Supplementary Online Content

Reichborn-Kjennerud T, Ystrom E, Neale MC, et al. Structure of genetic and environmental risk factors for symptoms of DSM-IV borderline personality disorder. *JAMA Psychiatry*. Published online September 18, 2013. doi:10.1001/jamapsychiatry.2013.1944.

eTable 1. Polychoric Correlations Between DSM-IV Criteria for Borderline Personality Disorder

eTable 2. Model Fitting Results

This supplementary material has been provided by the authors to give readers additional information about their work.

©2013 American Medical Association. All rights reserved.

eTable 1. Polychoric Correlations Between *DSM-IV* Criteria for Borderline Personality Disorder

Criterion	1	2	<mark>3</mark>	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>	<mark>8</mark>	<mark>9</mark>
1. Avoidance of abandonment	1.00								
2. Unstable relationships	<mark>.56</mark>	1.00							
3. Identity disturbance	<mark>.41</mark>	<mark>.46</mark>	1.00						
4. Impulsive self-harm	<mark>.30</mark>	<mark>.36</mark>	.32	1.00					
5. Suicidal behavior	<mark>.50</mark>	<mark>.41</mark>	<mark>.51</mark>	<mark>.47</mark>	1.00				
6. Affective instability	<mark>.43</mark>	<mark>.60</mark>	<mark>.57</mark>	<mark>.29</mark>	<mark>.47</mark>	1.00			
7. Feeling of emptiness	<mark>.36</mark>	<mark>.48</mark>	<mark>.57</mark>	<mark>.24</mark>	<mark>.46</mark>	<mark>.56</mark>	1.00		
8. Intense anger	<mark>.34</mark>	<mark>.48</mark>	.33	.27	<mark>.45</mark>	<u>.57</u>	.39	1.00	
9. Paranoid ideation	<mark>.46</mark>	<mark>.44</mark>	<mark>.54</mark>	<mark>.39</mark>	<u>.47</u>	.50	<u>.44</u>	.43	1.00

©2013 American Medical Association. All rights reserved.

eTable 2. Model Fitting Results

		Common	Item-specific			
Model	<mark>S</mark>	factors*	<mark>factors</mark>	<u>Δχ2</u>	<u>∆df</u>	<u>AIC</u>
Choles						
<u>1.</u>	ACE**					
<mark>2.</mark>	AE			<mark>5.8</mark>	<mark>45</mark>	-84.2
<mark>3.</mark>	CE			17.3	<mark>45</mark>	<mark>-72.7</mark>
	<mark>ependent pathw</mark>					
<mark>4.</mark>	Step 0	<u>4A – 4E</u>	a _s - e _s	<mark>16.3</mark>	<mark>45</mark>	<mark>-73.7</mark>
<u>5.</u>	Step 1	<mark>3A - 4E</mark>	<mark>a_s - e_s</mark>	<mark>23.4</mark>	<mark>54</mark>	-84.6
<mark>6.</mark>		<mark>4A - 3E</mark>	<mark>a_s - e_s</mark>	<mark>22.3</mark>	<mark>54</mark>	<u>-85.7</u>
<mark>7.</mark>	Step 2	3A - 3E	a _s - e _s	<mark>28.2</mark>	<mark>63</mark>	<mark>-97.8</mark>
<mark>8.</mark>		<mark>4A - 2E</mark>	a _s - e _s	<mark>41.0</mark>	<mark>63</mark>	-85.0
<mark>9.</mark>	Step 3	2A - 3E	<mark>a_s - e_s</mark>	<mark>39.8</mark>	<mark>72</mark>	-104.2
<u>10.</u>		3A - 2E	<mark>a_s - e_s</mark>	<mark>45.5</mark>	<mark>72</mark>	<mark>-98.5</mark>
<mark>11.</mark>	Step 4	1A - 3E	<mark>a_s - e_s</mark>	<mark>49.7</mark>	<mark>81</mark>	-112.3
12.		2A - 2E	a _s - e _s	57.3	<mark>81</mark>	-104.7
13.	Step 5	<mark>0A - 3E</mark>	a _s - e _s	135.6	<mark>90</mark>	<mark>-44.4</mark>
<mark>14.</mark>		1A - 2E	a _s - e _s	<mark>76.2</mark>	<mark>90</mark>	-103.8
15	Step 6	1A - 3E	e _s	<mark>92.4</mark>	<mark>90</mark>	<mark>-87.6</mark>
	<mark>nmon pathway</mark>					
<mark>16.</mark>		<mark>1</mark>	a _s - e _s	<mark>141.8</mark>	107	<mark>-72.2</mark>
<mark>17.</mark>		2	<mark>a_s - e_s</mark>	<mark>82.8</mark>	<mark>97</mark>	<u>-111.2</u>
18.		3	<mark>a_s - e_s</mark>	53.6	<mark>87</mark>	<mark>-120.4</mark>
<mark>19.</mark>		4	a _s - e _s	<mark>39.1</mark>	<mark>77</mark>	<mark>-114.9</mark>
<mark>20.</mark>		3	e _s	<mark>82.8</mark>	<mark>96</mark>	<mark>-109.2</mark>

*A indicates additive genetic factors, E indicates unique environmental factors **Fit statistics: -2ll = 17481.7; df = 25000;

AIC indicates Akaikes Information Criterion

a_s indicates item-specific genetic factors

e_s indicates item-specific unique environmental factors