	3.6350	2.3111
0	-0.4553	4.8666	2.4111
С	-1.3627	3.1713	-0.0436
S	0.1681	2.3238	-0.6594
Ν	0.3106	2.7809	2.9507
С	1.4660	3.2844	3.6868
С	5.1528	-1.9228	5.9581
С	3.7071	-2.3963	5.6616
С	3.4625	-2.3618	4.1700
С	3.0801	-1.1709	3.5354
С	3.7688	-3.4622	3.3525
С	3.0192	-1.0645	2.1475
С	3.7010	-3.3799	1.9617
С	3.3334	-2.1733	1.3361
0	3.3051	-2.1381	-0.0179
0	1.9219	0.0000	-0.6925
Ν	-2.0696	-5.0380	-6.7831
С	-1.0667	-5.1430	-7.6175
Ν	-1.2034	-5.8893	-8.7948
Ν	0.1629	-4.6007	-7.3641
С	0.4769	-3.8501	-6.1912
0	1.6133	-3.3808	-6.0392
Ν	-0.5164	-2.9776	-4.1347
С	-1.4305	-3.2979	-3.0384
С	-2.8616	-3.4196	-3.5996
Ν	-2.8920	-4.3301	-4.7089
С	-0.6349	-3.7389	-5.2893

С	-1.8368	-4.3623	-5.6120
С	-1.4060	-2.2251	-1.9798
S	-0.0518	-2.2984	-0.8455
C	-2.3648	-1.2626	-1.9332
C	-3.4971	-1.1903	-2.9458
Õ	-3.3425	-2.1397	-4.0259
С	-3.6153	0.1736	-3.6229
Mo	0.0000	0.0000	0.0000
0	0.0000	0.0000	1.7285
H U	-2.5/38	3.4889	1.7091
п Н	-2.2117	2.7930	-0.6315
Н	-1.2227	4.2407	-0.2588
Н	0.2855	1.7914	2.6859
Η	1.1627	4.1522	4.2868
H	5.3783	-1.9309	7.0376
н н	3.3022 3.5625	-0.9006 -3.4165	5.58U5 6 0536
Н	2.9887	-1.7446	6.1854
Η	2.8276	-0.2968	4.1432
Η	4.0694	-4.4063	3.8177
Η	2.7095	-0.1309	1.6797
H U	3.9248	-4.2421	1.3313
H	-2.1788	-6.1507	-8.9307
Н	-0.8218	-5.4403	-9.6274
Η	0.9557	-4.7754	-7.9797
H	0.4373	-2.7408	-3.8605
н н	-1.1/63 -3.5179	-4.2704 -3.8133	-2.5658 -2.7982
Н	-3.8038	-4.5320	-5.1119
Н	-4.4474	-1.4190	-2.4127
Η	-3.8456	0.9507	-2.8834
Η	-2.6631	0.4220	-4.1105
Н Н	-4.411/	U.1394 2 /915	-4.3803
H	2.2736	3.6059	3,0075
Н	5.8777	-2.5735	5.4469
Н	2.3214	0.8878	-0.7572

Dihedral Angle = 240

С	-1.6237	3.0005	1.4545
С	-0.5544	3.6764	2.3183
0	-0.4983	4.9091	2.4251
С	-1.3355	3.1805	-0.0428
S	0.2057	2.3341	-0.6311
Ν	0.3166	2.8389	2.9547
С	1.4643	3.3624	3.6892
С	5.3092	-1.7672	5.8730
С	3.8783	-2.2793	5.5694
С	3.6283	-2.2543	4.0792
С	3.1911	-1.0820	3.4452
С	3.9679	-3.3453	3.2621
С	3.1042	-0.9858	2.0579
С	3.8758	-3.2734	1.8723
С	3.4474	-2.0867	1.2467
0	3.3891	-2.0597	-0.1048
0	1.8932	0.0000	-0.7813
Ν	0.5941	-2.4700	-7.6904
С	1.8430	-2.3317	-8.0573
Ν	2.2229	-2.5865	-9.3819

Ν	2.8364	-2.0020	-7.1771	Н	5.4333	-0.7410	5.4970
С	2.6238	-1.7556	-5.7868	Н	3.7612	-3.3029	5.9624
0	3.5749	-1.4414	-5.0595	Н	3.1412	-1.6485	6.0929
Ν	0.8609	-1.6614	-4.0943	Н	2.9136	-0.2154	4.0530
С	-0.3783	-2.2815	-3.6361	Н	4.3120	-4.2746	3.7272
С	-1.4697	-2.0592	-4.7008	Н	2.7553	-0.0665	1.5886
Ν	-1.0099	-2.5053	-5.9845	Н	4.1250	-4.1293	1.2427
С	1.2498	-1.9202	-5.3984	Н	2.8819	-1.2373	-0.4082
С	0.3122	-2.2876	-6.3602	Н	1.3951	-2.7170	-9.9617
С	-0.8191	-1.6807	-2.3254	Н	2.8461	-1.8858	-9.7836
S	-0.0018	-2.3071	-0.8852	Н	3.8137	-1.9877	-7.4645
С	-1.7720	-0.7023	-2.2959	Н	1.6029	-1.5558	-3.4012
S	-2.3481	-0.0129	-0.7531	Н	-0.2639	-3.3775	-3.4963
С	-2.4149	-0.1568	-3.5617	Н	-2.3637	-2.6500	-4.4172
0	-1.8164	-0.6712	-4.7731	Н	-1.6788	-2.4658	-6.7498
С	-2.3116	1.3639	-3.6739	Н	-3.4878	-0.4558	-3.5445
Mo	o 0.0000 c	0.0000	0.0000	Н	-2.8922	1.8456	-2.8775
0	0.0000	0.0000	1.7219	Н	-1.2622	1.6708	-3.5706
Η	-2.5770	3.5005	1.6896	Н	-2.6955	1.6842	-4.6530
Η	-1.7288	1.9329	1.6944	Н	1.8240	2.5971	4.3894
Η	-2.1749	2.7883	-0.6350	Н	2.2869	3.6459	3.0111
Η	-1.1991	4.2486	-0.2673	Н	6.0541	-2.3976	5.3650
Η	0.3111	1.8512	2.6869	Н	2.2722	0.8854	-0.9393
Η	1.1551	4.2580	4.2430				
Η	5.5290	-1.7704	6.9536				

References

(1) McNaughton, R. L.; Mondal, S.; Nemykin, V. N.; Basu, P.; Kirk, M. L. *Inorg. Chem.* **2005**, *44*, 8216.

(2) McNaughton, R. L.; Tipton, A. A.; Rubie, N. D.; Conry, R. R.; Kirk, M. L. *Inorg. Chem.* **2000**, *39*, 5697.

(3) Hernandez-Marin, E.; Seth, M.; Ziegler, T. Inorg. Chem. 2009, 48, 2880.