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Supplemental Figure Legends 
 
Figure S1: Image Analysis (relates to Figure 1 and Supplemental Methods) 
A) 2D projected stills of a 3D csaA-MS2 movie.  Periodic nascent RNA accumulation is 
observable as fluctuations in nuclear spot intensity. B) Typical two-channel image with the 
nuclear marker in the RFP channel.  3D image stacks consisting of 19 z-slices in each 
channel were captured at each time point, for clarity 2D maximum projections are shown. C) 
Final segmentation result, after marker-based gradient watershed operations on the RFP 
channel followed by the GFP channel. D) Left: difference-of-Gaussian filtering to detect 
transcription spots.  The nuclear masks are overlaid as red outlines.  Right: cylindrical 
annulus (red) used to calculate spot background.  The background is subtracted from spot 
pixels (green cylinder) used to calculate spot intensity. E) Correcting the spot intensity based 
on the background GFP level, which determines the occupancy fraction of the nascent MS2 
loops. F) Autocorrelations of field of view average properties (top row) and individual cell 
tracks (bottom row).  The properties correlated are two-frame displacement (left column) and 
transcription intensity (right column). G) Correlation between motility and transcription in 
single cells, as a function of developmental time.  All error bars show S.E.M.. 
 
Figure S2: Modelling transcriptional oscillations (relates to Figure 2 and Supplemental 
Methods) 
A) A model of transcriptional activity where transitions occur between states of increasing 
initiation rate.  B) The downward rate constant is chosen to depend on the temporal cAMP 
gradient, while the upward rate constant is fixed.  C) Average transcription state as a 
function of oscillation frequency.  D) Phase lag between transcription and cAMP level as a 
function of oscillation frequency.  E) Different models of csaA responsiveness to the cAMP 
wave, with upward (blue) and downward (red) transition rates dependent on cAMP temporal 
gradient.  Top panel shows cAMP oscillations.  2nd panel shows model varying only the 
upward transitions (reduced during rising phase and increased during falling phase).  3rd 
panel shows model varying the downward transitions (the model described in the main text).  
The 4th panel shows a model allowing both upward and downward rates to vary. F) 
Fluctuations in mean transcriptional state generated by the three different models in E. G) 
Fluctuations in single cell transcriptional state generated by the three different models in E. 
 
Figure S3: Response heterogeneity and model architecture (relates to Figure 3 and 
Supplemental Methods) 
A) Enlargement of a representative region of transcription intensity for cells in a field at 5h 
(lower panel), tracked for up to 4 wave cycles, highlighting the randomness and 
heterogeneity in transcriptional response compared with the average spot response for the 
cells shown and sinusoidal fit (upper panel). B) Cartoon of time points used to calculate the 
trough and peak spot responses to each wave.  The solid line indicates the average spot 
response as in the upper panel of A.  C) Cartoons of possible relationships between the 
trough and peak transcriptional intensities: left – saturation model with gradient inversely 
proportional to intercept and no response at high trough intensities; centre – uniform 
response where the peak intensity is greater than the trough intensity by a constant amount; 
right – proportional model in which the peak intensity increases by a factor proportional to 
the trough intensity.  This is discussed further in the Supplemental Results text. D) Different 
scenarios for state transitions in the transcriptional oscillation model which account for the 
saturation in wave response observed experimentally: rate constants may vary such that 
high activity states have smaller upward rate constants (left), the difference between the 
transcriptional activities of adjacent states could decrease for higher states (centre) or there 
may be a finite number of states (right). E) Peak-trough response plots for the three models.  
Blue dots indicate the mean state in a single trough and subsequent peak, the solid line 
denotes equal peak and trough intensities, the dotted line is a linear fit to the data.  
 



 
 

Figure S4: Cell density and transcriptional persistence as sources of transcriptional 
heterogeneity (relates to Figure 4 and Supplemental Methods). 
A) Average correlation between cell density and spot intensity between fields throughout 
development. B) Heatmap of correlation coefficients between the mean transcription 
intensities of distinct waves.  Missing elements indicate no cells present in both waves of 
interest, due to high motility.  Inset – correlation averaged over waves of equal separation, 
showing a characteristic decay in the correlation of response as waves become more widely 
separated in time.  With bigger gaps between waves, correlation values become more noisy. 
Data are from the 4 fields of view from one of the 5h experimental repeats C) Scatter plot 
comparing field density and transcriptional persistence (wave correlation). Colour indicates 
developmental time and different markers denote different experimental days D) Top panel: 
Persistence of peak and trough transcription intensities, showing a similar trend to the 
overall transcriptional intensity.  There is no persistence in absolute (peak minus trough, 
(middle) or relative (peak divided by trough, (bottom) responses, suggesting the response to 
each wave is stochastic. E) Model simulation showing fast transition rates have high 
responses and short persistence, while systems with slow transition rates have small 
responses and correspondingly long persistences.  F) Model simulations of transcriptional 
persistence with different types of state transition ladder (relates to Figure S3C).  E and F 
are discussed further in the Supplemental Results text.  All error bars show S.E.M.. 
  



