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Step 3. of sampling algorithm: Sampling (FM1,1, FM1,0, FM0,1, FM0,0, π1,M1 , π0,M0)

1. GenerateL sets (M0,M1). This requires sampling from fMz ,Mz′
(mz,mz′) = fMz(mz|mz′)fMz′

(mz′).

Note that in the TOURS trial, Mz is actually discrete (taking integer values 0 to 350), so we

compute fMz(mz) as follows,

fMz(mz) = FMz(mz + 0.5)− FMz(mz − 0.5); z = 0, 1

where FMz = FMz ,1 × π1,M1 + FMz ,0 × (1− π1,M1).

We sample Mz′ using FMz′
(Mz′) ∼ Unif(0, 1). Then, given Mz′ , we obtain Mz using the

conditional CDF

FMz(mz|mz′) =
mz∑
t=0

fMz(t|mz′)

=

∑mz

t=0 fMz ,Mz′
(t,mz′)

fMz′
(mz′)

=
FMz ,Mz′

(mz + 0.5,mz′ + 0.5)− FMz ,Mz′
(mz + 0.5,mz′ − 0.5)

FMz′
(mz′ + 0.5)− FMz′

(mz′ − 0.5)

using the fact FMz(Mz|mz′) ∼ Unif(0, 1).
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The densities fMz ,Mz′
(mz,mz′) can be computed in the same manner with Assumption 4.

2. Compute f1,M0(y) via Monte Carlo integration using the L sets (M0,M1) as follows

f1,M0(y) =

∫
f1,M0(y|m0,m1)fM0,M1(m0,m1)dm0dm1

=
1

C(χ, ε)

∫
exp{sgn(d) logχyI(|d| ≥ ε)}f1,M1(y|m0,m1) fM0,M1(m0,m1) dm0dm1(A 2)

=
1

C(χ, ε)

∫
exp{sgn(d) logχyI(|d| ≥ ε)}f1,M1(y|m0) fM0,M1(m0,m1) dm0dm1(A 3),

where ’A’ corresponds to ’Assumption’ and C(χ, ε) denotes a normalizing constant which

can be obtained as

C(χ, ε) =
1∑
y=0

∫
exp{sgn(d) logχyI(|d| ≥ ε)}f1,M1(y|m0) fM0,M1(m0,m1) dm0dm1.

To compute f1,M1(y|m0),

f1,M1(y|m0) =
πy1,M1

(1− π1,M1)
1−yfM1,Y1(M1 = m0|Y1,M1 = y)

fM1(M1 = m0)
,

where

fM1,Y1(M1 = m0|Y1,M1 = y) = FM1,y(m0 + 0.5)− FM1,y(m0 − 0.5)

and

fM1(M1 = m0) = fM1,Y1(M1 = m0|Y1,M1 = 1)×π1,M1+fM1,Y1(M1 = m0|Y1,M1 = 0)×(1−π1,M1).

3. Compute the direct and indirect effects using π1,M0−π0,M0 and π1,M1−π1,M0 , where π1,M0 =

f1,M0(1).

Implementation of Dirichlet process priors for the TOURS data in WinBUGS (Step 2 of the

sampling algorithm in Section 3)

We use the following construction of the Dirichlet process parameters for implementation in Win-

BUGS,

γi ∼ Beta(1, Kz), πi = γi

i−1∏
l=1

(1− γl),
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θi ∼ Wz × Beta[0,350](α1z, β1z) + (1−Wz)× Beta[0,350](α2z, β2z),

Gz =
M∑
i=1

πiδθi and fMz ,y(mz|Yz,Mz = y) ∼ Gz

where the precision parameter Kz has a uniform prior, DiscUnif [1, 20].

Since the mediator takes values in [0,350], we specify

λi = Q(θi) and Gz =
M∑
i=1

πiδλi

where function Q : (0, 350)→ (−0.5, 350 + 0.5).

We then specify

fMz ,y(mz|Yz,Mz = y) ∼ Poisson(λS),

where S ∼ categorical(π1, π2, · · · , πK).

Comparison of posterior variances with and without Assumption 5

a) Without Assumption 5

First note that

E(Y1,M1Y1,M0) =

∫
p(Y11 = 1, Y10 = 1|m0,m1)f(m0,m1)dm0dm1,

where p(Y11 = 1, Y10 = 1|m0,m1) = p(Y10 = 1|Y11 = 1,m0,m1)p(Y11 = 1|m0,m1).

