Supplementary Materials for Bayesian Inference for the Causal Effect of Mediation

M. J. Daniels ‡ J. Roy ‡ C. Kim‡J.W. Hogan ∮and M.G. Perri ¶

Step 3. of sampling algorithm: Sampling $(F_{M_1,1}, F_{M_1,0}, F_{M_0,1}, F_{M_0,0}, \pi_{1,M_1}, \pi_{0,M_0})$

1. Generate L sets (M_0, M_1) . This requires sampling from $f_{M_z,M_{z'}}(m_z, m_{z'}) = f_{M_z}(m_z|m_{z'}) f_{M_{z'}}(m_{z'})$. Note that in the TOURS trial, M_z is actually discrete (taking integer values 0 to 350), so we compute $f_{M_z}(m_z)$ as follows,

$$
f_{M_z}(m_z) = F_{M_z}(m_z + 0.5) - F_{M_z}(m_z - 0.5); z = 0, 1
$$

where $F_{M_z} = F_{M_z,1} \times \pi_{1,M_1} + F_{M_z,0} \times (1 - \pi_{1,M_1}).$

We sample $M_{z'}$ using $F_{M_{z'}}(M_{z'}) \sim Unif(0, 1)$. Then, given $M_{z'}$, we obtain M_z using the conditional CDF

$$
F_{M_z}(m_z|m_{z'}) = \sum_{t=0}^{m_z} f_{M_z}(t|m_{z'})
$$

=
$$
\frac{\sum_{t=0}^{m_z} f_{M_z,M_{z'}}(t,m_{z'})}{f_{M_{z'}}(m_{z'})}
$$

=
$$
\frac{F_{M_z,M_{z'}}(m_z+0.5,m_{z'}+0.5)-F_{M_z,M_{z'}}(m_z+0.5,m_{z'}-0.5)}{F_{M_{z'}}(m_{z'}+0.5)-F_{M_{z'}}(m_{z'}-0.5)}
$$

using the fact $F_{M_z}(M_z|m_{z'}) \sim Unif(0,1)$.

[∗]Department of Statistics,University of Florida, Gainesville, FL 32611

[†]Department of Biostatistics, University of Pennsylvania, Philadelphia, PA

[‡]Department of Statistics,University of Florida, Gainesville, FL 32611

[§]Department of Biostatistics, Brown University, Providence, RI

[¶]Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32611

The densities $f_{M_z,M_{z'}}(m_z, m_{z'})$ can be computed in the same manner with Assumption 4.

2. Compute $f_{1,M_0}(y)$ via Monte Carlo integration using the L sets (M_0, M_1) as follows

$$
f_{1,M_0}(y) = \int f_{1,M_0}(y|m_0, m_1) f_{M_0,M_1}(m_0, m_1) dm_0 dm_1
$$

=
$$
\frac{1}{C(\chi, \epsilon)} \int \exp\{\text{sgn}(d) \log \chi y I(|d| \ge \epsilon)\} f_{1,M_1}(y|m_0, m_1) f_{M_0,M_1}(m_0, m_1) dm_0 dm_1(\mathbf{A} 2)
$$

=
$$
\frac{1}{C(\chi, \epsilon)} \int \exp\{\text{sgn}(d) \log \chi y I(|d| \ge \epsilon)\} f_{1,M_1}(y|m_0) f_{M_0,M_1}(m_0, m_1) dm_0 dm_1(\mathbf{A} 3),
$$

where 'A' corresponds to 'Assumption' and $C(\chi, \epsilon)$ denotes a normalizing constant which can be obtained as

$$
C(\chi,\epsilon) = \sum_{y=0}^{1} \int \exp\{\text{sgn}(d) \log \chi y I(|d| \geq \epsilon)\} f_{1,M_1}(y|m_0) f_{M_0,M_1}(m_0,m_1) dm_0 dm_1.
$$