 
 

 
Supplemental Results 
Considerations for models of csaA transcription 
The measurements we have made place a number of constraints or requirements for any 
model describing the phenomenon.  Firstly, and as described in the main text, as the waves 
become faster between 4 and 6 hours of development transcription remains approximately 
anti-phase with the motility cycle, ruling out a simple time delay as the sole regulator of the 
transcription lag.  We therefore propose that transcription is enhanced during one phase of 
the cAMP wave and suppressed in another, tuning the duration of the response in proportion 
to the wave period.  A simple method of achieving this differential induction is by linking the 
gene activity to the cAMP dynamics, either the absolute level, or the temporal or spatial 
gradient.  We model the activity of the csaA gene as having a number of discrete states of 
monotonically increasing polymerase initiation rate, with the rate constants for transitions 
between states depending on the temporal gradient of cAMP level, such that downward 
transitions are enhanced during the rising phase of the cAMP wave and suppressed during 
the falling phase, while holding the rate of upward transitions constant.  Alternative models 
from which the same antiphase effect can be achieved are by varying only the upward 
transitions (reduced during rising phase and increased during falling phase) or by allowing 
both upward and downward rates to vary (panels in figure S2E); the phase behaviour is 
produced by modulating the ratio of upward to downward rates in a cAMP-phase-dependent 
manner.  The phase behaviour of the average state (Figure S2F) and the high level of 
heterogeneity at the single cell level (Figure S2G) is maintained for each class of model.  We 
chose only downward rates varying to keep the model as simple as possible, and also 
because our local density results suggest that high cAMP levels may have a suppressive 
effect on transcription.  The rates may not depend directly on the extracellular cAMP 
gradient, rather the concentration, state or localisation of some intermediate signalling 
molecule which is linked to cAMP dynamics. 

The observation that spot intensity decreased by 6 hours of development, when 
cAMP waves displayed shorter periods of 4 minutes or less, led us to ask if the frequency of 
stimulation could account for the level of transcriptional output.  One method of producing 
this effect relies on the finite time required for a population of cells to move from the rising-
phase, low activity state to the falling-phase high activity state.  If rate constants are 
sufficiently slow such that the system does not reach equilibrium (ensured by setting the 
downward rates to be greater than the upward rates) during the falling phase of the wave, 
then faster waves will act to suppress transcription before the maximum level is reached.  An 
alternative model for the dampening effect is to include some activating species which is 
depleted and is incompletely replenished at high wave frequencies.  Since this introduces a 
number of additional free parameters, we continue to use the considerably simpler model 
capturing the frequency and phase response. 

As development proceeds, the gradient and absolute level of extracellular cAMP will 
both increase, as well as the frequency of oscillation, and cell mixing experiments also 
reveal a developmental time effect on transcriptional state.  The single-cell wave responses 
and the transient transcriptional persistence both have implications for the class of model 
used to describe the system.  Experimentally the response gradient is always measured to 
be less than 1, and from this we infer that the initiation rate is the most likely candidate for 
regulation by the cAMP signal.  The implication that transcription sites with a large amount of 
nascent RNA tend to be affected by cAMP to a lesser degree in absolute terms than sites 
with less or no detectible RNA suggests that the initiation rate is less strongly influenced if 
the transcriptional activity is already high (Figure S3C, left).  There are alternative models for 
the transcriptional response, including a constant increase in spot intensity independent of 
trough behaviour (Figure S3C, centre) or an increase in the polymerase dwell time by 
delaying RNA cleavage (Figure S3C, right).  These models, however, are not consistent with 
the experimental observations of a strong inverse relationship between the response 
gradient and the response intercept (Figure 3C) and a response gradient less than one.  The 



 
 

constant increase model would have a response gradient of 1 and a non-zero intercept 
independent of the gradient (Figure S3C, centre).  The alternative model of increasing the 
transcription intensity by lengthening the RNA cleavage time predicts that the absolute 
increase in intensity is proportional to the pre-existing amount of transcriptional activity, 
giving an intercept of zero and a gradient larger than 1 (FigureS3C, right). 

