

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013

Synthesis, Characterization, and Reactivity of Cobalt III)–Oxygen Complexes Bearing a Macrocyclic N-Tetramethylated Cyclam Ligand

Doyeon Kim,^[a] Jaeheung Cho,^[a, b] Yong-Min Lee,^[a] Ritimukta Sarangi,^[c] and Wonwoo Nam^{*[a]}

chem_201300107_sm_miscellaneous_information.pdf

[Co(15-[Co(15-TMC-CH₂- $O(OH)](ClO_4) \cdot CH_3CN$ TMC)(CH₃CN)₂](ClO₄)₂ **Empirical** formula C₁₇H₃₇ClCoN₅O₆ $C_{19}H_0Cl_2CoN_6O_8$ Formula weight 570.08 501.90 Temperature (K) 170(2) 170(2) Wavelength (Å) 0.71073 0.71073 Crystal system/space group Monoclinic, P2(1)/nMonoclinic, P2(1)/cUnit cell dimensions a (Å) 8.6493(8) 9.6291(3) *b* (Å) 15.6174(13) 19.6761(6) c (Å) 10.7612(9) 12.0095(4) α (°) 90.00 90.00 98.974(2) $\beta(^{\circ})$ 111.2190(10) 90.00 $\gamma(^{\circ})$ 90.00 Volume ($Å^3$) 1355.1(2) 2247.51(12) Ζ 2 4 Calculated density (g/cm⁻³) 1.397 1.483 Absorption coefficient (mm⁻¹) 0.880 0.925 Reflections collected 7479 29048 Independent reflections [R(int)] 2636 [0.1214] 4263 [0.0349] Refinement method Full-matrix Full-matrix least-squares on F^2 least-squares on F^2 2636/0/179 4263/0/276 Data/restraints/parameters Goodness-of-fit on F^2 1.080 1.104 $R_1 = 0.0865$, $R_1 = 0.0699$, Final *R* indices [I > 2 sigma(I)] $wR_2 = 0.2603$ $wR_2 = 0.2470$ $R_1 = 0.0941$, *R* indices (all data) $R_1 = 0.0875$, $wR_2 = 0.2671$ $wR_2 = 0.2671$ Largest difference peak and hole $(e/Å^3)$ 1.282 and -1.048 0.941 and -0.612

Table S1. Crystal data and structure refinements for $[Co(15-TMC)(CH_3CN)_2](ClO_4)_2$ and

 $[Co(15-TMC-CH_2-O)(OH)](ClO_4) \cdot CH_3CN.$

Bond Distances (Å)					
[Co(15-TMC)	[Co(15-TMC)(CH ₃ CN) ₂](ClO ₄) ₂		[Co(15-TMC-O)(OH)](ClO ₄)·CH ₃ CN		
Co1-N1	2.216(4)	Co1-N1	Co1-N1 1.988(5)		
Co1-N2	2.225(4)	Co1-N2	2.125(5)		
Co1-N3	2.165(5)	Co1-N3	2.089(4)		
		Co1-N4	2.082(5)		
		Co1-O1	1.896(3)		
		Co1-O2	1.878(4)		
Bond Angles (°)					
[Co(15-TMC)	[Co(15-TMC)(CH ₃ CN) ₂](ClO ₄) ₂		[Co(15-TMC-O)(OH)](ClO ₄)·CH ₃ CN		
N1-Co1-N2	89.40(19)	N1-Co1-N2	91.1(2)		
N1-Co1-N3	91.56(18)	N1-Co1-N3	171.10(18)		
N2-Co1-N3	88.44(18)	N1-Co1-N4	85.0(2)		
		N2-Co1-N3	92.0(2)		
		N2-Co1-N4	175.5(2)		
		N3-Co1-N4	92.2(2)		
		N1-Co1-O1	74.04(18)		
		N2-Co1-O1	91.24(16)		
		N3-Co1-O1	97.56(16)		
		N4-Co1-O1	89.87(15)		
		N1-Co1-O2	100.09(19)		
		N2-Co1-O2	85.73(18)		
		N3-Co1-O2	88.46(17)		
		N4-Co1-O2	92.71(17)		
		Co1-O1-C1	92.7(3)		
		O1-Co1-O2	173.36(17)		

Table S2. Selected bond distances (Å) and angles (°) for $[Co(15-TMC)(CH_3CN)_2](ClO_4)_2$ and $[Co(15-TMC-CH_2-O)(OH)](ClO_4)\cdot CH_3CN$.

