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Web Appendix A: Proofs of results and technical lemmas

Lemma A1 describes the atoms obtained from Algorithm 1:

Lemma A1: By using Algorithm 1, a variable m is assigned to an atom A(m), which is

defined as:

A(m) =
⋂
S∈Sm

S \ (
⋃
S/∈Sm

S),

where Sm is the collection of sets among S1, . . . , SK which contain m.

Theorem A1: The atoms resulting from the steps of Algorithm 1 uniquely satisfy prop-

erties 1-3 for the units of a collection of sets.

Proof. We first note that property 2 is satisfied by construction, since every time a new

atom is created using Algorithm 1, the variables in it are removed from MA.

Proof that property 1 holds. Let S be one of the original sets. We want to show that we can

write S =
⋃
`∈AA`, for some A ⊂ {1, . . . , L}. Denote the variables in set S by m1, . . . ,mR.

Each variable mr will be mapped to an atom A(mr) by the algorithm (note that the atoms

may not necessarily be unique). We now show that A(m1)
⋃
. . .
⋃
A(mR) ⊂ S:

Let m ∈ A(m1)
⋃
. . .
⋃
A(mR). Then the variable m is part of some atom A(mr), according

to the algorithm, for a variable mr. Since m and mr are in the same atom, they appear in

exactly the same sets, according to the atom construction in the algorithm, so in particular

m ∈ S, since mr ∈ S. Thus, A(m1)
⋃
. . .
⋃
A(mR) ⊂ S. Since S ⊂ A(m1)

⋃
. . .
⋃
A(mR)

trivially, we have shown that S = A(m1)
⋃
. . .
⋃
A(mR). Taking only the unique atoms, this

ensures that property 1 holds.

Proof that property 3 and uniqueness hold. Let {A1, . . . , AL} be the collection of atoms

produced by the algorithm. Let {B1, . . . , BN} be a different collection of atoms which satisfies

properties 1 and 2. We prove that this collection must then have a higher cardinality than
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{A1, . . . , AL}, i.e. K > L, which shows that {A1, . . . , AL} fulfills property 3, and is also the

only collection of atoms to fulfill properties 1-3.

Consider an atom Bn. We show that it must be a subset of some atom Al, i.e. there exists

1 6 l 6 L such that Bn ⊂ Al. We look at the collection of all sets that atom Bn is part

of, i.e. SBn = {S : Bn ⊂ S}. We note that we must have Bn ⊂ CBn , where we define

CBn =
⋂
S∈SBn

S \
⋃
S/∈SBn

S. There is no set S out of the original sets such that S ⊂ CBn : If

such a set S existed, and Bn \ S 6= ∅, Bn would not be an atom (since S can be written as a

union of atoms in {B1, . . . , BN}, and all these atoms are disjoint); and if such a set existed

and Bn \ S = ∅, there would be a contradiction with the definition of CBn . As a result, the

variables which are in CBn all belong to exactly the same original sets. This means that they

form an atom obtained through Algorithm 1, i.e. CBn = Al, for some 1 6 l 6 L. As a result,

Bn ⊂ Al. Since this holds for any n, we have shown that the collection K > L, so we have

proven that property 3 holds, and also that uniqueness holds.

Proof. [Proof of Eq. (3)] Consider a set U which is a union of atoms. Since U \ τ =⋃
Al⊂U(Al \ τ) and all Al \ τ are disjoint, then:

∑
m∈U\τ

d(m, τ) =
∑
Al⊂U

∑
m∈Al\τ

d(m, τ)

Since the set of variables is completely partitioned by the set of atoms (i.e. all variables

are annotated to some set, and therefore to some atom), then τ \ U = τ ∩
[⋃

Al 6⊂U Al

]
=⋃

Al 6⊂U(τ ∩ Al), so by the disjointness of τ ∩ Al:

∑
m∈τ\U

d(m,U) =
∑
Al 6⊂U

∑
m∈τ∩Al

d(m,U).

