## SUPPORTING INFORMATION for

# Targeting RNA-Protein interactions within

# the HIV-1 lifecycle.

*Neil M. Bell*,<sup>1,2</sup> Anne L'Hernault,<sup>2</sup> Pierre Murat,<sup>1</sup> James E. Richards,<sup>2</sup> Andrew

M.L. Lever<sup>2</sup> & Shankar Balasubramanian<sup>1,3</sup>\*

- 1) Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK.
- 2) Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.

### SUPPORTING RESULTS AND DISSCUSION

### SUPPORTING FIGURES

- Figure S1) Gag:FQ WT Screen results
- Figure S2) Biological activity of Lopinavir
- Figure S3) Biological activity of Saqunivir
- Figure S4) Biological activity of NSC260594
- Figure S5) Circular dichroism titration of NSC260594
- Figure S6) NMR titrations of NSC260594 & Ellipticine

### SUPPORTING TABLES

- Table S1)Potential hits identified from the small molecule screen
- Table S2)Viral replication and cell viability assay
- Table S3)Fluorescence melting titration of NSC260594

### SUPPORTING REFERENCES

#### SUPPORTING RESULTS AND DISSCUSION

The small molecule screen uses the increase in fluorescence intensity to monitor the rearrangement of an RNA molecular beacon substrate **FQ WT** (based on SL3 within the  $\Psi$ -packaging domain), upon binding of the Gag protein<sup>1</sup>. Small molecules that can prevent the unwinding of **FQ WT** either through the inhibition of Gag binding to or unwinding of the **FQ WT** will be detected by the low fluorescence intensity when compared to the negative control. Addition of unlabeled SL3 RNA to **FQ WT** prior to the addition of the gag polypeptide showed the **FQ WT**-Gag interaction could be inhibited and fluorescence intensity comparable to that of the **FQ WT** molecular beacon alone was achieved. For these reasons the **FQ WT** alone as well as SL3 were used as positive controls, (with SL3 being a "small molecule like" positive control set at 100% inhibition), DMSO alone was used as the negative control for the SM screen set at 0% inhibition.

The SM screening data was normalized as percentage inhibition of **FQ WT** relative to the positive and negative controls (Supp. Fig. 1); positive hits were defined as small molecules showing inhibition greater than three standard deviations (21%) from the mean negative control. On each plate, the controls were used to calculate the *Z*' score and any plate which failed to gain a *Z*' greater than 0.5 was rejected and the plate was rescreened. Confirmation of the primary hits was performed in triplicate under the original screening conditions.

#### SUPPORTING FIGURES



**Figure S1**: Results from the initial small molecule screen. Hits showing a positive inhibition of three standard deviations or more, from the negative control (dotted line), were validated by rescreening under the original conditions in triplicate.



**Figure S2** Biological activity of Lopinavir. **A**) 24 h post-infection the expression of  $\beta$ -galactosidase within the TZM-bl cell was imaged using X-Gal (bottom row). **B**) Viability of the 293T cells (blue line, 50% inhibition (CC<sub>(50)</sub> = 69.1 ± 15.3 µM)), viral production from transfected 293T (green line, 50% inhibition (p24<sub>(50)</sub> = 9.6 ± 3.2 µM)) and infectivity of harvested viral particles (red line 50% inhibition (IC<sub>(50)</sub> = 0.035 ± 0.008 µM)) in the presence of different concentrations of Lopinavir. **C**) Structure of Lopinavir



**Figure S3**: Biological activity of Saquinavir. **A**) 24 h post-infection, the expression of  $\beta$ -galactosidase within the TZM-bl cell was imaged using X-Gal (bottom row). **B**) Viability of the 293T cells (blue line, 50% inhibition (CC<sub>(50)</sub> = 15.1 ± 4.5 µM)), viral production from transfected 293T (green line, 50% inhibition (p24<sub>(50)</sub> = 13.5 ± 4.2 µM)) and infectivity of harvested viral particles (red line 50% inhibition (IC<sub>(50)</sub> = 0.011 ± 0.005 µM)) in the presence of different concentrations of Saquinavir. **C**) Structure of Saquinavir