To compute $f_{1,M_1}(y|m_0)$,

$$
f_{1,M_1}(y|m_0) = \frac{\pi_{1,M_1}^y (1 - \pi_{1,M_1})^{1-y} f_{M_1,Y_1}(M_1 = m_0|Y_{1,M_1} = y)}{f_{M_1}(M_1 = m_0)},
$$

where

$$
f_{M_1,Y_1}(M_1 = m_0|Y_{1,M_1} = y) = F_{M_1,y}(m_0 + 0.5) - F_{M_1,y}(m_0 - 0.5)
$$

and

$$
f_{M_1}(M_1 = m_0) = f_{M_1,Y_1}(M_1 = m_0|Y_{1,M_1} = 1) \times \pi_{1,M_1} + f_{M_1,Y_1}(M_1 = m_0|Y_{1,M_1} = 0) \times (1 - \pi_{1,M_1}).
$$

3. Compute the direct and indirect effects using $\pi_{1,M_0} - \pi_{0,M_0}$ and $\pi_{1,M_1} - \pi_{1,M_0}$, where $\pi_{1,M_0} =$ $f_{1,M_0}(1)$.

Implementation of Dirichlet process priors for the TOURS data in WinBUGS (Step 2 of the sampling algorithm in Section 3)

We use the following construction of the Dirichlet process parameters for implementation in Win-BUGS, i−1

$$
\gamma_i \sim \text{Beta}(1, K_z), \quad \pi_i = \gamma_i \prod_{l=1}^{i-1} (1 - \gamma_l),
$$

$$
\theta_i \sim W_z \times \text{Beta}_{[0,350]}(\alpha_{1z}, \beta_{1z}) + (1 - W_z) \times \text{Beta}_{[0,350]}(\alpha_{2z}, \beta_{2z}),
$$

$$
G_z = \sum_{i=1}^{M} \pi_i \delta_{\theta_i} \text{ and } f_{M_z,y}(m_z|Y_{z,M_z} = y) \sim G_z
$$

where the precision parameter K_z has a uniform prior, $DiscUnif[1, 20]$.

Since the mediator takes values in [0,350], we specify

$$
\lambda_i = Q(\theta_i)
$$
 and $G_z = \sum_{i=1}^M \pi_i \delta_{\lambda_i}$

where function $Q : (0, 350) \rightarrow (-0.5, 350 + 0.5)$.

We then specify

$$
f_{M_z,y}(m_z|Y_{z,M_z}=y) \sim Poisson(\lambda_S),
$$

where $S \sim \text{categorical}(\pi_1, \pi_2, \cdots, \pi_K)$.

Comparison of posterior variances with and without Assumption 5

a) Without Assumption 5

First note that

$$
E(Y_{1,M_1}Y_{1,M_0}) = \int p(Y_{11} = 1, Y_{10} = 1 | m_0, m_1) f(m_0, m_1) dm_0 dm_1,
$$

where $p(Y_{11} = 1, Y_{10} = 1 | m_0, m_1) = p(Y_{10} = 1 | Y_{11} = 1, m_0, m_1) p(Y_{11} = 1 | m_0, m_1)$.

Now, assume $p(Y_{11} = 1|m_0, m_1) > 0$ and a non-negative correlation between Y_{11} and Y_{10} given m_0 and m_1 . Then the correlation between Y_{11} and Y_{10} conditional on (M_1, M_0) , θ , is

$$
\theta = \frac{E(Y_{10}Y_{11}|m_0, m_1) - E(Y_{10}|m_0, m_1)E(Y_{11}|m_0, m_1)}{\sqrt{p(Y_{10} = 1|m_0, m_1)(1 - p(Y_{10} = 1|m_0, m_1))}\sqrt{p(Y_{11} = 1|m_0, m_1)(1 - p(Y_{11} = 1|m_0, m_1))}}
$$
\n
$$
= \frac{p(Y_{10} = 1, Y_{11} = 1|m_0, m_1) - p(Y_{10} = 1|m_0, m_1)p(Y_{11} = 1|m_0, m_1)}{\sqrt{p(Y_{10} = 1|m_0, m_1)(1 - p(Y_{10} = 1|m_0, m_1))}\sqrt{p(Y_{11} = 1|m_0, m_1)(1 - p(Y_{11} = 1|m_0, m_1))}}
$$
\n
$$
\geq 0
$$

