Supplemental information

Table S1. Mutant alleles and transgenes used in this study

A. Mutant alleles

Allele	Reference
sax-7(nj48)	(Sasakura et al., 2005)
dma-1(wy686)	(Liu and Shen, 2012)
mnr-1(wy758)	This study

B. Integrated transgenes

U	0		
Allele	Chromosome	Constructs	Co-injection marker
wyIs378	Х	pOL020, pOL090	
wyIs369	IV	pOL071	Pmyo-2::mCherry
C. Extrachromoso	mal arrays		

Allele	Constructs	Co-injection marker
wyEx3869	pRP13	Pmyo-2::mCherry
wyEx4003	Engineered fosdmid WRM063aC06	Podr-1::gfp
wyEx5668	pXD65	Podr-1::gfp
wyEx5776	Engineered fosmid WRM0618aD06	Podr-1::gfp
wyEx5134	pXD13+pXD26+pOL036	Podr-1::rfp
wyEx5781	pXD38+pXD86+pOL036	Podr-1::gfp
wyEx5937	pXD86	Pmyo-2::mCherry
wyEx5950	pXD20+pXD97	Podr-1::gfp
wyEx5946	pXD105+pXD106	Podr-1::gfp
wyEx5948	pXD86+pXD97+pXD105+pXD106	Podr-1::gfp
wyEx4897	pOL036+pOL057	Podr-1::rfp
wyEx5938	pXD103	Podr-1::gfp
wyEx6039	pXD118	Podr-1::rfp
wyEx4286	pOL035	Podr-1::rfp
wyEx5790	pXD46+pOL036	Podr-1::gfp
wyEx6034	pXD91+pOL036	Podr-1::rfp

Table S2. Plasmids used in this study

A. Plasmids

Plasmid	Description	Note
pOL020	ser2prom3::myr-gfp	
pOL035	ser2prom3::dma-1::gfp	
pOL036	ser2prom3::myr-mCherry	
pOL057	Pdpy-7::sax-7s::gfp	
pOL071	Pnhr-81::sax-7s	
pOL090	Prab-3::myr-mCherry	

pRP13	Pdpy-7::sax-7s	A gift of Oliver Hobert. (Pocock et al., 2008)
pXD13	Prab-3::cfp	
pXD20	Pmec-17::BFP	
pXD26	Pdpy-7::sax-7s:yfp	
pXD38	Pmec-17::sax-7s::yfp	
pXD46	Pdpy-7::sax-7s∆Ig	All 4 Ig domains of SAX-7 deleted by yeast
		recombineering using primers 5'-
		ttcttgtcacaagtttgaacccacgcagagtgaacagccacaggaacatc
		attcacgtactgctctgttgg -3' and 5'- gatgttcctgtggctgttca
		-3' (Kevin R. et al., 1997)
pXD65	Pdpy-7::mnr-1	cDNA of mnr-1 cloned with primers 5'-
		ATGATGATATCAATACTATTGGTTT -3' and 5'-
		TTAAAGTAGGTAGATCATTAGGAG -3'
pXD86	Pmec-17::mnr-1	
pXD91	Pdpy-7::sax-7s∆FnIII	All 5 FnIII domains of SAX-7 deleted by yeast
		recombineering using primers 5'-
		aacatccttaaattgaattttga -3' and 5'-
		ctaaattggatcaagttgaaaaggaaatcaaaattcaatttaaggatgttg
		gtgaaacgacgaaaacgt -3' (Kevin R. et al., 1997)
pXD97	Pmec-17::sax-7s	
pXD103	Pdpy-7::mnr-1∆TM	
pXD105	Punc-47::mnr-1	
pXD106	Punc-47::sax-7s	
pXD118	Pdpy-7::mCherry::mnr-1	
B. Engine	ered fosmids	

Construct	Original fosmid
Psax-7::sax-7::gfp::sl2::mCherry	WRM063aC06
Pmnr-1::mnr-1::gfp::sl2::mCherry	WRM0618aD06