By measuring the trough spot intensity and corresponding peak intensity we found 
that cells have a maximum level of transcription, above which there is no response to the 
cAMP wave.  In terms of the ladder of transcriptionally active states, this observation can be 
interpreted in several ways.  Firstly, the rate constants may vary such that high activity states 
have smaller upward rate constants (Figure S3D, left), hence decreasing the probability of a 
cell in a high state moving further upwards.  Similarly, the difference between the 
transcriptional activities of adjacent states could decrease for higher states such that the 
states converge on a finite maximal activity (Figure S3D, centre).  Finally, there may be a 
finite number of states (Figure S3D, right).  Conceptually, there is little difference between 
these models, effectively defined by the state-dependent rate constants, and each can 
accurately describe the peak-trough response (Figure S3E). 

The transient persistence observed means that each cAMP wave does not fully 
determine the transcription state of a cell.  In other words, the rate constants for state 
transitions must be sufficiently slow that the state is randomized only after 20 minutes or 
longer, while being fast enough to give a robust single-cell response to the stimulus.  In our 
model the response to a wave is not transient; after peaking each cell does not return to its 
previous trough level, but behaves stochastically.  The effect of this is to link the level of 
response and duration of persistence such that systems with fast transition rates have high 
responses and short persistence, while a system with slow transition rates has a small 
response and correspondingly long persistence (Figure S4E) as observed experimentally. 
The absolute values for rate constants depend on the number of states in the model, since 
the persistence timescale is effectively determined by the time required to move from a high 
activity to a low activity state.  The three classes of model described in figure S3D and E 
have the rate constants globally scaled to give persistence times comparable with the 
experimental system (Figure S4F).  Currently, the system is underdetermined to the extent 
that absolute parameters cannot be estimated.  Nevertheless, we have identified a number 
of requirements that a model must satisfy in order to adequately describe the system. 
 
 

  



 
 

Supplemental Experimental Procedures 
Automated Image Processing and Analysis 
Nuclei, cells and transcription spots were identified and segmented using custom software 
written in MATLAB (Mathworks).  The software is available from the authors on request. 
Frames were considered individually, and tracking performed after cell identification.  Cells 
with nuclear markers were used (Figure S1A and S1B), as prior identification of nuclei 
greatly improved cell identification and segmentation.  Methods described here are generally 
applicable in 3D, however for speed in processing many frames, and since overlapping cells 
were rare, images were segmented first in 2D using maximal projections then in z. 

For nuclear segmentation, 2D maximum projections of nuclei images were blurred 
with a Gaussian kernel. A local maxima filter found the rough centre of each nucleus.  A 
customized gradient watershed algorithm defined 2D nuclei boundaries.  To obtain 3D 
information, each column of pixels was considered in turn; the points of steepest gradient 
either side of the maximum give the top and bottom of the nucleus.  The 3D volume was 
morphologically smoothed to remove effects of noisy pixels.  Cell volume was segmented 
similarly, using nuclear locations as foreground markers for the watershed process. A typical 
segmentation result is displayed in Figure S1C. 

Transcription spots were visualized as bright objects of characteristic size in the GFP 
channel.  A 3D difference-of-Gaussians filter enhanced objects within the correct size range 
(Figure S1D, left).  By capturing closely spaced z-slices, transcription spots were present in 
multiple adjacent slices, a condition used to reduce noise effects.  The nuclear volume was 
used to find the pixel with the highest response to the spot filter within each nucleus.  Spot 
intensity was calculated by summing intensity within a cylinder around the measured spot 
position. Cell background intensity was calculated by averaging a cylindrical annulus around 
the spot, and subtracted from each spot pixel.  Cylinder sizes are shown in Figure S1D 
(right).  Use of a nuclear marker prevented mis-assignment of cytoplasmic autofluorescence. 

Cell positions were determined independently for each frame.  To measure dynamic 
properties over time, cells were tracked between frames using a custom algorithm to 
minimize the global sum of squared displacements (SSD) between frames.  The likelihood of 
a match between a cell in one frame and a cell in the next was calculated from the total SSD 
of configurations which contained the match.  High SSDs were given a low weighting, and 
low SSDs a high weighting.  Thus the global effect of a cell-cell match was taken into 
consideration, and configurations other than the outright minimum SSD were allowed to 
contribute, to assess the level of any tracking uncertainties. There is significant variegation in 
the cytoplasmic intensities of the MS2-GFP and H2B-RFP from cell to cell and this was used 
to aid tracking; changes in intensity were added to changes in x and y in the SSD.  Weights 
for fluorescence and displacement contributions were determined empirically. The accuracy 
of the tracking algorithm was optimised at multiple developmental time points with manual 
verification.  