	Pre-edge $(1s \rightarrow 3d) (eV)^a$	Co K rising-edge $(eV)^b$
1	$7709.3(0.04)^{c}$	7720.4
2	7710.2(0.02)	7721.2
3	7710.2(0.02)	7721.0

Table S3. Co-K Pre-edge analysis for 1, 2, and 3.

^{*a*}Intensity weighted average energy of pre-edge multiplet features. ^{*b*}Energy position of first inflection point. ^{*c*}Values in parentheses are the statistical standard deviations calculated from the individual acceptable fits used in the analysis. Fits performed using Edg-Fit (a peak fitting routine in EXAFSPAK, reference 6)

Complex	Coordination/Path	$R(Å)^a$	$\sigma^2(\text{\AA}^2)^b$	$E_0 (eV)$	F^{c}
2	2 Co-O	1.89	154	-1.88	
	4 Co-N	2.07	809		
	1 Co-N	2.40	784		0.10
	8 Co- C^d	2.94	1150		0.18
	16 Co-C-N^d	3.23	/1150		
	4 Co-C	3.49	340		
3	1 Co-O	1.86	176	-4.8	
	4 Co-N	2.04	742		
	1 Co-N	2.19	164		
	8 Co-C	3.04	1851		0.12
	16 Co-C-N	3.32	/1851		0.13
	4 Co-C	3.47	644		
	2 Co-C-N	3.25	342		
	1 Co-C-N-C	/3.25	/342		

Table S4. EXAFS least squares fitting results for 2 and 3.

^{*a*}The estimated standard deviations for the distances are in the order of ± 0.02 Å. ^{*b*}The σ^2 values are multiplied by 10⁵. ^{*c*}Error is given by $\Sigma[(\chi_{obsd} - \chi_{calcd})^2 k^6] / \Sigma[(\chi_{obsd})^2 k^6]$. / indicates the σ^2 value for the path is linked to the preceding path. The S₀² factor was set at 1.

Amount of HClO ₄	$k_{\rm obs},{ m s}^{-1}$
40 mM	$3.9(4) \times 10^{-3}$
120 mM	$3.9(3) \times 10^{-3}$
240 mM	$4.0(3) \times 10^{-3}$

Table S5. Kinetic data obtained in the conversion of **3** (4.0 mM) to **4** performed with different amounts of $HClO_4$.

Figure S1. ESI MS of **1** in CH₃CN: Mass peaks at m/z of 164.8, 184.9, 205.0, and 428.1 are assigned to $[Co(15-TMC)]^{2^+}$, $[Co(15-TMC)(CH_3CN)]^{2^+}$, $[Co(15-TMC)(CH_3CN)_2]^{2^+}$, and $[Co(15-TMC)(ClO_4)]^+$, respectively.

Figure S2. (a) X-band EPR spectrum of **1** (*g* values of 4.6 and 2.3) in frozen CH₃CN at 4.3 K. Instrumental parameters: microwave power = 1.0 mW, frequency = 9.101 GHz, sweep width = 0.5 T, modulation amplitude = 0.2 mT. (b) ¹H NMR spectra of **1** (8.0 mM) with common (blue) and Evans (black) techniques at 298 K. Insets show that the Δv values of solvent and TMS peaks were 106.7 and 109.6 Hz, respectively. The magnetic moment of **1** determined to be 4.4(2) B.M. from both Δv values indicates spin state of S = 3/2 for **1**.

Figure S3. Time trace monitored at 740 nm in the conversion of 3 to 4 in CH₃CN at 0 °C.

Figure S4. Plot of first-order rate constants against 1/T to determine activation parameters for the conversion of **3** to **4**.