Table S3. S2 cell aggregation assay

A. Plasmids used in S2 cell transfection

Plasmid	Description
pAWG	Pactin::gfp
pAWR	Pactin::rfp
pXD49	Pactin::sax-7s::gfp
pXD54	Pactin::dma-1::rfp
pXD85	Pactin::mnr-1::gfp
pXD53	Pactin::sax-7s::HA
pXD95	Pactin::dma-1 ecto-domain::myc
pXD84	Pactin::mnr-1::Flag

pXD130	Pactin::sax-7s∆Ig::gfp
pXD116	Pactin::sax-7s

B. S2 cell aggregation assay

Green cells	Red cells	Result
GFP (pAWG)	DMA-1::RFP (pXD54)	No aggregation
SAX-7::GFP(pXD49)	RFP (pAWR)	No aggregation
MNR-1::GFP(pXD85)	RFP (pAWR)	No aggregation
SAX-7::FP(pXD49)	DMA-1::RFP (pXD54)	No aggregation
MNR-1::GFP(pXD85)	DMA-1::RFP (pXD54)	No aggregation
SAX-7::GFP(pXD49)	DMA-1::RFP (pXD54)	Aggregation
+ MNR-1::GFP(pXD85)		
SAX-7∆Ig::GFP(pXD130)	DMA-1::RFP (pXD54)	Aggregation
+ MNR-1::GFP(pXD85)		
SAX-7∆FnIII::GFP(pXD116)	DMA-1::RFP (pXD54)	No aggregation
+ MNR-1::GFP(pXD85)		

Supplemental figure legends

Figure S1. Phylogenetic analysis of MNR-1 and schematic structures of SAX-7, MNR-1 and DMA-1 proteins. Related to Figure 1.

(A) Phylogenetic tree of *C. elegans* MNR-1 and its orthologues in other species. (B) Schematic of SAX-7, MNR-1 and DMA-1 proteins. Ig: Immunoglobulin domain. FnIII: Fibronectin III domain. F: FERM binding motif. A: Ankyrin binding motif. P: PDZ binding motif. LRR: Leucine rich repeat. LRR-NT: LRR N-terminal domain. LRR-CT: LRR C-terminal domain.

Figure S2. SAX-7 was expressed and localized early in development independent of MNR-1 or PVD dendrites. Related to Figure 2 and Figure 3.

(A-B) SAX-7 was expressed and subcellularly localized in hypodermal cells in (A) L2 and (B) L3 stages. (C-E) The expression and localization of SAX-7 did not depend on MNR-1 or PVD dendrites. (C) Fluorescent image showing disrupted PVD morphology in *mnr-1(wy758)* mutant.
(D) SAX-7 localization in the hypodermal cells revealed by *Pdpy-7::sax-7s::gfp* was not altered in *mnr-1(wy758)* mutants despite the largely abnormal PVD structure. (E) Overlay of (C) and (D). Scale bar: 10µm

Figure S3. MNR-1 was partially secreted. Related to Figure 5.

(A) Expressing MNR-1 without its transmembrane domain partially rescued the "T" formation phenotype of *mnr-1(wy758)*. (B) Full length MNR-1 tagged with mCherry at its N-terminus could be detected in the ceolomocytes. Arrowheads: Ceolomocytes.

Figure S4. PVD dendrites in *dma-1* mutants did not follow PLM and ALM neurons expressing SAX-7 and MNR-1. Related to Figure 6.

(A-C) PLM overexpression of SAX-7 and MNR-1 failed to alter dendritic morphology in *dma-1(wy686)* mutants. (A) PLM and ALM neurons labeled by *Pmec-17::sax-7::yfp*. (B) Dendritic structure of *dma-1(wy686)* mutant worms was unaltered by overexpression of SAX-7 and MNR-1. No additional T's were formed when 2° PVD dendrites made contact with the PLM and ALM neurons. (C) Overlay between (A) and (B). Scale bar: 10 μm.

Figure S5. DMA-1 was the neuronal receptor for SAX-7 and MNR-1. Related to Figure 6.

(A) PVD dendritic phenotype of *dma-1(wy686); mnr-1(wy758)* mutants were identical to that of *dma-1(wy686)* single mutants. (B) PVD dendritic phenotype of *dma-1(wy686); sax-7(nj48); mnr-1(wy758)* mutants were identical to that of *dma-1(wy686)* single mutants. (C) Over-expressing DMA-1 in PVD caused overbranching. (D-E) PVD morphology of *sax-7(nj48)* mutant (D) or *mnr-1(wy758)* mutant (E) was not altered by DMA-1 overexpression. Scale bar: 10 µm.

Figure S6. Structure-function analysis of SAX-7. Related to Figure 7.