**Figure S4**: Biological activity of NSC260594. **A**) 24 h post-infection, the expression of  $\beta$ -galactosidase within the TZM-bl cell was imaged using X-Gal (bottom row). **B**) Viability of the 293T cells (blue line, 50% inhibition (CC<sub>(50)</sub> = N/A)), viral production from transfected 293T (green line, 50% inhibition (p24<sub>(50)</sub> = 11.3 ± 3.4 µM)) and infectivity of harvested viral particles (red line 50% inhibition (IC<sub>(50)</sub> = 4.5 ± 1.8 µM)) in the presence of different concentrations of NSC260594. **C**) Structure of NSC260594



**Figure S5**: CD spectra of **WT-3** titrated against increasing amount of NSC260594. The decrease in CD signal at 210 nm and 195 nm with increasing concentrations of NSC260594 indicates a direct interaction between the molecule and the SL3 RNA.



**Figure S6**: Imino proton NMR spectra of the titrations of a) NSC260594 and b) ellipticine against **WT-3** done at pH 5.0. The imino protons between 12 and 14.5 p.p.m (blue region) are attributed to the Watson-Crick H-bonded base pairs of the stem of the hairpin structure and imino protons between 10 - 11 p.p.m (red region) are attributed to the **WT-3** loop G bases. The black diamond (•) highlights a peak attributed to ellipticine.

#### SUPPORTING TABLES



**Table S1:** Small molecules taken forward from the *in vitro* destablisation assay to the viral replications assays.

| Compound | CC(50) | SD   | IC(50) | SD   | Compound  | CC(50) | SD   | IC (50) | SD   |
|----------|--------|------|--------|------|-----------|--------|------|---------|------|
| A1895    | -      | -    | 0.2    | 0.1  | NSC50572  | -      | -    | -       | -    |
| A9699    | -      | -    | -      | -    | NSC55152  | -      | -    | -       | -    |
| A9809    | 3.9    | 3.3  | -      | -    | NSC58052  | 48.5   | 12.0 | -       | -    |
| B135     | 24.2   | 3.4  | -      | -    | NSC60339  | -      | -    | 68.6    | 21.2 |
| B8433    | 37.9   | 4.9  | 6.7    | 3.5  | NSC60340  | -      | -    | 56.1    | 25.1 |
| C2932    | 2.7    | 0.5  | -      | -    | NSC67436  | -      | -    | 92.0    | 14.3 |
| C6022    | 16.6   | 2.2  | -      | -    | NSC69187  | 11.2   | 2.2  | 3.3     | 1.5  |
| C7291    | 20.7   | 11.3 | 8.4    | 5.2  | NSC88402  | -      | -    | -       | -    |
| D030     | 19.4   | 12.9 | 3.8    | 2.2  | NSC99634  | -      | -    | -       | -    |
| D3768    | 26.7   | 15.8 | -      | -    | NSC101266 | -      | -    | 56.1    | 9.8  |
| E3380    | 27.0   | 12.9 | 22.7   | 12.2 | NSC106863 | -      | -    | -       | -    |
| E5156    | 77.9   | 9.4  | -      | -    | NSC109086 | 42.2   | 5.5  | -       | -    |
| H140     | 0.6    | 0.4  | -      | -    | NSC112125 | -      | -    | 47.7    | 17.9 |
| H5257    | 27.9   | 3.2  | 7.4    | 2.8  | NSC112941 | -      | -    | -       | -    |
| 1117     | 58.9   | 7.5  | -      | -    | NSC121861 | -      | -    | -       | -    |
| M006     | -      | -    | -      | -    | NSC126757 | -      | -    | 57.0    | 23.4 |
| M1404    | -      | -    | -      | -    | NSC127133 | -      | -    | -       | -    |
| M6545    | 0.9    | 0.4  | -      | -    | NSC134137 | -      | -    | -       | -    |
| N144     | 32.4   | 10.6 | -      | -    | NSC134159 | 10.3   | 2.9  | -       | -    |
| Q3251    | 3.0    | 1.6  | -      | -    | NSC134580 | -      | -    | -       | -    |
| R0529    | -      | -    | 13.9   | 8.0  | NSC137112 | -      | -    | -       | -    |
| R1402    | 17.1   | 2.3  | -      | -    | NSC146771 | -      | -    | 46.2    | 19.3 |
| R8875    | 3.0    | 0.9  | -      | -    | NSC170637 | 11.9   | 3.8  | -       | -    |
| U6756    | 29.2   | 14.5 | -      | -    | NSC202386 | -      | -    | 20.5    | 2.4  |
| X103     | -      | -    | -      | -    | NSC228155 | 13.8   | 1.2  | -       | -    |
| NSC7578  | 55.0   | 8.0  | 24.2   | 7.2  | NSC259242 | -      | -    | 41.5    | 20.9 |
| NSC11275 | -      | -    | -      | -    | NSC260594 | -      | -    | 4.5     | 1.8  |
| NSC14303 | -      | -    | -      | -    | NSC263220 | -      | -    | -       | -    |
| NSC33353 | 3.1    | 1.6  | -      | -    | NSC283845 | 44.2   | 4.6  | -       | -    |
| NSC34769 | -      | -    | -      | -    | NSC285233 | 1.4    | 0.6  | -       | -    |
| NSC35676 | 63.7   | 7.7  | -      | -    | NSC300289 | -      | -    | -       | -    |
| NSC36758 | 4.6    | 2.7  | -      | -    | NSC317605 | 5.0    | 2.9  | -       | -    |
| NSC41331 | -      | -    | 72.8   | 21.0 | NSC332670 | 17.0   | 2.5  | 4.7     | 2.0  |
| NSC42199 | 36.8   | 5.8  | -      | -    | NSC338963 | -      | -    | 83.6    | 1.1  |
| NSC42212 | -      | -    | 21.6   | 12.3 | NSC345647 | 11.2   | 2.7  | -       | -    |
| NSC45383 | 0.4    | 0.2  | -      | -    | NSC353263 | -      | -    | -       | -    |
| NSC47722 | 20.5   | 5.2  | -      | -    | NSC402083 | 32.0   | 6.9  | -       | -    |
| NSC48471 | -      | -    | -      | -    | NSC404057 | -      | -    | -       | -    |
|          |        |      |        |      | NSC659107 | -      | -    | 73.4    | 52.3 |