Now, assume p(Y11 = 1|m0,m1) > 0 and a non-negative correlation between Y11 and Y10

given m0 and m1. Then the correlation between Y11 and Y10 conditional on (M1,M0), θ, is

θ =
E(Y10Y11|m0,m1)− E(Y10|m0,m1)E(Y11|m0,m1)√

p(Y10 = 1|m0,m1)(1− p(Y10 = 1|m0,m1))
√
p(Y11 = 1|m0,m1)(1− p(Y11 = 1|m0,m1))

=
p(Y10 = 1, Y11 = 1|m0,m1)− p(Y10 = 1|m0,m1)p(Y11 = 1|m0,m1)√

p(Y10 = 1|m0,m1)(1− p(Y10 = 1|m0,m1))
√
p(Y11 = 1|m0,m1)(1− p(Y11 = 1|m0,m1))

≥ 0
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Note that

p(Y10 = 1, Y11 = 1|m0,m1) = p(Y10 = 1|m0,m1)p(Y11 = 1|m0,m1) + θ × s.d.(Y10)s.d.(Y11),

where s.d.(Y10) =
√
p(Y10 = 1|m0,m1)(1− p(Y10 = 1|m0,m1)) and

s.d.(Y11) =
√
p(Y11 = 1|m0,m1)(1− p(Y11 = 1|m0,m1)).

This can be re-expressed as

p(Y10 = 1, Y11 = 1|m0,m1)

= exp{sgn(d) logχI(|d| ≥ ε)}p(Y11 = 1|M1 = m0)p(Y11 = 1|M1 = m1) + θ × s.d.(Y10)s.d.(Y11)

by Assumption 2 and 3.

Using these results, the variance of the NIE without assumption 5 is

Var(NIE) = E(Y 2
1,M1

)− 2E(Y1,M1Y1,M0) + E(Y 2
1,M0

)− {E(Y1,M1)− E(Y1,M0)}2

= E(Y 2
1,M1

) + E(Y 2
1,M0

)− {E(Y1,M1)− E(Y1,M0)}2 − C1, (1)

whereC1 = 2
∫

exp{sgn(d) logχI(|d| ≥ ε)}p(Y11 = 1|M1 = m0)p(Y11 = 1|M1 = m1)f(m0,m1)dm0dm1

+2
∫
θ × s.d.(Y10)s.d.(Y11)f(m0,m1)dm0dm1.

b) Under Assumption 5

Note that

E(Y1,M1Y1,M0) =

∫
p(Y11 = 1, Y10 = 1|m0,m1)f(m0,m1)dm0dm1,

where

p(Y11 = 1, Y10 = 1|m0,m1) = p(Y10 = 1|m0,m1)p(Y11 = 1|m0,m1)

= exp{sgn(d) logχI(|d| ≥ ε)}p(Y11 = 1|M1 = m0)p(Y11 = 1|M1 = m1)
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since θ = 0.

Using this result, the variance of the NIE with assumption 5 is

Var(NIEw) = E(Y 2
1,M1

)− 2E(Y1,M1Y1,M0) + E(Y 2
1,M0

)− {E(Y1,M1)− E(Y1,M0)}2

= E(Y 2
1,M1

) + E(Y 2
1,M0

)− {E(Y1,M1)− E(Y1,M0)}2 − C2. (2)

whereC2 = 2
∫

exp{sgn(d) logχI(|d| ≥ ε)}p(Y11 = 1|M1 = m0)p(Y11 = 1|M1 = m1)f(m0,m1)dm0dm1

c) Comparison of Var(NIE) with and without Assumption 5

Comparing (2) and (1), the difference is C1 - C2,

C1 = 2

∫
exp{sgn(d) logχI(|d| ≥ ε)}p(Y11 = 1|M1 = m0)p(Y11 = 1|M1 = m1)f(m0,m1)dm0dm1

+2θ

∫
s.d.(Y10)s.d.(Y11)f(m0,m1)dm0dm1

≥ 2

∫
exp{sgn(d) logχI(|d| ≥ ε)}p(Y11 = 1|M1 = m0)p(Y11 = 1|M1 = m1)f(m0,m1)dm0dm1

= C2

which is non-negative. Thus, variance of NIE without Assumption 5 has a smaller variance;

V ar(NIE) < V ar(NIEw),

where V ar(NIE) denotes the variance of NIE with Assumption 5 and V ar(NIEw) denotes the

variance of NIE without Assumption 5.