Thus, we obtain:

(1− w)
∑
Al⊂U

∑
m∈Al\τ

d(m, τ) + w
∑
Al 6⊂U

∑
m∈τ∩Al

d(m,U).
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We introduce the following notation: We start by defining the posterior probability that a

set U is a proper subset of the set of interesting variables τ .

P (U ∈ τ |X,Y) ≡ p∗U =
∑

τ∈2M,U⊂τ

pτ .

For specific cases we can simply write out the variables in the set, e.g. p12 = p21 = p{1,2}. The

marginal posterior probabilities for each variable are a specific case, where the set represents

a single variable: p∗m =
∑

τ∈2M,m∈τ pτ .

In Lemma A2 we derive a simplified form of the two components of the posterior expected

loss function. Note, in particular, that Eτ |X,Y{
∑

m∈τ\U d(m,U)} can be written as a linear

function of marginal variable-level posterior probabilities.

Lemma A2: Under the loss function described in equation (2), in the case of a general

discrepancy measure d and single linkage, the following simplified forms of Eτ |X,Y{
∑

m∈U\τ d(m, τ)}

and Eτ |X,Y{
∑

m∈τ\U d(m,U)} are obtained:

Eτ |X,Y{
∑

m∈U\τ

d(m, τ)} =
∑
τ∈2M

∑
m∈U\τ

d(m, τ)pτ =
∑
m∈U

∑
τ∈2M,m/∈τ

d(m, τ)pτ

Eτ |X,Y{
∑

m∈τ\U

d(m,U)} =
∑
τ∈2M

∑
m∈τ\U

d(m,U)pτ =
∑
m/∈U

d(m,U)p∗m

Proof.∑
m∈U

∑
τ∈2M,m/∈τ

d(m, τ)pτ =
∑

τ∈2M,m∈U\τ

d(m, τ)pτ =
∑
τ∈2M

∑
m∈U\τ

d(m, τ)pτ∑
m/∈U

d(m,U)p∗m =
∑
m/∈U

d(m,U)
∑

τ∈2M,m∈τ

pτ =
∑

m∈τ\U,τ∈2M
d(m,U)pτ

=
∑
τ∈2M

∑
m∈τ\U

d(m,U)pτ

Proof. [Proof of Theorem 1] Using Lemma A2:

EFD(U) =
∑
τ∈2M

∑
m∈U\τ

pτ =
∑
m∈U

∑
τ∈2M,m/∈τ

pτ =
∑
m∈U

(1− p∗m) = |U | −
∑
m∈U

p∗m

EMD(U) =
∑
τ∈2M

∑
m∈τ\U

pτ =
∑
m/∈U

p∗m
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Proof. [Proof of Corollary 1] By the mixture model in Equation (1), when considered as

functions of the data, the marginal variable-level posterior probabilities can be rewritten as:

p∗m = P (variable m is from the alternative distribution|X,Y)

= P (variable m is from the alternative distribution|Xm,Y)

= 1− P (variable m is from the null distribution|Tm,Y)

= 1− π0
f0(Tm|Y)

f(Tm|Y)

= 1− fdr(Tm|Y)

Thus, the results of Theorem 1 may be rewritten as:

EFD(U) =
∑
m∈U

fdr(Tm|Ym)

EMD(U) =
∑
m/∈U

[1− fdr(Tm|Ym)]

In Lemma A3, we show how the posterior expected loss can be written in terms of the

expected numbers of false discoveries for each atom, for the 0-1 discrepancy measure. When

written in this form, it is possible to show that optimizing the posterior expected loss is

equivalent to the well-known “knapsack” problem in computer science (Garey and Johnson,

1979). Using this result, we show in Theorem 2 that the Bayes estimator for a fixed value of

the weight w is given by thresholding the atomic false discovery rate.

Lemma A3: The posterior expected loss L(U) which results from the 0− 1 dissimilarity

measure may be rewritten as:

L∑
l=1

δl[(1− w)EFD(Al)− w{nl − EFD(Al)}] + w
L∑
l=1

{nl − EFD(Al)},

where δl is the indicator of whether atom Al is in U and nl is the number of variables in Al,
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i.e. nl = |Al|.

