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Web Appendix C: Alternative loss functions

In some cases, it may be interesting to penalize either (a) the number of variables in the Bayes

estimator or (b) the number of atoms in the Bayes estimator. These penalties may be useful

to constrain the size of the resulting estimates. Here, we introduce some variations on the

loss function corresponding to the 0− 1 discrepancy measure which was introduced earlier,

by looking at what happens when linear constraints are introduced. In order to penalize for

a large number of variables in the Bayes estimator, we consider the following constrained

optimization problem:

Minimize L(τ, U) with the constraint that |U | < ρ, for some ρ > 0. This is equivalent to

minimizing the loss function:

Lλf (τ, U) = (1− w) ∗ |U \ τ |+ w ∗ |τ \ U |+ λ|U | for some λ > 0

(see for instance Gill et al., 1981). Similarly, one may be interested in penalizing for a large

number of atoms in the Bayes estimator. In such a case, we would consider the following

constrained optimization problem:

Minimize L(τ, U) with the constraint that J < η, for some η > 0, where J is the number of

atoms in U . This is equivalent to minimizing the loss function:

Lξa(τ, U) = (1− w) ∗ |U \ τ |+ w ∗ |τ \ U |+ ξJ for some ξ > 0.

The penalties can also be applied atoms with a small number of genes or atoms, respec-

tively, by simply changing the signs of λ and ξ. For these two alternative minimization

problems, it is also possible to analytically calculate the resulting Bayes estimators as in

Theorem 2. Lemma C1 extends the results of Theorem 2 to the penalized case.

Lemma C1: For a fixed value of w ∈ [0, 1], the Bayes estimator for the posterior expected

losses Lλf and Lξa are defined by the indicators δl of whether atom Al is in the Bayes estimator:
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δl = 1{afdrl + λ 6 w},

δl = 1{afdrl +
ξ

nl
6 w}.

Alternatively, loss functions which employ the ratio of missed discoveries and false discov-

eries, instead of the number of missed discoveries and false discoveries, may also be used.

Thus, would lead to the estimator

Lr(τ, U) = (1− w) ∗ |U \ τ |
|U |

+ w ∗ |τ \ U |
M − |U |

= (1− w) ∗ Ratio of false discoveries +w∗ Ratio of missed discoveries.

Theorem C1 shows how this loss can be written in terms of the expected numbers of false

discoveries for each atom, similar to Lemma A3 in Web Appendix A.

Theorem C1: The posterior expected loss Lr(U) which results from the loss function

Lr may be rewritten as:

δ′
{

(1− w)

δ′n
EFDA −

w

(M − δ′n)
(n− EFDA)

}
+

w

M − δ′n
(n− EFDA)

For this more complicated loss function, an analytic solution is not available. However, an

approximate algorithmic solution is available. We first consider the solution to the problem

where we constrain the size of the Bayes estimator |U | = δ′n to some size ρ. In this case, we

get the following constrained linear binary problem:

min
δ

δ′
{

(1− w)

ρ
EFDA −

w

(M − ρ)
(n− EFDA)

}
(1)

s.t. δ′n = ρ

This is an instance of the well-known 0-1 knapsack problem (Garey and Johnson, 1979),

which can be solved approximately by Dantzig’s greedy algorithm. This uses a sorting

strategy where atoms are sorted increasingly by the quantity

(1− w)

ρ
afdr l −

w

(M − ρ)
(1− afdr l)



3

and tl is set to 1, in order, until δ′n = ρ. Note that when ρ = M/2, atoms are sorted

according to afdr l as in Theorem 2.

In principle, to solve the fractional problem, one can solve the 0-1 knapsack problem for

each possible value of ρ = |U | and select the best solution. Since ρ can range over a large

number of possible values, we use a strategy based on the projected gradient of the fractional

function at a given point to find a small number of estimator sizes |U | to test. The steps are

presented in Algorithm C1.

Algorithm C1: Algorithm to obtain the Bayes estimator for the loss function Lr.

ρ← min {n};

Iiter ← 0;

while Iiter 6 Imaxiter do

Find δρ = arg minδ δ′
{
(1−w)
ρ

EFDA − w
(M−ρ)(n− EFDA)

}
, along δ′n = ρ;

Find s = minδ Lr(δ), along δ = δρ − α(∇δLr(δρ))+;

if s′n = ρ then

stop;

else

ρ← s′n;

end

Iiter ← Iiter + 1;

end

We compared the Bayes estimators resulting from the various loss functions considered

here based on the results of 100 simulation runs with 2250 features, 10% of which were from

the alternative distribution. We considered 8 atoms, 4 of size 50 and 4 of size 100. For each

of the two sizes considered, atoms had fractions of alternatives of 0, 0.1, 0.5, or 0.9. The

results are presented in Table C1. We used λ = ξ = 0.2. The simulations illustrate that our
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estimation methods generally produce conservative results for the loss functions considered,

as in the vast majority of cases the atoms which were chosen as part of the Bayes estimator

should in fact have been in it.

[Table 1 about here.]
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Table C1
Atoms present in the Bayes estimators obtained from different loss functions over 100 runs. We took λ = ξ = 0.2.
Eight atoms were considered, having the fractions of alternatives 0, 0.1, 0.5, and 0.9 and the sizes 50 and 100. The
number of times each atom appeared in the Bayes estimator is given for each loss function for three values of w; in

parentheses is stated whether or not that specific atom should have been in the Bayes estimator (given the ideal
scenario which gives posterior probabilities of 1 and 0 to the variables from the alternative, respectively from the null

distribution.)

Fraction of Size w L Lλf Lξa Lr
alternatives

0 50 0.25 0 (No) 0 (No) 0 (No) 0 (No)
0.50 0 (No) 0 (No) 0 (No) 0 (No)
0.67 0 (No) 0 (No) 0 (No) 1 (No)

0 100 0.25 0 (No) 0 (No) 0 (No) 0 (No)
0.50 0 (No) 0 (No) 0 (No) 0 (No)
0.67 0 (No) 0 (No) 0 (No) 4 (No)

0.1 50 0.25 0 (No) 0 (No) 0 (No) 0 (No)
0.50 0 (No) 0 (No) 0 (No) 0 (No)
0.67 0 (No) 0 (No) 0 (No) 53 (Yes)

0.1 100 0.25 0 (No) 0 (No) 0 (No) 0 (No)
0.50 0 (No) 0 (No) 0 (No) 0 (No)
0.67 0 (No) 0 (No) 0 (No) 53 (Yes)

0.5 50 0.25 0 (No) 0 (No) 0 (No) 0 (No)
0.50 0 (Yes) 0 (No) 0 (No) 0 (No)
0.67 100 (Yes) 0 (No) 0 (No) 55 (Yes)

0.5 100 0.25 0 (No) 0 (No) 0 (No) 0 (No)
0.50 0 (Yes) 0 (No) 0 (No) 0 (No)
0.67 100 (Yes) 0 (No) 0 (No) 55 (Yes)

0.9 50 0.25 94 (Yes) 0 (No) 0 (No) 99 (Yes)
0.50 100 (Yes) 97 (Yes) 97 (Yes) 100 (Yes)
0.67 100 (Yes) 100 (Yes) 100 (Yes) 100 (Yes)

0.9 100 0.25 99 (Yes) 0 (No) 0 (No) 68 (Yes)
0.50 100 (Yes) 100 (Yes) 100 (Yes) 92 (Yes)
0.67 100 (Yes) 100 (Yes) 100 (Yes) 100 (Yes)