(A) Summary of structure-function analysis of SAX-7. (B) SAX-7 Δ Ig could rescue the PVD dendrite phenotype of *sax-7(nj48)* mutant. Scale bar: 10 μ M (C) SAX-7 Δ FnIII failed to rescue. (D) S2 cells transfected with *sax-7\DeltaIg::gfp* and *mnr-1::gfp* strongly aggregated with cells expressing DMA-1-RFP. Scale bar: 100 μ m (E) Cells transfected with *sax-7\DeltaFnIII::gfp* and *mnr-1::gfp* failed to aggregate with cells expressing DMA-1-RFP. (F) Schematic representation of proposed model: SAX-7 and MNR-1 formed pre-patterned lines in hypodermal cell (left). When PVD 2° branches expressing DMA-1 reached the SAX-7 and MNR-1 enriched line (middle), 3° branches formed and grew along the pre-patterned line. Thus the precise location of branch formation and growth direction was specified through interaction between pre-patterned cell adhesion molecules and their neuronal receptor.

Movies S1-S4. Time-lapse movies of PVD dendrite development. Related to Figure 4.

- S1. Development of WT PVD.
- S2. Development of PVD dendrites in *sax-7(nj48)* mutant.
- S3. Development of PVD dendrites in *mnr-1(wy758)* mutant.
- S4. Development of PVD dendrites in *dma-1(wy686)* mutant

Supplemental experimental procedures

Fluorescence microscopy and confocal imaging

Images of fluorescent proteins were captured in live animals using a Plan-Apochromat 40x/1.3 objective on a Zeiss LSM710 confocal microscope (Carl Zeiss). Worms were immobilized on 2% agarose pads using a mixture of 225 mM 2,3-butanedione monoxime and 2.5 mM levamisole (Sigma-Aldrich). Z-stacks were collected and the maximum intensity projection was used for additional analysis.

S2 cell aggregation and co-IP assays

S2 cells were transfected with Pactin::sax-7::gfp, Pactin::mnr-1::gfp, Pactin::sax-7::gfp +Pactin::mnr-1::gfp, or Pactin::dma-1::rfp. Cells transfected with Pactin::gfp and Pactin-rfp were used as controls. 3 days after transfection, cells were washed with 5 ml phosphate buffered saline (PBS) and resuspended in S2 medium at 10^6 cell/ml. 500 μ L of green cells were mixed with 500 μ L red cells and rotated at 30 rpm for 3 hours at room temperature. 3 μ L of each mixture was immediately spotted on glass slides for imaging and quantification. Similarly, for co-IP assays S2 cells were transfected with Pactin::sax-7::HA, Pactin::mnr-1::FLAG, both Pactin::sax-7::HA and Pactin::mnr-1::FLAG, or Pactin::dma-1::ecto-myc. 3 days after transfection, cells transfected with SAX-7 and/or MNR-1 were collected and lysed in lysis buffer (50mM Tris-HCl pH 7.4, 10mM MgCl₂, 150mM NaCl, 1mM EGTA, 10% Glycerol, 0.5% Nonidet P-40 and protease inhibitor (Roche)). Cultured medium from Pactin::dma-1::ecto-myc transfected cells was collected. The cell lysates or cultured medium containing the desired proteins were mixed with anti-HA antibody coated agarose beads (Sigma) and incubated at 4°C for 3 hours with rotation and washed thoroughly with lysis buffer. Proteins were eluted at 65°C using 2% SDS elution buffer and detected using western blot analysis with mouse antibody to HA (1:1000, Roche), rabbit antibody to Myc (1:2000, Santa Cruz Biotechnology), mouse antibody to FLAG (1:5000, Sigma) and HRP-conjugated goat antibodies to mouse or rabbit (1:20,000, Jackson Immuno Research).

Supplemental references

Kevin R., O., Vo, K.T., Michaelis, S., and Paddon, C. (1997). Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Research *25*, 451-452.

Liu, O.W., and Shen, K. (2012). The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans. Nat Neurosci *15*, 57-63.

Pocock, R., Bénard, C.Y., Shapiro, L., and Hobert, O. (2008). Functional dissection of the C. elegans cell adhesion molecule SAX-7, a homologue of human L1. Molecular and Cellular Neuroscience *37*, 56-68. Sasakura, H., Inada, H., Kuhara, A., Fusaoka, E., Takemoto, D., Takeuchi, K., and Mori, I. (2005). Maintenance of neuronal positions in organized ganglia by SAX-7, a Caenorhabditis elegans homologue of L1. EMBO J *24*, 1477-1488.