Note that

$$
p(Y_{10} = 1, Y_{11} = 1 | m_0, m_1) = p(Y_{10} = 1 | m_0, m_1) p(Y_{11} = 1 | m_0, m_1) + \theta \times s.d. (Y_{10}) s.d. (Y_{11}),
$$

where $s.d. (Y_{10}) = \sqrt{p(Y_{10} = 1 | m_0, m_1) (1 - p(Y_{10} = 1 | m_0, m_1))}$ and
 $s.d. (Y_{11}) = \sqrt{p(Y_{11} = 1 | m_0, m_1) (1 - p(Y_{11} = 1 | m_0, m_1))}$.

This can be re-expressed as

$$
p(Y_{10} = 1, Y_{11} = 1 | m_0, m_1)
$$

= $\exp\{sgn(d) \log \chi I(|d| \ge \epsilon)\} p(Y_{11} = 1 | M_1 = m_0) p(Y_{11} = 1 | M_1 = m_1) + \theta \times s.d. (Y_{10}) s.d. (Y_{11})$

by Assumption 2 and 3.

Using these results, the variance of the NIE without assumption 5 is

$$
\begin{split} \text{Var}(NIE) &= E(Y_{1,M_1}^2) - 2E(Y_{1,M_1}Y_{1,M_0}) + E(Y_{1,M_0}^2) - \{E(Y_{1,M_1}) - E(Y_{1,M_0})\}^2 \\ &= E(Y_{1,M_1}^2) + E(Y_{1,M_0}^2) - \{E(Y_{1,M_1}) - E(Y_{1,M_0})\}^2 - C1, \end{split} \tag{1}
$$

where $C1 = 2 \int \exp\{sgn(d) \log \chi I(|d| \ge \epsilon)\} p(Y_{11} = 1 | M_1 = m_0) p(Y_{11} = 1 | M_1 = m_1) f(m_0, m_1) dm_0 dm_1$

+2
$$
\int \theta \times s.d. (Y_{10})s.d. (Y_{11})f(m_0, m_1)dm_0 dm_1.
$$

b) Under Assumption 5

Note that

$$
E(Y_{1,M_1}Y_{1,M_0}) = \int p(Y_{11} = 1, Y_{10} = 1 | m_0, m_1) f(m_0, m_1) dm_0 dm_1,
$$

where

$$
p(Y_{11} = 1, Y_{10} = 1 | m_0, m_1) = p(Y_{10} = 1 | m_0, m_1) p(Y_{11} = 1 | m_0, m_1)
$$

= $\exp\{sgn(d) \log \chi I(|d| \ge \epsilon)\} p(Y_{11} = 1 | M_1 = m_0) p(Y_{11} = 1 | M_1 = m_1)$

since $\theta = 0$.

Using this result, the variance of the NIE with assumption 5 is

$$
\begin{split} \text{Var}(NIE_w) &= E(Y_{1,M_1}^2) - 2E(Y_{1,M_1}Y_{1,M_0}) + E(Y_{1,M_0}^2) - \{E(Y_{1,M_1}) - E(Y_{1,M_0})\}^2 \\ &= E(Y_{1,M_1}^2) + E(Y_{1,M_0}^2) - \{E(Y_{1,M_1}) - E(Y_{1,M_0})\}^2 - C2. \end{split} \tag{2}
$$

where $C2 = 2 \int \exp\{sgn(d) \log \chi I(|d| \ge \epsilon)\} p(Y_{11} = 1 | M_1 = m_0) p(Y_{11} = 1 | M_1 = m_1) f(m_0, m_1) dm_0 dm_1$

c) Comparison of Var(NIE) with and without Assumption 5

Comparing (2) and (1), the difference is C1 - C2,

$$
C1 = 2 \int \exp\{sgn(d) \log \chi I(|d| \ge \epsilon)\} p(Y_{11} = 1 | M_1 = m_0) p(Y_{11} = 1 | M_1 = m_1) f(m_0, m_1) dm_0 dm_1
$$