 
Correcting for Background MS2-GFP level 
We have observed a cell-to-cell variation in the expression level of the MS2-GFP fusion 
protein. Spot intensities in low background cells are lower than those in high background 
cells.  This effect has been noted previously [S1], and results from incomplete occupancy of 
the RNA stem loops by the MS2 protein.  Therefore an equal quantity of stem loop RNA in a 
low background cell will have fewer MS2 dimers bound, and thus a lower spot intensity than 
in a high background cell.  Since we wish our spot measurements to reflect the level of 
nascent RNA, spot intensities must be corrected by a factor dependent on the background 
GFP level.  To achieve this, spot intensity measurements are grouped into bins of 50 cell 
tracks based on the background GFP intensity.  For each distribution, a scaling factor is 
calculated so as to shift the distribution to overlap with a reference distribution, chosen to be 
the central bin.  Scaling the distributions so that they superpose carries the assumption that 
the underlying distribution of stem loop numbers is independent of background GFP level.  
This procedure was carried out for spots of the act5 and csaA genes, and the scaling factor 



 
 

was found to be independent of the gene of interest, instead reflecting the binding behaviour 
of the MS2-GFP protein (Figure S1E).  The scaling factor data points were then fit with a 
smooth function, allowing the correction of spots in cells of arbitrary background intensity.  
The corrected spot intensity was found to be uncorrelated with background intensity using 
the Pearson product-moment correlation coefficient. 
 
Wavelet analysis 
Wavelets are increasingly used for analysis of temporally varying data, particularly in 
systems oscillating in a non-robust manner where the frequency can vary over time, and 
where one is interested in temporal variations as well as frequency behaviour. To determine 
phase behaviour, we used a wavelet analysis capable of measuring the amplitude and 
phase of the motility waves in a manner which is unbiased and robust to noise [S2].  To 
identify the frequency component of the signal with the highest amplitude we used a family 
of generalized Morse wavelets, using a toolbox of functions [S3].  We took the motility over 
time (solid line, Figure 1D upper) and calculated the wavelet transform, oversampling in 
frequency space (heatmap, Figure 1D lower), then used an algorithm to identify ridge points 
in the transform taking the ridge with the maximum amplitude for each frame.  From this the 
phase of the motility wave was extracted (background colour, Fig. 1D upper).  The link 
between cAMP and cell motility is well established, although in dense fields of view the 
physical constraints of other cells in close proximity may prevent cells responding to the 
timing and direction of the cAMP gradient with maximum fidelity.  Therefore, when waves of 
motility were robust, since no systematic variation in timing is observed across fields of view, 
the phase was averaged over each cell in the field to provide the best estimate of cAMP 
behaviour.  At earlier times, before synchronous waves are robustly set up, the phase of 
each cell was used. 
 
Circular statistics 
Because the phase is cyclic, that is 0° is equivalent to 360°, special methods must be 
employed to calculate the mean and standard deviation [S4].  The mean angle <θ> is 
calculated using: 
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The circular standard deviation is given by: 
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where R is defined in equation S1 (above).  The standard error in the mean is calculated as: 
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Combining Errors in the Correlation Coefficient 
Correlation matrices have a large number of elements.  We are primarily interested in how 
the wave separation affects the correlation in response, and this required averaging the 
elements along the diagonals.  Using Fisher’s z-transformation for the product-moment 
correlation coefficient: 
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produces a variable which is approximately normally distributed, and the error in the 
coefficient is given by: 
 

 (S5) 

 
where N is the number of data points used to calculate the correlation in each case.  
Elements which have fewer than 5 cells contributing to them (due to cells entering and 
leaving the field of view between early and late waves) were removed from the average due 
to the size of the errors being systematically underestimated.  A weighted average is then 
calculated, with the weight for each element given by 1/σ2. 
 
Measurement of cell parameters 
The 2-frame displacement was used as a sensitive measure of chemotactic response as it 
reduces noise and provides a good estimate of instantaneous motion at frame capture.  
Two-frame displacement was defined for frame, t, as the distance between the previous 
frame (t-1) and the next (t+1). The local density of cells around each cell in each frame was 
calculated by counting the number of cells lying within a circle of a chosen radius, and 
dividing by the area of the circle (bounded by the field of view).  A radius of 75 pixels (18 µm) 
was chosen to include more than only immediately adjacent cells but retain variation within a 
field of view.  Quantitatively similar behaviour was observed for radii of 50 or 100 pixels. 
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