The difference in the variances, A, is given as

A = 2

∫
θ × s.d.(Y10)s.d.(Y11)f(m0,m1)dm0dm1,
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where θ is bounded as below (since binary responses),

θ =
E(Y10Y11|m0,m1)− E(Y10|m0,m1)E(Y11|m0,m1)

s.d.(Y10)s.d.(Y11)

≤
√
E(Y 2

10|m0,m1)E(Y 2
11|m0,m1)− E(Y10|m0,m1)E(Y11|m0,m1)

s.d.(Y10)s.d.(Y11)
Cauchy-Schwarz inequality

=

√
p(Y10 = 1|m0,m1)p(Y11 = 1|m0,m1)− p(Y10 = 1|m0,m1)p(Y11 = 1|m0,m1)

s.d.(Y10)s.d.(Y11)

=

√
exp{sgn(d) logχI(|d| ≥ ε)}p(Y11 = 1|M1 = m0)p(Y11 = 1|M1 = m1)

s.d.(Y10)s.d.(Y11)

−exp{sgn(d) logχI(|d| ≥ ε)}p(Y11 = 1|M1 = m0)p(Y11 = 1|M1 = m1)

s.d.(Y10)s.d.(Y11)
,

where the last equality is from Assumption 2 and 3.

Thus, the difference in the variances, A is bounded by

A ≤ 2

∫
(
√
p∗ − p∗)f(m0,m1)dm0dm1,

where p∗ = exp{sgn(d) logχI(|d| ≥ ε)}p(Y11 = 1|M1 = m0)p(Y11 = 1|M1 = m1).
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χ = 1
ε = 50 ε = 75 ε = 100

NIE s.d. NIE s.d. NIE s.d.

β2 = 0
Our Approach 0.024 (0.036) 0.033 (0.040) 0.038 (0.039)

Truth 0.024 (0.036) 0.033 (0.040) 0.038 (0.039)

β2 = 1.28
Our Approach 0.004 (0.044) -0.0008 (0.045) 0.004 (0.041)

Truth 0.001 (0.043) -0.004 (0.045) 0.001 (0.041)

β2 = 2.56
Our Approach -0.017 (0.042) -0.017 (0.033) -0.028 (0.040)

Truth 0.003 (0.038) 0.006 (0.031) -0.006 (0.038)

β2 = 5.12
Our Approach -0.059 (0.037) -0.065 (0.035) -0.063 (0.033)

Truth 0.002 (0.027) -0.001 (0.028) 0.0007 (0.025)

χ = 1.15
ε = 50 ε = 75 ε = 100

NIE s.d. NIE s.d. NIE s.d.

β2 = 0
Our Approach 0.014 (0.037) 0.022 (0.048) 0.018 (0.040)

Truth 0.014 (0.037) 0.022 (0.048) 0.018 (0.040)

β2 = 1.28
Our Approach -0.0002 (0.038) 0.001 (0.045) -0.0001 (0.042)

Truth -0.002 (0.038) -0.001 (0.046) -0.003 (0.041)

β2 = 2.56
Our Approach -0.016 (0.039) -0.018 (0.039) -0.010 (0.037)

Truth 0.003 (0.036) 0.002 (0.036) 0.008 (0.036)

β2 = 5.12
Our Approach -0.051 (0.039) -0.049 (0.032) -0.059 (0.037)

Truth 0.009 (0.029) 0.006 (0.026) 0.003 (0.028)

χ = 1.3
ε = 50 ε = 75 ε = 100

NIE s.d. NIE s.d. NIE s.d.

β2 = 0
Our Approach 0.021 (0.038) 0.025 (0.038) 0.019 (0.041)

Truth 0.021 (0.038) 0.025 (0.038) 0.019 (0.041)

β2 = 1.28
Our Approach 0.004 (0.038) 0.004 (0.036) 0.002 (0.040)

Truth 0.002 (0.037) 0.001 (0.036) 0.0003 (0.039)

β2 = 2.56
Our Approach -0.014 (0.037) -0.011 (0.039) -0.019 (0.038)

Truth 0.0007 (0.034) 0.005 (0.037) -0.003 (0.035)

β2 = 5.12
Our Approach -0.044 (0.037) -0.050 (0.039) -0.051 (0.036)

Truth 0.011 (0.027) 0.006 (0.027) 0.003 (0.027)

χ = 2
ε = 50 ε = 75 ε = 100

NIE s.d. NIE s.d. NIE s.d.

β2 = 0
Our Approach 0.012 (0.041) 0.008 (0.037) 0.005 (0.041)

Truth 0.012 (0.041) 0.008 (0.037) 0.005 (0.041)

β2 = 1.28
Our Approach 0.007 (0.039) 0.003 (0.042) 0.004 (0.039)

Truth 0.006 (0.039) 0.001 (0.043) 0.002 (0.039)

β2 = 2.56
Our Approach 0.008 (0.038) 0.008 (0.036) -0.001 (0.046)

Truth 0.014 (0.034) 0.016 (0.036) 0.008 (0.042)

β2 = 5.12
Our Approach -0.005 (0.041) -0.010 (0.041) -0.014 (0.038)

Truth 0.025 (0.031) 0.026 (0.028) 0.019 (0.027)

Table 1: Simulations to assess sensitivity of estimate of NIE to violations in Assumption 3: n=120
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