+2\theta \int s.d.(Y_{10}) s.d.(Y_{11}) f(m_0, m_1) dm_0 dm_1

$$
\ge 2 \int \exp\{sgn(d) \log \chi I(|d| \ge \epsilon)\} p(Y_{11} = 1 | M_1 = m_0) p(Y_{11} = 1 | M_1 = m_1) f(m_0, m_1) dm_0 dm_1
$$

= C2

which is non-negative. Thus, variance of NIE without Assumption 5 has a smaller variance;

$$
Var(NIE) < Var(NIE_w),
$$

where $Var(NIE)$ denotes the variance of NIE with Assumption 5 and $Var(NIE_w)$ denotes the variance of NIE without Assumption 5.

The difference in the variances, A, is given as

$$
A = 2 \int \theta \times s.d. (Y_{10})s.d. (Y_{11})f(m_0, m_1)dm_0 dm_1,
$$

where θ is bounded as below (since binary responses),

$$
\theta = \frac{E(Y_{10}Y_{11}|m_0, m_1) - E(Y_{10}|m_0, m_1)E(Y_{11}|m_0, m_1)}{s.d.(Y_{10})s.d.(Y_{11})}
$$
\n
$$
\leq \frac{\sqrt{E(Y_{10}^2|m_0, m_1)E(Y_{11}^2|m_0, m_1)} - E(Y_{10}|m_0, m_1)E(Y_{11}|m_0, m_1)}{s.d.(Y_{10})s.d.(Y_{11})}
$$
 Cauchy-Schwarz inequality\n
$$
= \frac{\sqrt{p(Y_{10} = 1|m_0, m_1)p(Y_{11} = 1|m_0, m_1)} - p(Y_{10} = 1|m_0, m_1)p(Y_{11} = 1|m_0, m_1)}{s.d.(Y_{10})s.d.(Y_{11})}
$$
\n
$$
= \frac{\sqrt{\exp\{sgn(d)\log \chi I(|d| \ge \epsilon)\}p(Y_{11} = 1|M_1 = m_0)p(Y_{11} = 1|M_1 = m_1)}}{s.d.(Y_{10})s.d.(Y_{11})}
$$
\n
$$
= \frac{\exp\{sgn(d)\log \chi I(|d| \ge \epsilon)\}p(Y_{11} = 1|M_1 = m_0)p(Y_{11} = 1|M_1 = m_1)}{s.d.(Y_{10})s.d.(Y_{11})},
$$

where the last equality is from Assumption 2 and 3.

Thus, the difference in the variances, A is bounded by

$$
A \le 2\int (\sqrt{p^*} - p^*) f(m_0, m_1) dm_0 dm_1,
$$

where $p^* = \exp\{sgn(d) \log \chi I(|d| \ge \epsilon)\} p(Y_{11} = 1 | M_1 = m_0) p(Y_{11} = 1 | M_1 = m_1).$

		$\chi=2$					
		$\epsilon = 50$		$\epsilon = 75$		$\epsilon = 100$	
		NIE	s.d.	NIE	s.d.	NIE	s.d.
$\beta_2=0$	Our Approach	0.012	(0.041)	0.008	(0.037)	0.005	(0.041)
	Truth	0.012	(0.041)	0.008	(0.037)	0.005	(0.041)
$\beta_2 = 1.28$	Our Approach	0.007	(0.039)	0.003	(0.042)	0.004	(0.039)
	Truth	0.006	(0.039)	0.001	(0.043)	0.002	(0.039)
$\beta_2 = 2.56$	Our Approach	0.008	(0.038)	0.008	(0.036)	-0.001	(0.046)
	Truth	0.014	(0.034)	-0.016	(0.036)	0.008	(0.042)
$\beta_2 = 5.12$	Our Approach	-0.005	(0.041)	-0.010	(0.041)	-0.014	(0.038)
	Truth	0.025	(0.031)	0.026	(0.028)	0.019	(0.027)

Table 1: Simulations to assess sensitivity of estimate of NIE to violations in Assumption 3: n=120