Using vector notation with δ = [δl]
L
l=1, 1 = [1]Ll=1, n = [nl]

L
l=1, and EFDA = [EFD(Al)]

L
l=1,

this is the same as:

δ′ {(1− w)EFDA − w(n− EFDA)}+ w(n− EFDA).

Proof.

L(U) = (1− w)
∑
T∈2M

∑
Al⊂U

∑
m∈Al\T

pT + w
∑
T∈2M

∑
Al 6⊂U

∑
m∈T∩Al

d(m,U)pT

= (1− w)
∑
Al⊂U

∑
T∈2M

∑
m∈Al\T

pT + w
∑
Al 6⊂U

∑
T∈2M

∑
m∈T∩Al

pT

= (1− w)
∑
Al⊂U

∑
m∈Al

(1− p∗m) + w
∑
Al 6⊂U

∑
m∈Al

p∗m

= (1− w)
∑
Al⊂U

EFD(Al) + w
∑
Al 6⊂U

{nl − EFD(Al)}

= (1− w)
L∑
l=1

δlEFD(Al) + w
L∑
l=1

(1− δl){nl − EFD(Al)}

=
L∑
l=1

δl[(1− w)EFD(Al)− w{nl − EFD(Al)}] + w
L∑
l=1

{nl − EFD(Al)},

using Lemma A2 and Theorem 1.

Thus, the parametrization is linear in δ. In Lemma A4, we show that similar parametrizations

exist for the posterior expected loss functions Lλf and Lξa, which correspond to the loss

functions Lλf (τ, U) and Lξa(τ, U) (from Web Appendix C).

Lemma A4: Up to an additive constant, L can be written as:∑
l

δl[(1− w)EFD(Al)− wc2(Al){nl − EFD(Al)}] + w
∑
l

{nl − EFD(Al)}.

L corresponds to c1(Al) = c2(Al) = 1; Lλf corresponds to c1(Al) = 1−w+λ
1−w and c2(Al) = w−λ

w
;

Lξa corresponds to c1(Al) =
1−w+ ξ

nl

1−w and c2(Al) =
w− ξ

nl

w
.

Proof. [Proof of Theorem 2] The posterior expected loss of L can be parametrized as an

affine function of δ, for a fixed w between 0 and 1. Any affine function of δl, h(δ) = δ′a+b, δ ∈
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{0, 1}L, a ∈ RL, b ∈ R is minimized when δl = 1{al 6 0}, since h(t) is minimized when δ′a

is minimized. This is a linear function in each component δj of δ, and if we minimize it in

each component we also minimize it overall. As a result, it is minimized by choosing to sum

only over those components of a which are negative or zero.

The proof of Lemma C1 is similar to that of Theorem 2, since the posterior expected losses

of Lλf , and Lξa can also be parametrized as affine functions of δ, for a fixed w between 0 and

1.

Proof. [Proof of Theorem C1]

Lr(δ) = (1− w)

∑
m∈U(1− p∗m)

|U |
+ w

∑
n/∈U p

∗
m

M − |U |

= (1− w)

∑
Al∈U EFD(Al)∑

Aj∈U nl
+ w

∑
Al /∈U(nl − EFD(Al))∑

Al /∈U nl

= (1− w)
δ′EFDA

δ′n
+ w

(1− δ)′(n− EFDA)

M − δ′n

= δ′
{

(1− w)

δ′n
EFDA −

w

(M − δ′n)
(n− EFDA)

}
+

w

M − δ′n
(n− EFDA)

We now show that Eτ |X,Y{
∑

m∈U\τ d(m, τ)} cannot be written as an affine function of

marginal variable-level posterior probabilities for a general discrepancy measure d which

takes into account how far or close variables are to each other, in the case where the single

linkage property holds. Thus, in general, to calculate the posterior expected loss, we need

to model the joint distribution of all the variables. This also leads to much more complex

computations.