**Table S2**: Results from the viral replication assays to determine initial cytotoxicity and efficacy of potential hits from the initial small molecule screen.

| [NSC260594] µM       | 0    | 0.5  | 1     | 5    | 10   | 20   | 30  | 40  | 50  | 100 |
|----------------------|------|------|-------|------|------|------|-----|-----|-----|-----|
| T <sub>m</sub> (°C)  | 85.7 | 85.8 | 85.5  | 86.1 | 86.7 | 88.4 | <95 | <95 | <95 | <95 |
| SD                   | 1.0  | 0.9  | 1.2   | 0.5  | 0.2  | 1.0  | -   | -   | -   | -   |
| ΔT <sub>m</sub> (°C) | -    | 0.11 | -0.23 | 0.57 | 0.57 | 1.71 | -   | -   | -   | -   |

**Table S3**: Fluorescence melting titration of compound NSC260594 (0-100  $\mu$ M) against the oligo **FQ WT** that was used in the initial *in vitro* screen. Above 20  $\mu$ M of NSC260594 **FQ WT** becomes stablised and FQ WT can not be melted even at 95 °C.

#### SUPPORTING REFERENCES

(1) Bell, N. M.; Kenyon, J. C.; Balasubramanian, S.; Lever, A. M. *Biochemistry* **2012**, *51*, 3162.

Wei, X. P.; Decker, J. M.; Liu, H. M.; Zhang, Z.; Arani, R. B.; Kilby, J. M.;
Saag, M. S.; Wu, X. Y.; Shaw, G. M.; Kappes, J. C. Antimicrob Agents Ch 2002, 46, 1896.

(3) Akari, H.; Uchiyama, T.; Fukumori, T.; Iida, S.; Koyama, A. H.; Adachi, A. J Gen Virol **1999**, 80 (*Pt 11*), 2945.

(4) Aiken, C. J Virol **1997**, 71, 5871.