Corollary A1: Under the loss function described in equation (2), in the case of a

general discrepancy measure d and single linkage, Eτ |X,Y{
∑

m∈U\τ d(m, τ)} cannot be written

as an affine function of marginal variable-level posterior probabilities. Therefore L(U) also

cannot be written as an affine function of marginal variable-level posterior probabilities.
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Proof. We show that we cannot write Eτ |X,Y{
∑

m∈U\τ d(m, τ)} as an affine function of the

marginal variable-level posterior probabilities.

Step 1. We first show that, for any proper subset ν ( 2M, setting any affine of the posterior

probabilities of the sets in ν equal to 0 forces all the coefficients to be 0, i.e.:

Denote the elements in ν by τl1 , . . . , τl|ν| . We will show that setting any affine function of

these elements to 0 implies that all the coefficients are 0. Thus, we have:

∑
τ∈ν

aτpτ + b = 0 (1)

We note that if ν = {τl1 , . . . , τl|ν|} ( 2M, then pτl1 + . . .+pτl|ν| 6 1 and pτl1 > 0, . . . , pτl|ν| >

0. Plugging in pτl1 = 1, pτl2 = . . . = pτl|ν| = 0, followed by pτl1 = 1
2
, pτl2 = . . . = pτl|ν| = 0,

and solving the resulting system of equations in aτl1 and b results in aτl1 = b = 0. From

here on, plugging in only one non-zero probability for each τ ∈ ν in turn will result in

aτl2 = . . . = aτl|ν| = 0.

Step 2. We now apply the result in Step 1 to show that Eτ |X,Y{
∑

m∈U\τ d(m, τ)} can

in general not be written as an affine function of the marginal variable-level posterior

probabilities. We note that we have:

Eτ |X,Y{
∑

m∈U\τ

d(m, τ)} =
∑
τ∈2M

∑
m∈U\τ

d(m, τ)pτ =
∑

τ∈2M,τ 6=U

{
∑

m∈U\τ

d(m, τ)}pτ (2)

since d(m, τ) = 0 if m ∈ τ . Using a simple transformation, we note that showing that

Eτ |X,Y{
∑

m∈U\τ d(m, τ)} we need to show that we can find am and b such that:

Eτ |X,Y{
∑

m∈U\τ

d(m, τ)} =
∑
m∈M

am(1− p∗m) + b (3)

=
∑
m∈M

am
∑

τ∈2M,m/∈τ

pτ + b

=
∑
τ∈2M

∑
m/∈M\τ

ampτ + b

=
∑

τ∈2M,τ 6=M

{
∑

m∈M\τ

am}pτ + b

The coefficients am and b are more accurately written as am(U) and b(U), but we use the
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simpler notation here. Setting the expressions in 2 and 3 equal to each other, we get:∑
τ∈2M,τ 6=U

{
∑

m∈U\τ

d(m, τ)}pτ =
∑

τ∈2M,τ 6=M

{
∑

m∈M\τ

am}pτ + b

We may now take ν = 2M \M, which is a proper subset of 2M. Using the result in Step 1,

we get: ∑
m∈U\τ

am =
∑

m∈U\τ

d(m, τ),

all the other coefficients being 0. Now consider cycling through all the sets τ such that U \ τ

consists of a single element. We thus obtain:

d(m, τ) = am for all m ∈ U \ τ

regardless of how many elements there are in τ \ U and how far away they are from the

elements in U \ τ .

To illustrate this last portion of the proof, consider M = {1, 2, 3} and U = {1, 2}. Then:

τ = {2} => d(1, {2}) = a1

τ = {2, 3} => d(1, {2, 3}) = a1

Given our use of the single-linkage property, d(1, {2, 3}) = min{d(1, {2}), d(1, {3})}. So if

d(1, {3}) > d(1, {2}), then d(1, {2}) = d(1, {3}), which means that the discrepancy measure

d does not take into account how far or close variables are to each other.
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